Abstract

We demonstrate continuous-wave wavelength conversion through four-wave mixing in an endlessly single mode photonic crystal fiber. Phasematching is possible at vanishing pump power in the anomalous dispersion regime between the two zero-dispersion wavelengths. By mixing appropriate pump and idler sources, signals in the range 500–650 nm are obtained in good accordance with calculated phasematching curves. The conversion efficiency from idler to signal power is currently limited to 0.3% by the low spectral density of the pump and idler sources at hand, but can be greatly enhanced by applying narrow line width lasers.

© 2004 Optical Society of America

Full Article  |  PDF Article

Corrections

Thomas Andersen, Karen Hilligsøe, Carsten Nielsen, Jan Thøgersen, K. Hansen, Søren Keiding, and Jakob Larsen, "Continuous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths: erratum," Opt. Express 13, 3581-3582 (2005)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-13-9-3581

References

  • View by:
  • |

  1. P. Russel, �??Photonic crystal fibers,�?? Science 299, 358�??362 (2003).
    [CrossRef]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25�??27 (2000).
    [CrossRef]
  3. J. Hermann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, �??Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,�?? Phys. Rev. Lett. 88, 173901�??173904 (2002).
    [CrossRef]
  4. A. V. Husakou and J. Herrmann, �??Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic crystal fibers,�?? J. Opt. Soc. Am. B 19, 2171�??2182 (2002).
    [CrossRef]
  5. W. J. Wadsworth, A. Ortigosa-blanch, J. C. Knight, T. A. Birks, T.-P. M. Man, and P. S. J. Russel, �??Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,�?? J. Opt. Soc. Am. B 19, 2148�??2155 (2002).
    [CrossRef]
  6. J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Optical properties of high-delta air-silica microstructure optical fiber,�?? Opt. Lett. 25, 796�??798 (2000).
    [CrossRef]
  7. J. M. Dudley, L. Provino, N. Grossard, H. Mailotte, R. S.Windeler, B. J. Eggleton, and S. Coen, �??Supercontinuum generation in air-silic microstructured fibers with nanosecond and femtosecond pulse pumping,�?? J. Opt. Soc. Am. B 19, 765�??771 (2002).
    [CrossRef]
  8. S. Coen, A. H. C. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, �??Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,�?? J. Opt. Soc. Am. B 19, 753�??764 (2002).
    [CrossRef]
  9. A. L. Gaeta, �??Nonlinear propagation and continuum generation in microstructured optical fibers,�?? Opt. Lett. 27, 924�??926 (2002).
    [CrossRef]
  10. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, �??Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,�?? Opt. Express 10, 1083�??1098 (2002).
    [CrossRef] [PubMed]
  11. T. Udem, R. Holzwarth, and T. W. H¨ansch, �??Optical frequency metrology,�?? Nature 416, 233�??237 (2002).
    [CrossRef] [PubMed]
  12. H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, �??Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,�?? Opt. Lett. 28, 1123�??1125 (2003).
    [CrossRef] [PubMed]
  13. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, �??Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructured optical fiber,�?? Opt. Lett. 26, 608�??610 (2001).
    [CrossRef]
  14. R. W. McKerracher, J. L. Blows, and C. M. de Sterke, �??Wavelength conversion bandwidth in fiber based optical parametric amplifiers,�?? Opt. Express 11, 1002�??1007 (2003).
    [CrossRef] [PubMed]
  15. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).
  16. W. Margulis and U. ¨ Osterberg, �??Four-photon fiber laser,�?? Opt. Lett. 12, 519�??521 (1987).
    [CrossRef] [PubMed]
  17. J. E. Sharping, M. Fiorentino, and P. Kumar, �??Optical parametric oscillator based on four-wave mixing in microstructured fiber,�?? Opt. Lett. 27, 1675�??1677 (2002).
    [CrossRef]
  18. M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, �??Continuous wave fiber optical parametric oscillator,�?? Opt. Lett. 27, 1439�??1441 (2002).
    [CrossRef]
  19. C. J. S. de Matos, K. P. Hansen, and J. R. Taylor, �??Continuous wave, totally fiber integrated optical parametric oscillator using holey fiber,�?? Opt. Lett. 29, 983�??985 (2004).
    [CrossRef] [PubMed]
  20. K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, and J. J. Larsen, �??Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,�?? Opt. Express 12, 1045�??1054 (2004).
    [CrossRef] [PubMed]
  21. R. H. Stolen and J. E. Bjorkholm, �??Parametric amplification and frequency conversion in optical fibers,�?? IEEE J. Quantum Electron. 18, 1062�??1071 (1982).
    [CrossRef]
  22. J. D. Harvey, R. Leonhardt, S. Coen, G. K. Wong, J. C. Knight, W. J. Wadsworth, and P. S. J. Russel, �??Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,�?? Opt. Lett. 28, 2225�??2227 (2003).
    [CrossRef] [PubMed]
  23. <a href= "Http://www.crystal-fibre.com/Products/nonlinear/datasheets/NL-PM-750.pdf">Http://www.crystal-fibre.com/Products/nonlinear/datasheets/NL-PM-750.pdf</a>
  24. V. Finazzi, T. M. Monro, and D. J. Richardson, �??Small-core silica holey fibers: nonlinearity and confinement loss trade-offs,�?? J. Opt. Soc. Am. B 20, 1427�??1436 (2003).
    [CrossRef]
  25. S. Diddams and J. C. Diels, �??Dispersion measurements with white-light interferometry,�?? J. Opt. Soc. Am. B 13, 1120�??1129 (1996).
    [CrossRef]
  26. T. Fuji, M. Arakawa, T. Hattori, and H. Nakatsuka, �??A white-light Michelson interferometer in the visible and infrared regions,�?? Rev. Sci. Instrum. 69, 2854�??2858 (1998).
    [CrossRef]
  27. F. Biancalana, D. V. Skryabin, and P. S. Russel, �??Fourwave mixing instabilities in photonic-crystal and tapered fibers,�?? Phys. Rev. E 68, 046631�??046638 (2003).
    [CrossRef]
  28. R. A. Sammut and S. J. Garth, �??Multiple-frequency generation on single-mode optical fibers,�?? J. Opt. Soc. Am. B 6, 1732�??1735 (1989).
    [CrossRef]
  29. M. Yu, C. J. McKinstrie, and G. P. Agrawal, �??Modulation instabilities in dispersion flattended fibers,�?? Phys. Rev. E 52, 1072�??1080 (1995).
    [CrossRef]
  30. A. Ghatak and K. Thyagarajan, Introduction to fiber optics, chap. 17, pp. 384�??386 (Cambridge, 2000).
  31. M. Karlsson, �??Four-wave mixing in fibers with randomly varying zero-dispersion wavelength,�?? J. Opt. Soc. Am. B 15, 2269�??2275 (1998).
    [CrossRef]
  32. H. Wenzel, A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, M. Weyers, and G. Trankle, �??Highpower 783 nm distributed-feedback laser,�?? Electron. Lett. 40, 123�??124 (2004).
    [CrossRef]
  33. M. H. Dunn and M. Ebrahimzadeh, �??Parametric generation of tunable light from continuous-wave to femtosecond pulses,�?? Science 286, 1513�??1517 (1999).
    [CrossRef] [PubMed]

Electron. Lett. (1)

H. Wenzel, A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, M. Weyers, and G. Trankle, �??Highpower 783 nm distributed-feedback laser,�?? Electron. Lett. 40, 123�??124 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. H. Stolen and J. E. Bjorkholm, �??Parametric amplification and frequency conversion in optical fibers,�?? IEEE J. Quantum Electron. 18, 1062�??1071 (1982).
[CrossRef]

J. Opt. Soc. Am. B (7)

Nature (1)

T. Udem, R. Holzwarth, and T. W. H¨ansch, �??Optical frequency metrology,�?? Nature 416, 233�??237 (2002).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (10)

J. E. Sharping, M. Fiorentino, and P. Kumar, �??Optical parametric oscillator based on four-wave mixing in microstructured fiber,�?? Opt. Lett. 27, 1675�??1677 (2002).
[CrossRef]

A. L. Gaeta, �??Nonlinear propagation and continuum generation in microstructured optical fibers,�?? Opt. Lett. 27, 924�??926 (2002).
[CrossRef]

M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, �??Continuous wave fiber optical parametric oscillator,�?? Opt. Lett. 27, 1439�??1441 (2002).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25�??27 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Optical properties of high-delta air-silica microstructure optical fiber,�?? Opt. Lett. 25, 796�??798 (2000).
[CrossRef]

C. J. S. de Matos, K. P. Hansen, and J. R. Taylor, �??Continuous wave, totally fiber integrated optical parametric oscillator using holey fiber,�?? Opt. Lett. 29, 983�??985 (2004).
[CrossRef] [PubMed]

H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, �??Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,�?? Opt. Lett. 28, 1123�??1125 (2003).
[CrossRef] [PubMed]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. Wong, J. C. Knight, W. J. Wadsworth, and P. S. J. Russel, �??Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,�?? Opt. Lett. 28, 2225�??2227 (2003).
[CrossRef] [PubMed]

W. Margulis and U. ¨ Osterberg, �??Four-photon fiber laser,�?? Opt. Lett. 12, 519�??521 (1987).
[CrossRef] [PubMed]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, �??Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructured optical fiber,�?? Opt. Lett. 26, 608�??610 (2001).
[CrossRef]

Phys. Rev. E. (2)

F. Biancalana, D. V. Skryabin, and P. S. Russel, �??Fourwave mixing instabilities in photonic-crystal and tapered fibers,�?? Phys. Rev. E 68, 046631�??046638 (2003).
[CrossRef]

M. Yu, C. J. McKinstrie, and G. P. Agrawal, �??Modulation instabilities in dispersion flattended fibers,�?? Phys. Rev. E 52, 1072�??1080 (1995).
[CrossRef]

Phys. Rev. Lett. (1)

J. Hermann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, �??Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,�?? Phys. Rev. Lett. 88, 173901�??173904 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

T. Fuji, M. Arakawa, T. Hattori, and H. Nakatsuka, �??A white-light Michelson interferometer in the visible and infrared regions,�?? Rev. Sci. Instrum. 69, 2854�??2858 (1998).
[CrossRef]

Science (2)

P. Russel, �??Photonic crystal fibers,�?? Science 299, 358�??362 (2003).
[CrossRef]

M. H. Dunn and M. Ebrahimzadeh, �??Parametric generation of tunable light from continuous-wave to femtosecond pulses,�?? Science 286, 1513�??1517 (1999).
[CrossRef] [PubMed]

Supercontinuum generation in air-silic m (1)

J. M. Dudley, L. Provino, N. Grossard, H. Mailotte, R. S.Windeler, B. J. Eggleton, and S. Coen, �??Supercontinuum generation in air-silic microstructured fibers with nanosecond and femtosecond pulse pumping,�?? J. Opt. Soc. Am. B 19, 765�??771 (2002).
[CrossRef]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).

<a href= "Http://www.crystal-fibre.com/Products/nonlinear/datasheets/NL-PM-750.pdf">Http://www.crystal-fibre.com/Products/nonlinear/datasheets/NL-PM-750.pdf</a>

A. Ghatak and K. Thyagarajan, Introduction to fiber optics, chap. 17, pp. 384�??386 (Cambridge, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Left: Dispersion profile. Right: Cross section of the fiber. The core is surrounded by six air holes of which two are slightly bigger than the rest. The result is a higher index difference and thereby birefringence.

Fig. 2.
Fig. 2.

Left: The scaled dispersion terms β 2, β 4, β 6 and β 8 as functions of λ. The higher order dispersion terms are of considerable size and change sign several times in the shown interval. Right: A zoom on the high-frequency ZDW shows that β 4 and β 8 are negative below the ZDW. They can therefore compensate for the positive β 2 and β 6 which means that phasematching is possible in the normal dispersion regime.

Fig. 3.
Fig. 3.

Left: Phasematching with γP 0=0. For a given pump wavelength, the phasematched Stokes and anti-Stokes wavelengths are found on a vertical line. Right: At high pump power an additional set of phasematched wavelengths appear.

Fig. 4.
Fig. 4.

Closeup of the phasematching curve close to the lowest zero-dispersion wavelength. At wavelengths below the zero-dispersion, two sets of wavelengths can be phasematched simultaneously as indicated by arrows.

Fig. 5.
Fig. 5.

Setup.

Fig. 6.
Fig. 6.

Spectra at phasematching. In (c), (d) and (e) the visible and infrared spectra were recorded with different detectors and joined here for clarity. In all figures, the left peak is the signal while the middle and right peaks are pump and idler respectively. To avoid saturation of the detector, various filters were inserted to reduce both pump and idler power. As a consequence the amplitudes of the peaks do not represent the power distribution.

Fig. 7.
Fig. 7.

Phasematched wavelengths along the two axes. Matched wavelengths are found on vertical lines. As an example the phasematching with the 1064 nm diode is marked. The zero-dispersion wavelength at 755 nm is also indicated. In reality each axis has its own zero-dispersion wavelength which results in a shifted phasematching curve. Our experiments indicate that the major axis has its zero-dispersion wavelength in the vicinity of 785 nm as illustrated by dashed lines.

Fig. 8.
Fig. 8.

Left: The steep slope of the phasematching curve implies that only a part of the pump is actually phasematched to the laser diode at 1493 nm. Right: Measured power at 518 nm as a function of pump power when the idler power is 40 mW. The full line is the analytical approximation presented in [21].

Tables (1)

Tables Icon

Table 1. Coefficients of the 9th order polynomial fit to the dispersion data in Fig. 1.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A p z = i γ [ ( A p 2 + 2 ( A i 2 + A s 2 ) ) A p + 2 A i A s A p * exp ( i Δ β z ) ] α p 2 A p
A i ( s ) z = i γ [ ( A i ( s ) 2 + 2 ( A p 2 + A s ( i ) 2 ) ) A i ( s ) + A p 2 A s ( i ) * exp ( i Δ β z ) ] α i ( s ) 2 A i ( s )
P s ( L ) = P i ( 0 ) ( 1 + γ P 0 g ) 2 sinh 2 ( g L )
g = ( γ P 0 ) 2 ( κ 2 ) 2
κ = Δ β + 2 γ P 0
Ω s 2 β 2 + 1 12 Ω s 4 β 4 + 1 360 Ω s 6 β 6 + + 2 γ P 0 = 0
β 2 ( λ ) = n c n λ n
β n , scaled = 2 n ! ( 10 15 s 1 ) ( n 2 ) β n .

Metrics