Abstract

We numerically study supercontinuum generation in photonic crystal fibers with two zero-dispersion wavelengths, weakly tapered to have normal dispersion at all wavelengths after a certain distance. We pump with 15 fs pulses with milliwatt average power and show that two distinct smooth spectral parts are generated, with improved stability due to the normal dispersion. We characterize the two spectral parts and show how the 3 dB bandwidth, the center wavelength, and the power of the two parts depend on the taper parameters and the pump power.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T.A. Birks, W.J. Wadsworth, and P.St.J. Russell, �??Supercontinuum generation in tapered fibers,�?? Opt. Lett. 25, 1415-1417 (2000).
    [CrossRef]
  2. J.K. Ranka, R.S. Windeler, and A.J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  3. S.A. Diddams, D.J. Jones, J. Ye, S. T. Cundiff, J.L. Hall, J.K. Ranka, R.S.Windeler, R. Holzwarth, T. Udem, and T.W. Hänsch, �??Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,�?? Phys. Rev. Lett. 84, 5102-5105 (2000).
    [CrossRef] [PubMed]
  4. T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, �??1Tbit/s (100Gbit/s x 10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,�?? Electron. Lett. 32, 906-907 (1996).
    [CrossRef]
  5. I. Hartl, X.D. Li, C. Chudoba, R.K. Ghanta, T.K. Ko, J.G. Fujimoto, J.K. Ranka, and P.S. Windeler, �??Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber,�?? Opt. Lett. 26, 608-610 (2001).
    [CrossRef]
  6. A. Unterhuber, B Považay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, Ch. Schubert, H. Reitsamer, P.K. Ahnelt, J.E. Morgan, A. Cowey, and W. Drexler, �??Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,�?? Phys. Med. Biol. 49, 1235-1246 (2004).
    [CrossRef] [PubMed]
  7. J.M. Dudley, L. Provino, N. Grossard, H. Maillotte, R.S.Windeler, B.J. Eggleton, and S. Coen, �??Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,�?? J. Opt. Soc. Am. B 19, 765-771 (2002).
    [CrossRef]
  8. S. Coen, A.H.L. Chau, R. Leonhardt, J.D. Harvey, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, �??Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,�?? J. Opt. Soc. Am. B 19, 753 (2002).
    [CrossRef]
  9. A. V. Husakou and J. Herrmann, �??Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers�??, J. Opt. Soc. Am. B 19, 2171-2182 (2002).
    [CrossRef]
  10. N.I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, �??Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,�?? J. Opt. Soc. Am. B 20, 2329-2337 (2003).
    [CrossRef]
  11. N.R. Newbury, B.R. Washburn, R.S. Windeler, and K.L. Corwin, �??Noise amplification during supercontinuum generation in microstructure fiber,�?? Opt. Lett. 28, 944-946 (2003).
    [CrossRef] [PubMed]
  12. K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, and R.S. Windeler, �??Fundamental noise limitations to supercontinuum generation in microstructure fiber,�?? Phys. Rev. Lett. 90, 113904 (2003).
    [CrossRef] [PubMed]
  13. C.M. Netti, M.E. Zoorob, S. Roberts, M.D. Charlton, G.J. Parker, J.J. Baumberg, J.R. Lincoln, M.J. Lederer, and D. Kopf, �??Low noise self-phase modulation continuum generation in high index tapered planar waveguide at 1040nm for OCT applications,�?? paper 5690-38, Photonic West, San Jose, USA, Jan. 22-27, 2005.
  14. K.M. Hilligsøe, T.V. Andersen, H.N. Paulsen, C.K. Nielsen, S.R. Keiding, S. Kristiansen, K.P. Hansen, and J.J. Larsen, �??Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,�?? Opt. Express 6, 1045-1054 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1045">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1045</a>
    [CrossRef]
  15. M.H. Frosz, P. Falk, and O. Bang, �??The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,�?? Opt. Express 13, 6181-6192 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-16-6181">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-16-6181</a>
    [CrossRef] [PubMed]
  16. J.M. Schmitt, S.H. Xiang, and K.M. Yung, �??Differential absorption imaging with optical coherence tomography,�?? J. Opt. Soc. Am. A 15, 2288-2296 (1998).
    [CrossRef]
  17. F. Lu, Y. Deng, and W.H. Knox, �??Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,�?? Opt. Lett. 30, 1566-1568 (2005).
    [CrossRef] [PubMed]
  18. S.G. Johnson and J.D. Joannopoulos, �??Block-iterative frequency-domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8, 173-190 (2001). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>
    [CrossRef] [PubMed]
  19. G.P. Agrawal, Nonlinear Fiber Optics, 2nd edition (Academic, New York, 2001).

Electron. Lett.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, �??1Tbit/s (100Gbit/s x 10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,�?? Electron. Lett. 32, 906-907 (1996).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Express

K.M. Hilligsøe, T.V. Andersen, H.N. Paulsen, C.K. Nielsen, S.R. Keiding, S. Kristiansen, K.P. Hansen, and J.J. Larsen, �??Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,�?? Opt. Express 6, 1045-1054 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1045">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1045</a>
[CrossRef]

S.G. Johnson and J.D. Joannopoulos, �??Block-iterative frequency-domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8, 173-190 (2001). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>
[CrossRef] [PubMed]

M.H. Frosz, P. Falk, and O. Bang, �??The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,�?? Opt. Express 13, 6181-6192 (2005). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-16-6181">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-16-6181</a>
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

A. Unterhuber, B Považay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, Ch. Schubert, H. Reitsamer, P.K. Ahnelt, J.E. Morgan, A. Cowey, and W. Drexler, �??Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,�?? Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett.

K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, and R.S. Windeler, �??Fundamental noise limitations to supercontinuum generation in microstructure fiber,�?? Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

S.A. Diddams, D.J. Jones, J. Ye, S. T. Cundiff, J.L. Hall, J.K. Ranka, R.S.Windeler, R. Holzwarth, T. Udem, and T.W. Hänsch, �??Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,�?? Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Other

G.P. Agrawal, Nonlinear Fiber Optics, 2nd edition (Academic, New York, 2001).

C.M. Netti, M.E. Zoorob, S. Roberts, M.D. Charlton, G.J. Parker, J.J. Baumberg, J.R. Lincoln, M.J. Lederer, and D. Kopf, �??Low noise self-phase modulation continuum generation in high index tapered planar waveguide at 1040nm for OCT applications,�?? paper 5690-38, Photonic West, San Jose, USA, Jan. 22-27, 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Dimensions and (b) dispersion profiles for the tapered triangular PCF with relative hole diameter d/Λ = 0.57 and pitch Λ = Λ0 = 1.0 μm (untapered) to Λ = ΛT = 0.9 μm, in steps of 0.01 μm. The dispersion is normal for all wavelengths for Λ < 0.96 μm. (c) Dispersion coefficients β 2 [10-27 s2/m] (red, 엯), β 3 [10-41 s3/m] (green, ◻), β 4 [10-55 s4/m] (black, ▵), and β 5 [10-70 s5/m] (blue, ◁), versus pitch Λ.

Fig. 2.
Fig. 2.

Color coded power spectrum plot of the spectral evolution in a z T = 15 mm long taper with final pitch (a) ΛT = 0.98 μm and (b) ΛT = 0.93 μm. The white line represents the ZDWs with the dispersion being anomalous inside this curve.

Fig. 3.
Fig. 3.

(a, i) Power spectrum for an untapered PCF with Λ T = 1.0 μm at z = 0 mm (dotted, red), 8 mm (dashed, green), and 15 mm (solid, blue). (b, i) Power spectrum at taper end z = z T = 15 mm for ΛT = 0.9 μm (dotted, red), 0.95 μm (dashed, green), and 1.0 μm (solid, blue). (c, i) Power spectrum for ΛT = 0.9 μm at taper end z = z T = 15 mm (dotted, red), 25 mm (dashed, green), and 50 mm (solid, blue). (d, i) Power spectrum at taper end z = z T = 15 mm for ΛT = 0.9 μm and average pump power 6 μW (dotted, red), 6 mW (dashed, green), and 12 mW (solid, blue). (a-d,ii) center wavelength, (a-d, iii) FWHM, and (a-d, iv) average power within the FWHM versus respective parameters, NIR (엯) and VIS spectral parts (◁).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Λ ( z ) = Λ T ( 1 + Λ 0 2 Λ T 2 Λ T 2 ( z z T ) 2 z T 2 ) 1 2 .

Metrics