Abstract

The realisation of a thermo-optically controlled symmetric Mach-Zehnder interferometer switch based on an AlGaAs/GaAs epitaxial waveguide structure operating at wavelengths in the region of λ=1550 nm is reported. The device is based on a very compact two-dimensional photonic crystal channel waveguide structure. The measured and simulated transmission spectra for the devices are in good agreement. The π-phase shift switching power for the device is as low as 42 mW.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. F. Krauss, �??Planar photonic crystal waveguide devices for integrated optics,�?? Phys. Stat. Sol. 197, 688-702 (2003).
    [CrossRef]
  2. A. Martinez, A. Griol, P. Sanchis and J. Marti, �??Mach-Zehnder interferometer employing coupled-resonator optical waveguides,�?? Opt. Lett. 28, 405-407 (2003).
    [CrossRef] [PubMed]
  3. M.H. Shih, W.J. Kim, W. Kuang, J.R. Cao, H. Yukawa, S.J. Choi, J.D. O�??Brien and W.K. Marshall, �??Two-dimensional photonic crystal Mach-Zehnder interferometers,�?? Appl. Phys. Lett. 84, 460-462 (2004).
    [CrossRef]
  4. E. Camargo, A.S. Jugessur, I. Ntakis, R.M. De La Rue, �??Photonic crystal waveguide Mach-Zehnder structures for thermo-optic switching,�?? in Integrated Optical Devices: Fabrication and Testing, edited by Giancarlo C. Righini, Proc. SPIE 4944, 376-381 (2003).
  5. S. Boscolo, M. Midrio, T. F. Krauss, �??Y junctions in photonic crystals channel waveguides: high transmission and impedance matching,�?? Opt. Lett. 12, 1001-1003 (2002).
    [CrossRef]
  6. G.V. Treyz, �??Silicon Mach-Zehnder waveguide interferometer operating at 1.3m,�?? Electron. Lett. 27, 118-120 (1991).
    [CrossRef]
  7. U. Fischer, T. Zinke, B. Schüppert, K. Petermann, �??Single mode optical switches based on SOI waveguides with large cross-section,�?? Electron. Lett. 30, 406-408 (1994).
    [CrossRef]
  8. M. Iodice, P. M. Sarro, M. Bellucci, �??Transient analysis of a high-speed thermo-optic modulator integrated in all silicon waveguide,�?? Opt. Eng. 42, 169-175 (2003).
    [CrossRef]

Appl. Phys. Lett.

M.H. Shih, W.J. Kim, W. Kuang, J.R. Cao, H. Yukawa, S.J. Choi, J.D. O�??Brien and W.K. Marshall, �??Two-dimensional photonic crystal Mach-Zehnder interferometers,�?? Appl. Phys. Lett. 84, 460-462 (2004).
[CrossRef]

Electron. Lett.

G.V. Treyz, �??Silicon Mach-Zehnder waveguide interferometer operating at 1.3m,�?? Electron. Lett. 27, 118-120 (1991).
[CrossRef]

U. Fischer, T. Zinke, B. Schüppert, K. Petermann, �??Single mode optical switches based on SOI waveguides with large cross-section,�?? Electron. Lett. 30, 406-408 (1994).
[CrossRef]

Opt. Eng.

M. Iodice, P. M. Sarro, M. Bellucci, �??Transient analysis of a high-speed thermo-optic modulator integrated in all silicon waveguide,�?? Opt. Eng. 42, 169-175 (2003).
[CrossRef]

Opt. Lett.

S. Boscolo, M. Midrio, T. F. Krauss, �??Y junctions in photonic crystals channel waveguides: high transmission and impedance matching,�?? Opt. Lett. 12, 1001-1003 (2002).
[CrossRef]

A. Martinez, A. Griol, P. Sanchis and J. Marti, �??Mach-Zehnder interferometer employing coupled-resonator optical waveguides,�?? Opt. Lett. 28, 405-407 (2003).
[CrossRef] [PubMed]

Phys. Stat. Sol.

T. F. Krauss, �??Planar photonic crystal waveguide devices for integrated optics,�?? Phys. Stat. Sol. 197, 688-702 (2003).
[CrossRef]

Proc. SPIE

E. Camargo, A.S. Jugessur, I. Ntakis, R.M. De La Rue, �??Photonic crystal waveguide Mach-Zehnder structures for thermo-optic switching,�?? in Integrated Optical Devices: Fabrication and Testing, edited by Giancarlo C. Righini, Proc. SPIE 4944, 376-381 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Scanning electron micrograph of Mach-Zehnder switch device showing the NiCr heater on top of one arm of the structure. (b) Detail of interface between 150 nm thick NiCr heater layer and 300nm thick Au contact layer.

Fig. 2.
Fig. 2.

Graph of transmission spectra: the dashed line shows simulation results and the bold line shows measured results. The y-axis is the normalised optical power output.

Fig. 3.
Fig. 3.

Normalized optical power against electrical switching power measured at λ=1540 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ T = ( n T ) 1 λ 2 l active = 250 ° C
P π = Δ T σ AlGaAs ( W l ) active d = 20 m W

Metrics