Abstract

Enhancement of the bandwidth of supercontinuum generated in microstructured fibers with a tailored dispersion profile is demonstrated experimentally. The fibers are designed to have two zero-dispersion wavelengths separated by more than 700 nm, which results in an amplification of two dispersive waves at visible and infrared wavelengths. The underlying physics behind the broad continuum formation is discussed and analyzed in detail. The experimental observations are confirmed through numerical simulations.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  2. See for example Nonlinear optics of photonic crystals, Special issue of J. Opt. Soc. Am. B 19, 1961-2296 (2002) or Supercontinuum generation, Special issue of Appl. Phys. B 77, 143-376 (2003).
  3. A. V. Husakou and J. Herrmann, �??Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses, �?? Appl. Phys. B. 77, 227-234 (2003).
    [CrossRef]
  4. K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, �??Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths, �?? Opt. Express 12, 1045-1054 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1045">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1045</a>.
    [CrossRef] [PubMed]
  5. R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, �??Optical frequency synthesizer for precision spectroscopy,�?? Phys. Rev. Lett. 85, 2264-2267 (2000).
    [CrossRef] [PubMed]
  6. A. V. Husakou and J. Herrmann, �??Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers,�?? J. Opt. Soc. Am. B 19, 2171-2182 (2002).
    [CrossRef]
  7. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, �??Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,�?? Opt. Express 10, 1083-1098 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1083">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1083</a>.
    [CrossRef] [PubMed]
  8. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, �??Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,�?? J. Opt. Soc. Am. B. 19, 765-771 (2002).
    [CrossRef]
  9. J. R. Folkenberg, N. A. Mortensen, K. P. Hansen, T. P. Hansen, H. R. Simonsen, and C. Jakobsen, �??Experimental investigation of cutoff phenomena in nonlinear photonic crystal fibers,�?? Opt. Lett. 28, 1882-1884 (2003).
    [CrossRef] [PubMed]
  10. N. Akhemediev and M. Karlsson, �??Cherenkov radiation emitted by solitons in optical fibers,�?? Phys. Rev. A 51, 2602-2607 (1995).
    [CrossRef]
  11. K. J. Blow and D. Wood, �??Theoretical description of transient stimulated Raman scattering in optical fibers,�?? IEEE J. Quantum Electron. 25, 2665-2673 (1989).
    [CrossRef]
  12. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, �??Soliton self-frequency shift cancellation in photonic crystal fibers,�?? Science 301, 1705-1708 (2003).
    [CrossRef] [PubMed]
  13. M. Lehtonen, G. Genty, M. Kaivola, and H. Ludvigsen, �??Supercontinuum generation in a highly birefringent microstructured fiber,�?? Appl. Phys. Lett. 82, 2197-2199 (2003).
    [CrossRef]
  14. M. L. Hu, C. Y. Wang, L. Chai, and A. M. Zheltikov, �??Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber,�?? Opt. Express 12, 1932-1937 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1932">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1932</a>
    [CrossRef] [PubMed]

Appl. Phys. B. (1)

A. V. Husakou and J. Herrmann, �??Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses, �?? Appl. Phys. B. 77, 227-234 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

M. Lehtonen, G. Genty, M. Kaivola, and H. Ludvigsen, �??Supercontinuum generation in a highly birefringent microstructured fiber,�?? Appl. Phys. Lett. 82, 2197-2199 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. J. Blow and D. Wood, �??Theoretical description of transient stimulated Raman scattering in optical fibers,�?? IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Am. B. (1)

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, �??Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,�?? J. Opt. Soc. Am. B. 19, 765-771 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. A (1)

N. Akhemediev and M. Karlsson, �??Cherenkov radiation emitted by solitons in optical fibers,�?? Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef]

Phys. Rev. Lett. (1)

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, �??Optical frequency synthesizer for precision spectroscopy,�?? Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, �??Soliton self-frequency shift cancellation in photonic crystal fibers,�?? Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Other (1)

See for example Nonlinear optics of photonic crystals, Special issue of J. Opt. Soc. Am. B 19, 1961-2296 (2002) or Supercontinuum generation, Special issue of Appl. Phys. B 77, 143-376 (2003).

Supplementary Material (1)

» Media 1: MOV (2830 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the spectral amplification of dispersive waves along a two-λZD MF. VDW: visible dispersive wave, IDW: infrared dispersive wave, RS soliton: Raman shited soliton.

Fig. 2.
Fig. 2.

Calculated dispersion profile a) and effective area b) of the four MFs. D: dispersion and Aeff : effective area.

Fig. 3.
Fig. 3.

Experimental spectra for increasing input power recorded at the output of a) fiber 1, b) fiber 2, c) fiber 3, and d) fiber 4. The dashed lines shows the location of λZD . P av: average pump input power, VDW: visible dispersive wave, and IDW: infrared dispersive wave. The length of the fibers is 1.5 m, λP =800nm, and Δτ=200 fs. The measurement range of the spectrum extends from 350 to 1750 nm. The drop of the spectral intensity at longer wavelengths is partly due to the decreasing sensitivity of the spectrum analyzer.

Fig. 4.
Fig. 4.

Calculated center wavelength of the dispersive waves as a function of the pump wavelength for the four MFs. The black, red, blue, and green curves correspond to fiber 1, 2, 3, and 4, respectively.

Fig. 5.
Fig. 5.

Simulated spectrum of the SC generated along 1 m of fiber 4. Pav =140 mW, Δτ=200 fs, and λP =800 nm. For better comparison, the simulated spectrum was averaged over the same spectral window as is the resolution bandwidth of the optical spectrum analyzer applied in the experiments.

Fig. 6.
Fig. 6.

Simulated spectrogram after propagation in fiber 4 for a) z=1 cm, b) z=6 cm, c) z=14 cm and d) z=50 cm. Pav =60 mW, λP =800 nm, and Δτ=200 fs. The red line marks the pump wavelength and the dotted lines represent the λZD ’s. The white curve corresponds to the group delay of the fiber. VDW: visible dispersive wave and IRW: infrared dispersive wave.

Fig. 7.
Fig. 7.

(Movie 2.8 MB) Simulated evolution of the spectrogram of the pulses along fiber 4. The pump pulse parameters are the same as those in Fig. 6.

Fig. 8.
Fig. 8.

Supercontinuum spectrum recorded when a) tuning the pump wavelength and b) varying the input pulse. c) Supercontinuum generated in 50 cm of fiber 4.

Tables (1)

Tables Icon

Table 1. Characteristic properties of the MFs. Λ: pitch, d: hole diameter, and MFD: mode-field diameter.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ β = β ( ω P ) β ( ω D W ) = ( 1 f R ) γ ( ω P ) P P n 2 ( ω D W ω P ) n n ! β n ( ω p ) = 0 ,

Metrics