Abstract

The polarization state of infrared emission from water at large viewing angles is explained mathematically by a polarization-dependent emissivity. To provide polarized emissivity values for a wind-roughened water surface in a convenient format, this electronic paper provides interactive tables and plots of polarized water emissivity for the spectral range of 3–15 µm. The rough surface is modeled as a collection of specular facets with slopes given by a Gaussian distribution. The interactive electronic format provides a tutorial on emission polarization and it allows readers to copy the desired numbers and paste them into their electronic applications without the difficulty of transcribing numbers from printed tables.

© 2000 Optical Society of America

Full Article  |  PDF Article
Related Articles
Thermal radiative and reflective characteristics of a wind-roughened water surface

Kyu Yoshimori, Kazuyoshi Itoh, and Yoshiki Ichioka
J. Opt. Soc. Am. A 11(6) 1886-1893 (1994)

Emissivity of rough sea surface for 8–13 µm: modeling and verification

Xiangqian Wu and William L. Smith
Appl. Opt. 36(12) 2609-2619 (1997)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Shaw, “Degree of linear polarization in spectral radiances from water-viewing infrared radiometers,” Appl. Opt. 38, 3157–3165 (1999).
    [Crossref]
  2. F. J. Iannarilli, J. A. Shaw, S. H. Jones, and H. E. Scott, “Snapshot LWIR hyperspectral polarimetric imager for ocean surface sensing,” in Polarization and Remote Sensing III, D. H. Goldstein, D. B. Chenault, W. G. Egan, and M. J. Duggin, eds., Proc. SPIE4133, 270–282 (2000).
  3. W. G. Egan, Photometry and Polarization in Remote Sensing (Elsevier, New York, 1985), pp. 337–354.
  4. R. D. Tooley, “Man-made target detection using infrared polarization,” in Polarization considerations for optical systems II, R.A. Chipman, ed., Proc. SPIE1166, 52–58 (1989).
  5. A. W. Cooper, W. J. Lentz, and P. L. Walker, “Infrared polarization ship images and contrast in the MAPTIP experiment,” in Image Propagation Through the Atmosphere, L. R. Bissonnette and C. Dainty, eds., Proc. SPIE2828, 85–96 (1996).
  6. J. A. Shaw, “The impact of polarization on infrared sea-surface temperature remote sensing,” Proc. IGARSS98 (IEEE), 496–498 (1998).
  7. T. S. Pagano, H. H. Aumann, K. Overoye, and G. W. Gigioli, “Scan-angle-dependent radiometric modulation due to polarization for the Atmospheric Infrared Sounder,” in Earth Observing Systems V, W. L. Barnes, ed., Proc. SPIE4135, 108–116 (2000).
  8. K. Masuda, T. Takashima, and Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sensing of Environment 24, 313–329 (1988).
    [Crossref]
  9. X. Wu and W. L. Smith, “Emissivity of rough sea surface for 8–13 µm: modeling and verification,” Appl. Opt. 36, 2609–2619 (1997).
    [Crossref] [PubMed]
  10. C. R. Zeisse, C. P. McGrath, and K. M. Littfin, “Infrared radiance of the wind-ruffled sea,” J. Opt. Soc. Am. A 16, 1439–1452 (1999).
    [Crossref]
  11. C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954).
    [Crossref]
  12. J. A. Shaw and J. H. Churnside, “Scanning-laser glint measurements of sea-surface slope statistics,” Appl. Opt.,  36, 4202–4213 (1997).
    [Crossref] [PubMed]
  13. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [Crossref] [PubMed]
  14. P. D. Watts, M. R. Allen, and T. J. Nightingale, “Wind speed effects on sea surface emission and reflection for the along track scanning radiometer,” J. Atmos. Ocean. Technol. 13, 126–141 (1996).
    [Crossref]

1999 (2)

1997 (2)

1996 (1)

P. D. Watts, M. R. Allen, and T. J. Nightingale, “Wind speed effects on sea surface emission and reflection for the along track scanning radiometer,” J. Atmos. Ocean. Technol. 13, 126–141 (1996).
[Crossref]

1988 (1)

K. Masuda, T. Takashima, and Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sensing of Environment 24, 313–329 (1988).
[Crossref]

1973 (1)

1954 (1)

Allen, M. R.

P. D. Watts, M. R. Allen, and T. J. Nightingale, “Wind speed effects on sea surface emission and reflection for the along track scanning radiometer,” J. Atmos. Ocean. Technol. 13, 126–141 (1996).
[Crossref]

Aumann, H. H.

T. S. Pagano, H. H. Aumann, K. Overoye, and G. W. Gigioli, “Scan-angle-dependent radiometric modulation due to polarization for the Atmospheric Infrared Sounder,” in Earth Observing Systems V, W. L. Barnes, ed., Proc. SPIE4135, 108–116 (2000).

Churnside, J. H.

Cooper, A. W.

A. W. Cooper, W. J. Lentz, and P. L. Walker, “Infrared polarization ship images and contrast in the MAPTIP experiment,” in Image Propagation Through the Atmosphere, L. R. Bissonnette and C. Dainty, eds., Proc. SPIE2828, 85–96 (1996).

Cox, C.

Egan, W. G.

W. G. Egan, Photometry and Polarization in Remote Sensing (Elsevier, New York, 1985), pp. 337–354.

Gigioli, G. W.

T. S. Pagano, H. H. Aumann, K. Overoye, and G. W. Gigioli, “Scan-angle-dependent radiometric modulation due to polarization for the Atmospheric Infrared Sounder,” in Earth Observing Systems V, W. L. Barnes, ed., Proc. SPIE4135, 108–116 (2000).

Hale, G. M.

Iannarilli, F. J.

F. J. Iannarilli, J. A. Shaw, S. H. Jones, and H. E. Scott, “Snapshot LWIR hyperspectral polarimetric imager for ocean surface sensing,” in Polarization and Remote Sensing III, D. H. Goldstein, D. B. Chenault, W. G. Egan, and M. J. Duggin, eds., Proc. SPIE4133, 270–282 (2000).

Jones, S. H.

F. J. Iannarilli, J. A. Shaw, S. H. Jones, and H. E. Scott, “Snapshot LWIR hyperspectral polarimetric imager for ocean surface sensing,” in Polarization and Remote Sensing III, D. H. Goldstein, D. B. Chenault, W. G. Egan, and M. J. Duggin, eds., Proc. SPIE4133, 270–282 (2000).

Lentz, W. J.

A. W. Cooper, W. J. Lentz, and P. L. Walker, “Infrared polarization ship images and contrast in the MAPTIP experiment,” in Image Propagation Through the Atmosphere, L. R. Bissonnette and C. Dainty, eds., Proc. SPIE2828, 85–96 (1996).

Littfin, K. M.

Masuda, K.

K. Masuda, T. Takashima, and Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sensing of Environment 24, 313–329 (1988).
[Crossref]

McGrath, C. P.

Munk, W.

Nightingale, T. J.

P. D. Watts, M. R. Allen, and T. J. Nightingale, “Wind speed effects on sea surface emission and reflection for the along track scanning radiometer,” J. Atmos. Ocean. Technol. 13, 126–141 (1996).
[Crossref]

Overoye, K.

T. S. Pagano, H. H. Aumann, K. Overoye, and G. W. Gigioli, “Scan-angle-dependent radiometric modulation due to polarization for the Atmospheric Infrared Sounder,” in Earth Observing Systems V, W. L. Barnes, ed., Proc. SPIE4135, 108–116 (2000).

Pagano, T. S.

T. S. Pagano, H. H. Aumann, K. Overoye, and G. W. Gigioli, “Scan-angle-dependent radiometric modulation due to polarization for the Atmospheric Infrared Sounder,” in Earth Observing Systems V, W. L. Barnes, ed., Proc. SPIE4135, 108–116 (2000).

Querry, M. R.

Scott, H. E.

F. J. Iannarilli, J. A. Shaw, S. H. Jones, and H. E. Scott, “Snapshot LWIR hyperspectral polarimetric imager for ocean surface sensing,” in Polarization and Remote Sensing III, D. H. Goldstein, D. B. Chenault, W. G. Egan, and M. J. Duggin, eds., Proc. SPIE4133, 270–282 (2000).

Shaw, J. A.

J. A. Shaw, “Degree of linear polarization in spectral radiances from water-viewing infrared radiometers,” Appl. Opt. 38, 3157–3165 (1999).
[Crossref]

J. A. Shaw and J. H. Churnside, “Scanning-laser glint measurements of sea-surface slope statistics,” Appl. Opt.,  36, 4202–4213 (1997).
[Crossref] [PubMed]

J. A. Shaw, “The impact of polarization on infrared sea-surface temperature remote sensing,” Proc. IGARSS98 (IEEE), 496–498 (1998).

F. J. Iannarilli, J. A. Shaw, S. H. Jones, and H. E. Scott, “Snapshot LWIR hyperspectral polarimetric imager for ocean surface sensing,” in Polarization and Remote Sensing III, D. H. Goldstein, D. B. Chenault, W. G. Egan, and M. J. Duggin, eds., Proc. SPIE4133, 270–282 (2000).

Smith, W. L.

Takashima, T.

K. Masuda, T. Takashima, and Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sensing of Environment 24, 313–329 (1988).
[Crossref]

Takayama, Y.

K. Masuda, T. Takashima, and Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sensing of Environment 24, 313–329 (1988).
[Crossref]

Tooley, R. D.

R. D. Tooley, “Man-made target detection using infrared polarization,” in Polarization considerations for optical systems II, R.A. Chipman, ed., Proc. SPIE1166, 52–58 (1989).

Walker, P. L.

A. W. Cooper, W. J. Lentz, and P. L. Walker, “Infrared polarization ship images and contrast in the MAPTIP experiment,” in Image Propagation Through the Atmosphere, L. R. Bissonnette and C. Dainty, eds., Proc. SPIE2828, 85–96 (1996).

Watts, P. D.

P. D. Watts, M. R. Allen, and T. J. Nightingale, “Wind speed effects on sea surface emission and reflection for the along track scanning radiometer,” J. Atmos. Ocean. Technol. 13, 126–141 (1996).
[Crossref]

Wu, X.

Zeisse, C. R.

Appl. Opt. (4)

J. Atmos. Ocean. Technol. (1)

P. D. Watts, M. R. Allen, and T. J. Nightingale, “Wind speed effects on sea surface emission and reflection for the along track scanning radiometer,” J. Atmos. Ocean. Technol. 13, 126–141 (1996).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Remote Sensing of Environment (1)

K. Masuda, T. Takashima, and Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sensing of Environment 24, 313–329 (1988).
[Crossref]

Other (6)

F. J. Iannarilli, J. A. Shaw, S. H. Jones, and H. E. Scott, “Snapshot LWIR hyperspectral polarimetric imager for ocean surface sensing,” in Polarization and Remote Sensing III, D. H. Goldstein, D. B. Chenault, W. G. Egan, and M. J. Duggin, eds., Proc. SPIE4133, 270–282 (2000).

W. G. Egan, Photometry and Polarization in Remote Sensing (Elsevier, New York, 1985), pp. 337–354.

R. D. Tooley, “Man-made target detection using infrared polarization,” in Polarization considerations for optical systems II, R.A. Chipman, ed., Proc. SPIE1166, 52–58 (1989).

A. W. Cooper, W. J. Lentz, and P. L. Walker, “Infrared polarization ship images and contrast in the MAPTIP experiment,” in Image Propagation Through the Atmosphere, L. R. Bissonnette and C. Dainty, eds., Proc. SPIE2828, 85–96 (1996).

J. A. Shaw, “The impact of polarization on infrared sea-surface temperature remote sensing,” Proc. IGARSS98 (IEEE), 496–498 (1998).

T. S. Pagano, H. H. Aumann, K. Overoye, and G. W. Gigioli, “Scan-angle-dependent radiometric modulation due to polarization for the Atmospheric Infrared Sounder,” in Earth Observing Systems V, W. L. Barnes, ed., Proc. SPIE4135, 108–116 (2000).

Supplementary Material (2)

» Media 1: HTML (0 KB)     
» Media 2: PDF (85 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

An example of how infrared emission from water becomes increasingly p-polarized as the viewing angle increases. The left-hand graph shows the polarized emissivity components and the right-hand graph shows the resulting degree of emission polarization. This example is for zero wind speed and 70° viewing angle. Click the figure to activate an interactive version. [Media 1]

Table 1.
Table 1.

Click the table to obtain polarized emissivity values for the chosen wind speed and viewing angle. [Media 2]

Fig. 2.
Fig. 2.

Degree of polarization versus viewing angle for reflection from water (top) and emission from water (bottom) at two thermal infrared wavelengths. Note that the significantly large imaginary component of the refractive index at 12 µm results in peak reflection polarization less than 100%.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ε s , p ( λ , θ ) = 1 R s , p ( λ , θ ) ,
R s ( λ , θ ) = cos ( θ ) n ( λ ) cos ( θ r ) cos ( θ ) + n ( λ ) cos ( θ r ) 2
R p ( λ , θ ) = n ( λ ) cos ( θ ) cos ( θ r ) n ( λ ) cos ( θ ) + cos ( θ r ) 2 .
θ r ( λ , θ ) = sin 1 [ sin ( θ ) n ( λ ) ] .
p ( θ n ) = 1 2 π σ 2 exp ( tan 2 ( θ n ) 2 σ 2 )
2 σ 2 = 0.003 + 0.00512 w ( ± 0.004 ) .
cos ( χ ) = μ e μ n + ( 1 μ e ) 1 2 ( 1 μ n ) 1 2 cos ( ϕ ) .
ε - s , p ( λ , μ e ) = ε - s , p ( λ , μ e ) μ e ,
ε - s , p ( λ , μ e ) = 2 μ e 0 1 0 π ε s , p ( λ , χ ) cos ( χ ) p ( θ n ) μ n 4 d ϕ d μ n
( μ e ) = 2 μ e 0 1 0 π cos ( χ ) p ( θ n ) μ n 4 d ϕ d μ n , cos ( χ ) > 0 .
D = ε s ε p ε s + ε p ,

Metrics