Abstract

We have developed an up-conversion spectrometer for signals at single photon levels near the infrared region based on a tunable up-conversion detector that uses a periodically poled lithium niobate waveguide as the conversion medium. We also experimentally studied its characteristics including sensitivity, dark count rate, spectral scan speed, signal transfer function of the waveguide, and polarization sensitivity. The overall single photon detection efficiency of the up-conversion spectrometer is about 32%. With its ultra high sensitivity the spectrometer can measure spectra for signals at a level as low as -126 dBm. We have demonstrated the spectrometers high sensitivity by measuring the spectrum of a greatly attenuated multimode emission from a laser diode at the 1310 nm band.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, 2004)
  2. A. Vandevender and P. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).
  3. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30(13), 1725–1727 (2005).
    [CrossRef] [PubMed]
  4. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 1–12 (2006).
    [CrossRef]
  5. H. Xu, L. Ma, A. Mink, B. Hershman, and X. Tang, “1310-nm quantum key distribution system with up-conversion pump wavelength at 1550 nm,” Opt. Express 15(12), 7247–7260 (2007).
    [CrossRef] [PubMed]
  6. H. Xu, L. Ma, and X. Tang, ““Low noise PPLN-based single photon detector,” Optics East 07,” Proc. SPIE 6780, 67800U (2007).
    [CrossRef]
  7. Q. Zhang, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Waveguide-based single-pixel up-conversion infrared spectrometer,” Opt. Express 16(24), 19557–19561 (2008).
    [CrossRef] [PubMed]
  8. M. F. DeCamp and A. Tokmakoff, “Upconversion multichannel infrared spectrometer,” Opt. Lett. 30(14), 1818–1820 (2005).
    [CrossRef] [PubMed]
  9. O. Kuzucu, F. N. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved single-photon detection by femtosecond upconversion,” Opt. Lett. 33(19), 2257–2259 (2008).
    [CrossRef] [PubMed]
  10. http://optoelectronics.perkinelmer.com/catalog/Product.aspx?ProductID=SPCM-AQR-14
  11. X. Tang, L. Ma, A. Mink, A. Nakassis, H. Xu, B. Hershman, J. C. Bienfang, D. Su, R. F. Boisvert, C. W. Clark, and C. J. Williams, “Experimental study of high speed polarization-coding quantum key distribution with sifted-key rates over Mbit/s,” Opt. Express 14(6), 2062–2070 (2006).
    [CrossRef] [PubMed]
  12. M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
    [CrossRef]
  13. M. P. De Micheli, “χ2 effects in waveguides,” Quantum Semiclassic. Opt. 9(2), 155–164 (1997).
    [CrossRef]
  14. N. Wiener, The Extrapolation, Interpolation, and Smoothing of Stationary Time Series with Engineering Applications (Wiley, 1949)
    [PubMed]

2008

2007

2006

X. Tang, L. Ma, A. Mink, A. Nakassis, H. Xu, B. Hershman, J. C. Bienfang, D. Su, R. F. Boisvert, C. W. Clark, and C. J. Williams, “Experimental study of high speed polarization-coding quantum key distribution with sifted-key rates over Mbit/s,” Opt. Express 14(6), 2062–2070 (2006).
[CrossRef] [PubMed]

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 1–12 (2006).
[CrossRef]

2005

2004

A. Vandevender and P. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).

1997

M. P. De Micheli, “χ2 effects in waveguides,” Quantum Semiclassic. Opt. 9(2), 155–164 (1997).
[CrossRef]

1992

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Bienfang, J. C.

Boisvert, R. F.

Byer, R.

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Clark, C. W.

Cova, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 1–12 (2006).
[CrossRef]

De Micheli, M. P.

M. P. De Micheli, “χ2 effects in waveguides,” Quantum Semiclassic. Opt. 9(2), 155–164 (1997).
[CrossRef]

DeCamp, M. F.

Diamanti, E.

Fejer, M.

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Fejer, M. M.

Gisin, N.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 1–12 (2006).
[CrossRef]

Hershman, B.

Jundt, D.

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Krainer, L.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 1–12 (2006).
[CrossRef]

Kurimura, S.

Kuzucu, O.

Kwiat, P.

A. Vandevender and P. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).

Langrock, C.

Ma, L.

Magel, G.

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Mink, A.

Nakassis, A.

Rech, I.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 1–12 (2006).
[CrossRef]

Rochas, A.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 1–12 (2006).
[CrossRef]

Roussev, R. V.

Su, D.

Takesue, H.

Tang, X.

Tanzilli, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 1–12 (2006).
[CrossRef]

Thew, R. T.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 1–12 (2006).
[CrossRef]

Tokmakoff, A.

Tovstonog, S.

Vandevender, A.

A. Vandevender and P. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).

Williams, C. J.

Wong, F. N.

Xu, H.

Yamamoto, Y.

Zbinden, H.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 1–12 (2006).
[CrossRef]

Zeller, S. C.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 1–12 (2006).
[CrossRef]

Zhang, Q.

IEEE J. Quantum Electron.

M. Fejer, G. Magel, D. Jundt, and R. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

J. Mod. Opt.

A. Vandevender and P. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).

N. J. Phys.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8(3), 1–12 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

H. Xu, L. Ma, and X. Tang, ““Low noise PPLN-based single photon detector,” Optics East 07,” Proc. SPIE 6780, 67800U (2007).
[CrossRef]

Quantum Semiclassic. Opt.

M. P. De Micheli, “χ2 effects in waveguides,” Quantum Semiclassic. Opt. 9(2), 155–164 (1997).
[CrossRef]

Other

N. Wiener, The Extrapolation, Interpolation, and Smoothing of Stationary Time Series with Engineering Applications (Wiley, 1949)
[PubMed]

B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, 2004)

http://optoelectronics.perkinelmer.com/catalog/Product.aspx?ProductID=SPCM-AQR-14

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the waveguide-based spectrometer. Mod: Wavelength insensitive modulator; EDFA: Erbium-doped fiber amplifier; WDM: Wavelength-division multiplexing coupler; PC: Polarization controller; PPLN: Periodically-poled LiNbO3 waveguide; IF: Interference filter. Solid line: optical fiber; dash line: free space optical transmission; dot line: electrical line.

Fig. 2.
Fig. 2.

(a) The detection efficiency and dark count rate as a function of CW pump power at the PPLN input (excluding the transmission loss and coupling loss). (b) The spectrum of dark counts at different CW pump powers and with the pump turned off. The integration time for each measurement step is 500 ms.

Fig. 3.
Fig. 3.

(a) The count rate as a function of input power. The blue line is the calculated value of R1, assuming tdead is zero; red line is the calculated value of R by Eq. (2); the green triangles represent the measured result. (b) Ratio of R/R1 as a function of input power.

Fig. 4.
Fig. 4.

(a) The 1310 nm tunable laser spectrum measured by the up-conversion spectrometer. (b) The 1310 nm tunable laser spectrum recovered by deconvolution.

Fig. 5.
Fig. 5.

(a) The normalized conversion efficiency as a function of the polarization angle of the input signal. (b) Schematic diagram of the polarization insensitive up-conversion spectrometer. PBS: Polarizing beam splitter and other notations are the same as in Fig. 1.

Fig. 6.
Fig. 6.

(a) The spectrum of strong light measured by a commercial OSA. (b) The spectrum of greatly attenuated light measured by the up-conversion spectrometer.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ηo=ηloss·ηdet·ηconηloss·ηdet·sin2(α·Ppump·L)
R=1/(tdead+1/R1)
R1=η·Pinput/(ħc/λinput)
PSFG (Δk) Ppump · Psignal · sinc2 (Δk·L/2)
Δk=2π×(nSFGλSFGnpumpλpumpnsignalλsignalmΛ)
Smeasured=F*Ssignal+ε
vs=11/vt+tin=vt1+tin·vt

Metrics