Abstract

We demonstrate electrically pumped lasers on silicon that produce pulses at repetition rates up to 40 GHz. The mode locked lasers generate 4 ps pulses with low jitter and extinction ratios above 18 dB, making them suitable for data and telecommunication transmitters and for clock generation and distribution. Results of both passive and hybrid mode locking are discussed. This type of device could enable new silicon based integrated technologies, such as optical time division multiplexing (OTDM), wavelength division multiplexing (WDM), and optical code division multiple access (OCDMA).

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
    [CrossRef]
  2. B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microwave Mag. 7, 58–68 (2006).
    [CrossRef]
  3. M. Lipson, “Guiding, modulating, and emitting light on Silicon-challenges and opportunities,” IEEE J. Lightwave Technol. 23, 4222–4238 (2005).
    [CrossRef]
  4. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
    [CrossRef] [PubMed]
  5. J. E. Roth, O Fidaner, R. K. Schaevitz, Y.-H. Kuo, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Optical modulator on silicon employing germanium quantum wells,” Opt. Express 15, 5851–5859 (2007).
    [CrossRef] [PubMed]
  6. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
    [CrossRef] [PubMed]
  7. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
    [CrossRef] [PubMed]
  8. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269–5273 (2004).
    [CrossRef] [PubMed]
  9. H. Rong, et al., “Silicon based laser, amplifier, and wavelength converter for optoelectronic integration,” Proc. SPIE 6125, 37–49 (2006).
  10. D. Pasquariello and K. Hjort, “Plasma-Assisted InP-to-Si Low Temperature Wafer Bonding,” IEEE J. Sel. Top. Quantum Electron. 8, 118–130 (2002).
    [CrossRef]
  11. Q. Tong, Q. Gan, G. Hudson, G. Fountain, and P. Enquist, “Low temperature InP/Si wafer bonding,” Appl. Phys. Lett. 84, 732–734 (2004).
    [CrossRef]
  12. A. W Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
    [CrossRef] [PubMed]
  13. H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express 15, 6044–6052 (2007).
    [CrossRef] [PubMed]
  14. A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15, 2315–2322 (2007).
    [CrossRef] [PubMed]
  15. H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs-Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19, 230–232 (2007).
    [CrossRef]
  16. P. J. Delfyett, S. Gee, M.-T. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications,” J. Lightwave Technol. 24, 2701–2719 (2006).
    [CrossRef]
  17. K. Minoshima and H. Mataumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39, 5512–5517 (2000).
    [CrossRef]
  18. D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, “Short pulse generation using multisegment mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 28, 2186–2202 (1992).
    [CrossRef]
  19. E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, “Monolithic and multi-gigahertz mode locked semiconductor lasers: constructions, experiments, models, and applications,” IEE Proc. Optoelectron. 147, 251–278 (2000).
    [CrossRef]
  20. S. Arahira and Y. Ogawa, “Retiming and reshaping function of all optical clock extraction at 160 Gb/s in monolithic mode-locked laser diode,” IEEE J. Quantum Electron. 41, 937–944 (2005).
    [CrossRef]
  21. B. R. Koch, J. S. Barton, M. Masanovic, Z. Hu, J. E. Bowers, and D. J. Blumenthal, “Monolithic mode-locked laser and optical amplifier for regenerative pulsed optical clock recovery,” IEEE Photon. Technol. Lett. 19, 641–643 (2007).
    [CrossRef]
  22. S. Arahira and Y. Ogawa, “Electrical clock recovery based on all-optical signal processing in a monolithic passively mode-locked laser diode,” IEEE Photon. Technol. Lett. 18, 1765–1767 (2005).
    [CrossRef]
  23. I. Kim and K. Y. Lau, “Frequency and timing stability of mode-locked semiconductor lasers-passive and active mode locking up to millimeter wave frequencies,” IEEE J. Quantum Electron. 29, 1081–1090 (1993).
    [CrossRef]
  24. S. Arahira, S. Oshiba, Y. Matsui, T. Kunii, and Y. Ogawa, “500 GHz optical short pulse generation from a monolithic passively mode-locked distributed Bragg reflector laser diode,” Appl. Phys. Lett. 64, 1917–1919 (1994).
    [CrossRef]
  25. S. Arahira and Y. Ogawa, “40 GHz actively mode-locked distributed Bragg reflector laser diode module with an impedance-matching circuit for efficient RF signal injection,” Jpn. J. Appl. Phys. 43, 1960–1964 (2004).
    [CrossRef]
  26. Y. Barbarin, E. A. J. M. Bente, M. J. R. Heck, Y. S. Oei, R. Notzel, and M. K. Smit, “Characterization of a 15 GHz integrated bulk InGaAsP passively modelocked ring laser at 1.53 µm,” Opt. Express 14, 9716–9727 (2005).
    [CrossRef]
  27. C. Ji, N. Chubun, R. G. Broeke, J. Cao, Y. Du, S. J. B. Yoo, K. Y. Liou, J. R. Lothian, S. Vatanapradit, S. N. G. Chu, B. Patel, W. S. Hobson, and W. T. Tsang, “Synchronized transform limited operation of 10-GHz colliding pulse mode-locked laser,” IEEE Photon. Technol. Lett. 18, 625–627 (2006).
    [CrossRef]
  28. H. A. Haus, “Theory of mode locking with a slow saturable absorber,” J. Quant. Electron. 11, 736–746 (1975).
    [CrossRef]
  29. D. J. Derickson, A. Mar, and J. E. Bowers, “Residual and absolute timing jitter in actively mode-locked semiconductor lasers,” Electron. Lett,  26, 2026–2028 (1990).
    [CrossRef]

2007 (7)

B. R. Koch, J. S. Barton, M. Masanovic, Z. Hu, J. E. Bowers, and D. J. Blumenthal, “Monolithic mode-locked laser and optical amplifier for regenerative pulsed optical clock recovery,” IEEE Photon. Technol. Lett. 19, 641–643 (2007).
[CrossRef]

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs-Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19, 230–232 (2007).
[CrossRef]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[CrossRef] [PubMed]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[CrossRef] [PubMed]

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15, 2315–2322 (2007).
[CrossRef] [PubMed]

J. E. Roth, O Fidaner, R. K. Schaevitz, Y.-H. Kuo, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Optical modulator on silicon employing germanium quantum wells,” Opt. Express 15, 5851–5859 (2007).
[CrossRef] [PubMed]

H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express 15, 6044–6052 (2007).
[CrossRef] [PubMed]

2006 (6)

P. J. Delfyett, S. Gee, M.-T. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications,” J. Lightwave Technol. 24, 2701–2719 (2006).
[CrossRef]

A. W Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[CrossRef] [PubMed]

C. Ji, N. Chubun, R. G. Broeke, J. Cao, Y. Du, S. J. B. Yoo, K. Y. Liou, J. R. Lothian, S. Vatanapradit, S. N. G. Chu, B. Patel, W. S. Hobson, and W. T. Tsang, “Synchronized transform limited operation of 10-GHz colliding pulse mode-locked laser,” IEEE Photon. Technol. Lett. 18, 625–627 (2006).
[CrossRef]

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[CrossRef]

B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microwave Mag. 7, 58–68 (2006).
[CrossRef]

H. Rong, et al., “Silicon based laser, amplifier, and wavelength converter for optoelectronic integration,” Proc. SPIE 6125, 37–49 (2006).

2005 (5)

M. Lipson, “Guiding, modulating, and emitting light on Silicon-challenges and opportunities,” IEEE J. Lightwave Technol. 23, 4222–4238 (2005).
[CrossRef]

S. Arahira and Y. Ogawa, “Retiming and reshaping function of all optical clock extraction at 160 Gb/s in monolithic mode-locked laser diode,” IEEE J. Quantum Electron. 41, 937–944 (2005).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef] [PubMed]

S. Arahira and Y. Ogawa, “Electrical clock recovery based on all-optical signal processing in a monolithic passively mode-locked laser diode,” IEEE Photon. Technol. Lett. 18, 1765–1767 (2005).
[CrossRef]

Y. Barbarin, E. A. J. M. Bente, M. J. R. Heck, Y. S. Oei, R. Notzel, and M. K. Smit, “Characterization of a 15 GHz integrated bulk InGaAsP passively modelocked ring laser at 1.53 µm,” Opt. Express 14, 9716–9727 (2005).
[CrossRef]

2004 (3)

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269–5273 (2004).
[CrossRef] [PubMed]

S. Arahira and Y. Ogawa, “40 GHz actively mode-locked distributed Bragg reflector laser diode module with an impedance-matching circuit for efficient RF signal injection,” Jpn. J. Appl. Phys. 43, 1960–1964 (2004).
[CrossRef]

Q. Tong, Q. Gan, G. Hudson, G. Fountain, and P. Enquist, “Low temperature InP/Si wafer bonding,” Appl. Phys. Lett. 84, 732–734 (2004).
[CrossRef]

2002 (1)

D. Pasquariello and K. Hjort, “Plasma-Assisted InP-to-Si Low Temperature Wafer Bonding,” IEEE J. Sel. Top. Quantum Electron. 8, 118–130 (2002).
[CrossRef]

2000 (2)

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, “Monolithic and multi-gigahertz mode locked semiconductor lasers: constructions, experiments, models, and applications,” IEE Proc. Optoelectron. 147, 251–278 (2000).
[CrossRef]

K. Minoshima and H. Mataumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39, 5512–5517 (2000).
[CrossRef]

1994 (1)

S. Arahira, S. Oshiba, Y. Matsui, T. Kunii, and Y. Ogawa, “500 GHz optical short pulse generation from a monolithic passively mode-locked distributed Bragg reflector laser diode,” Appl. Phys. Lett. 64, 1917–1919 (1994).
[CrossRef]

1993 (1)

I. Kim and K. Y. Lau, “Frequency and timing stability of mode-locked semiconductor lasers-passive and active mode locking up to millimeter wave frequencies,” IEEE J. Quantum Electron. 29, 1081–1090 (1993).
[CrossRef]

1992 (1)

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, “Short pulse generation using multisegment mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 28, 2186–2202 (1992).
[CrossRef]

1990 (1)

D. J. Derickson, A. Mar, and J. E. Bowers, “Residual and absolute timing jitter in actively mode-locked semiconductor lasers,” Electron. Lett,  26, 2026–2028 (1990).
[CrossRef]

1975 (1)

H. A. Haus, “Theory of mode locking with a slow saturable absorber,” J. Quant. Electron. 11, 736–746 (1975).
[CrossRef]

Arahira, S.

S. Arahira and Y. Ogawa, “Retiming and reshaping function of all optical clock extraction at 160 Gb/s in monolithic mode-locked laser diode,” IEEE J. Quantum Electron. 41, 937–944 (2005).
[CrossRef]

S. Arahira and Y. Ogawa, “Electrical clock recovery based on all-optical signal processing in a monolithic passively mode-locked laser diode,” IEEE Photon. Technol. Lett. 18, 1765–1767 (2005).
[CrossRef]

S. Arahira and Y. Ogawa, “40 GHz actively mode-locked distributed Bragg reflector laser diode module with an impedance-matching circuit for efficient RF signal injection,” Jpn. J. Appl. Phys. 43, 1960–1964 (2004).
[CrossRef]

S. Arahira, S. Oshiba, Y. Matsui, T. Kunii, and Y. Ogawa, “500 GHz optical short pulse generation from a monolithic passively mode-locked distributed Bragg reflector laser diode,” Appl. Phys. Lett. 64, 1917–1919 (1994).
[CrossRef]

Avrutin, E. A.

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, “Monolithic and multi-gigahertz mode locked semiconductor lasers: constructions, experiments, models, and applications,” IEE Proc. Optoelectron. 147, 251–278 (2000).
[CrossRef]

Barbarin, Y.

Barton, J. S.

B. R. Koch, J. S. Barton, M. Masanovic, Z. Hu, J. E. Bowers, and D. J. Blumenthal, “Monolithic mode-locked laser and optical amplifier for regenerative pulsed optical clock recovery,” IEEE Photon. Technol. Lett. 19, 641–643 (2007).
[CrossRef]

Bente, E. A. J. M.

Blumenthal, D. J.

B. R. Koch, J. S. Barton, M. Masanovic, Z. Hu, J. E. Bowers, and D. J. Blumenthal, “Monolithic mode-locked laser and optical amplifier for regenerative pulsed optical clock recovery,” IEEE Photon. Technol. Lett. 19, 641–643 (2007).
[CrossRef]

Bowers, J. E.

B. R. Koch, J. S. Barton, M. Masanovic, Z. Hu, J. E. Bowers, and D. J. Blumenthal, “Monolithic mode-locked laser and optical amplifier for regenerative pulsed optical clock recovery,” IEEE Photon. Technol. Lett. 19, 641–643 (2007).
[CrossRef]

H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express 15, 6044–6052 (2007).
[CrossRef] [PubMed]

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs-Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19, 230–232 (2007).
[CrossRef]

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15, 2315–2322 (2007).
[CrossRef] [PubMed]

A. W Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[CrossRef] [PubMed]

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, “Short pulse generation using multisegment mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 28, 2186–2202 (1992).
[CrossRef]

D. J. Derickson, A. Mar, and J. E. Bowers, “Residual and absolute timing jitter in actively mode-locked semiconductor lasers,” Electron. Lett,  26, 2026–2028 (1990).
[CrossRef]

Boyraz, O.

Broeke, R. G.

C. Ji, N. Chubun, R. G. Broeke, J. Cao, Y. Du, S. J. B. Yoo, K. Y. Liou, J. R. Lothian, S. Vatanapradit, S. N. G. Chu, B. Patel, W. S. Hobson, and W. T. Tsang, “Synchronized transform limited operation of 10-GHz colliding pulse mode-locked laser,” IEEE Photon. Technol. Lett. 18, 625–627 (2006).
[CrossRef]

Cao, J.

C. Ji, N. Chubun, R. G. Broeke, J. Cao, Y. Du, S. J. B. Yoo, K. Y. Liou, J. R. Lothian, S. Vatanapradit, S. N. G. Chu, B. Patel, W. S. Hobson, and W. T. Tsang, “Synchronized transform limited operation of 10-GHz colliding pulse mode-locked laser,” IEEE Photon. Technol. Lett. 18, 625–627 (2006).
[CrossRef]

Chetrit, Y.

Choi, M.-T.

Chu, S. N. G.

C. Ji, N. Chubun, R. G. Broeke, J. Cao, Y. Du, S. J. B. Yoo, K. Y. Liou, J. R. Lothian, S. Vatanapradit, S. N. G. Chu, B. Patel, W. S. Hobson, and W. T. Tsang, “Synchronized transform limited operation of 10-GHz colliding pulse mode-locked laser,” IEEE Photon. Technol. Lett. 18, 625–627 (2006).
[CrossRef]

Chubun, N.

C. Ji, N. Chubun, R. G. Broeke, J. Cao, Y. Du, S. J. B. Yoo, K. Y. Liou, J. R. Lothian, S. Vatanapradit, S. N. G. Chu, B. Patel, W. S. Hobson, and W. T. Tsang, “Synchronized transform limited operation of 10-GHz colliding pulse mode-locked laser,” IEEE Photon. Technol. Lett. 18, 625–627 (2006).
[CrossRef]

Ciftcioglu, B.

Cohen, O.

Delfyett, P. J.

Derickson, D. J.

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, “Short pulse generation using multisegment mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 28, 2186–2202 (1992).
[CrossRef]

D. J. Derickson, A. Mar, and J. E. Bowers, “Residual and absolute timing jitter in actively mode-locked semiconductor lasers,” Electron. Lett,  26, 2026–2028 (1990).
[CrossRef]

Du, Y.

C. Ji, N. Chubun, R. G. Broeke, J. Cao, Y. Du, S. J. B. Yoo, K. Y. Liou, J. R. Lothian, S. Vatanapradit, S. N. G. Chu, B. Patel, W. S. Hobson, and W. T. Tsang, “Synchronized transform limited operation of 10-GHz colliding pulse mode-locked laser,” IEEE Photon. Technol. Lett. 18, 625–627 (2006).
[CrossRef]

Enquist, P.

Q. Tong, Q. Gan, G. Hudson, G. Fountain, and P. Enquist, “Low temperature InP/Si wafer bonding,” Appl. Phys. Lett. 84, 732–734 (2004).
[CrossRef]

Fang, A. W

Fang, A. W.

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15, 2315–2322 (2007).
[CrossRef] [PubMed]

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs-Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19, 230–232 (2007).
[CrossRef]

H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express 15, 6044–6052 (2007).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef] [PubMed]

Fidaner, O

Fountain, G.

Q. Tong, Q. Gan, G. Hudson, G. Fountain, and P. Enquist, “Low temperature InP/Si wafer bonding,” Appl. Phys. Lett. 84, 732–734 (2004).
[CrossRef]

Gan, Q.

Q. Tong, Q. Gan, G. Hudson, G. Fountain, and P. Enquist, “Low temperature InP/Si wafer bonding,” Appl. Phys. Lett. 84, 732–734 (2004).
[CrossRef]

Gee, S.

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef] [PubMed]

Harris, J. S.

Haus, H. A.

H. A. Haus, “Theory of mode locking with a slow saturable absorber,” J. Quant. Electron. 11, 736–746 (1975).
[CrossRef]

Heck, M. J. R.

Helkey, R. J.

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, “Short pulse generation using multisegment mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 28, 2186–2202 (1992).
[CrossRef]

Hjort, K.

D. Pasquariello and K. Hjort, “Plasma-Assisted InP-to-Si Low Temperature Wafer Bonding,” IEEE J. Sel. Top. Quantum Electron. 8, 118–130 (2002).
[CrossRef]

Hobson, W. S.

C. Ji, N. Chubun, R. G. Broeke, J. Cao, Y. Du, S. J. B. Yoo, K. Y. Liou, J. R. Lothian, S. Vatanapradit, S. N. G. Chu, B. Patel, W. S. Hobson, and W. T. Tsang, “Synchronized transform limited operation of 10-GHz colliding pulse mode-locked laser,” IEEE Photon. Technol. Lett. 18, 625–627 (2006).
[CrossRef]

Hu, Z.

B. R. Koch, J. S. Barton, M. Masanovic, Z. Hu, J. E. Bowers, and D. J. Blumenthal, “Monolithic mode-locked laser and optical amplifier for regenerative pulsed optical clock recovery,” IEEE Photon. Technol. Lett. 19, 641–643 (2007).
[CrossRef]

Hudson, G.

Q. Tong, Q. Gan, G. Hudson, G. Fountain, and P. Enquist, “Low temperature InP/Si wafer bonding,” Appl. Phys. Lett. 84, 732–734 (2004).
[CrossRef]

Izadpanah, H.

Izhaky, N.

Jalali, B.

B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microwave Mag. 7, 58–68 (2006).
[CrossRef]

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269–5273 (2004).
[CrossRef] [PubMed]

Ji, C.

C. Ji, N. Chubun, R. G. Broeke, J. Cao, Y. Du, S. J. B. Yoo, K. Y. Liou, J. R. Lothian, S. Vatanapradit, S. N. G. Chu, B. Patel, W. S. Hobson, and W. T. Tsang, “Synchronized transform limited operation of 10-GHz colliding pulse mode-locked laser,” IEEE Photon. Technol. Lett. 18, 625–627 (2006).
[CrossRef]

Jones, R.

Kamins, T. I.

Karin, J. R.

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, “Short pulse generation using multisegment mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 28, 2186–2202 (1992).
[CrossRef]

Kim, I.

I. Kim and K. Y. Lau, “Frequency and timing stability of mode-locked semiconductor lasers-passive and active mode locking up to millimeter wave frequencies,” IEEE J. Quantum Electron. 29, 1081–1090 (1993).
[CrossRef]

Koch, B. R.

B. R. Koch, J. S. Barton, M. Masanovic, Z. Hu, J. E. Bowers, and D. J. Blumenthal, “Monolithic mode-locked laser and optical amplifier for regenerative pulsed optical clock recovery,” IEEE Photon. Technol. Lett. 19, 641–643 (2007).
[CrossRef]

Kunii, T.

S. Arahira, S. Oshiba, Y. Matsui, T. Kunii, and Y. Ogawa, “500 GHz optical short pulse generation from a monolithic passively mode-locked distributed Bragg reflector laser diode,” Appl. Phys. Lett. 64, 1917–1919 (1994).
[CrossRef]

Kuo, Y.-H.

Lau, K. Y.

I. Kim and K. Y. Lau, “Frequency and timing stability of mode-locked semiconductor lasers-passive and active mode locking up to millimeter wave frequencies,” IEEE J. Quantum Electron. 29, 1081–1090 (1993).
[CrossRef]

Lee, W.

Liao, L.

Liou, K. Y.

C. Ji, N. Chubun, R. G. Broeke, J. Cao, Y. Du, S. J. B. Yoo, K. Y. Liou, J. R. Lothian, S. Vatanapradit, S. N. G. Chu, B. Patel, W. S. Hobson, and W. T. Tsang, “Synchronized transform limited operation of 10-GHz colliding pulse mode-locked laser,” IEEE Photon. Technol. Lett. 18, 625–627 (2006).
[CrossRef]

Lipson, M.

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[CrossRef] [PubMed]

M. Lipson, “Guiding, modulating, and emitting light on Silicon-challenges and opportunities,” IEEE J. Lightwave Technol. 23, 4222–4238 (2005).
[CrossRef]

Liu, A.

Lothian, J. R.

C. Ji, N. Chubun, R. G. Broeke, J. Cao, Y. Du, S. J. B. Yoo, K. Y. Liou, J. R. Lothian, S. Vatanapradit, S. N. G. Chu, B. Patel, W. S. Hobson, and W. T. Tsang, “Synchronized transform limited operation of 10-GHz colliding pulse mode-locked laser,” IEEE Photon. Technol. Lett. 18, 625–627 (2006).
[CrossRef]

Manipatruni, S.

Mar, A.

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, “Short pulse generation using multisegment mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 28, 2186–2202 (1992).
[CrossRef]

D. J. Derickson, A. Mar, and J. E. Bowers, “Residual and absolute timing jitter in actively mode-locked semiconductor lasers,” Electron. Lett,  26, 2026–2028 (1990).
[CrossRef]

Marsh, J. H.

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, “Monolithic and multi-gigahertz mode locked semiconductor lasers: constructions, experiments, models, and applications,” IEE Proc. Optoelectron. 147, 251–278 (2000).
[CrossRef]

Masanovic, M.

B. R. Koch, J. S. Barton, M. Masanovic, Z. Hu, J. E. Bowers, and D. J. Blumenthal, “Monolithic mode-locked laser and optical amplifier for regenerative pulsed optical clock recovery,” IEEE Photon. Technol. Lett. 19, 641–643 (2007).
[CrossRef]

Mataumoto, H.

Matsui, Y.

S. Arahira, S. Oshiba, Y. Matsui, T. Kunii, and Y. Ogawa, “500 GHz optical short pulse generation from a monolithic passively mode-locked distributed Bragg reflector laser diode,” Appl. Phys. Lett. 64, 1917–1919 (1994).
[CrossRef]

Miller, D. A. B.

Minoshima, K.

Nguyen, H.

Notzel, R.

Oei, Y. S.

Ogawa, Y.

S. Arahira and Y. Ogawa, “Electrical clock recovery based on all-optical signal processing in a monolithic passively mode-locked laser diode,” IEEE Photon. Technol. Lett. 18, 1765–1767 (2005).
[CrossRef]

S. Arahira and Y. Ogawa, “Retiming and reshaping function of all optical clock extraction at 160 Gb/s in monolithic mode-locked laser diode,” IEEE J. Quantum Electron. 41, 937–944 (2005).
[CrossRef]

S. Arahira and Y. Ogawa, “40 GHz actively mode-locked distributed Bragg reflector laser diode module with an impedance-matching circuit for efficient RF signal injection,” Jpn. J. Appl. Phys. 43, 1960–1964 (2004).
[CrossRef]

S. Arahira, S. Oshiba, Y. Matsui, T. Kunii, and Y. Ogawa, “500 GHz optical short pulse generation from a monolithic passively mode-locked distributed Bragg reflector laser diode,” Appl. Phys. Lett. 64, 1917–1919 (1994).
[CrossRef]

Oshiba, S.

S. Arahira, S. Oshiba, Y. Matsui, T. Kunii, and Y. Ogawa, “500 GHz optical short pulse generation from a monolithic passively mode-locked distributed Bragg reflector laser diode,” Appl. Phys. Lett. 64, 1917–1919 (1994).
[CrossRef]

Ozharar, S.

Paniccia, M.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[CrossRef] [PubMed]

B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microwave Mag. 7, 58–68 (2006).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef] [PubMed]

Paniccia, M. J.

Park, H.

Pasquariello, D.

D. Pasquariello and K. Hjort, “Plasma-Assisted InP-to-Si Low Temperature Wafer Bonding,” IEEE J. Sel. Top. Quantum Electron. 8, 118–130 (2002).
[CrossRef]

Patel, B.

C. Ji, N. Chubun, R. G. Broeke, J. Cao, Y. Du, S. J. B. Yoo, K. Y. Liou, J. R. Lothian, S. Vatanapradit, S. N. G. Chu, B. Patel, W. S. Hobson, and W. T. Tsang, “Synchronized transform limited operation of 10-GHz colliding pulse mode-locked laser,” IEEE Photon. Technol. Lett. 18, 625–627 (2006).
[CrossRef]

Portnoi, E. L.

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, “Monolithic and multi-gigahertz mode locked semiconductor lasers: constructions, experiments, models, and applications,” IEE Proc. Optoelectron. 147, 251–278 (2000).
[CrossRef]

Quinlan, F.

Raday, O.

Reed, G.

B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microwave Mag. 7, 58–68 (2006).
[CrossRef]

Rong, H.

H. Rong, et al., “Silicon based laser, amplifier, and wavelength converter for optoelectronic integration,” Proc. SPIE 6125, 37–49 (2006).

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef] [PubMed]

Roth, J. E.

Rubin, D.

Schaevitz, R. K.

Schmidt, B.

Shakya, J.

Smit, M. K.

Soref, R.

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[CrossRef]

Sysak, M. N.

Tong, Q.

Q. Tong, Q. Gan, G. Hudson, G. Fountain, and P. Enquist, “Low temperature InP/Si wafer bonding,” Appl. Phys. Lett. 84, 732–734 (2004).
[CrossRef]

Tsang, W. T.

C. Ji, N. Chubun, R. G. Broeke, J. Cao, Y. Du, S. J. B. Yoo, K. Y. Liou, J. R. Lothian, S. Vatanapradit, S. N. G. Chu, B. Patel, W. S. Hobson, and W. T. Tsang, “Synchronized transform limited operation of 10-GHz colliding pulse mode-locked laser,” IEEE Photon. Technol. Lett. 18, 625–627 (2006).
[CrossRef]

Vatanapradit, S.

C. Ji, N. Chubun, R. G. Broeke, J. Cao, Y. Du, S. J. B. Yoo, K. Y. Liou, J. R. Lothian, S. Vatanapradit, S. N. G. Chu, B. Patel, W. S. Hobson, and W. T. Tsang, “Synchronized transform limited operation of 10-GHz colliding pulse mode-locked laser,” IEEE Photon. Technol. Lett. 18, 625–627 (2006).
[CrossRef]

Wasserbauer, J. G.

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, “Short pulse generation using multisegment mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 28, 2186–2202 (1992).
[CrossRef]

Xu, Q.

Yilmaz, T.

Yoo, S. J. B.

C. Ji, N. Chubun, R. G. Broeke, J. Cao, Y. Du, S. J. B. Yoo, K. Y. Liou, J. R. Lothian, S. Vatanapradit, S. N. G. Chu, B. Patel, W. S. Hobson, and W. T. Tsang, “Synchronized transform limited operation of 10-GHz colliding pulse mode-locked laser,” IEEE Photon. Technol. Lett. 18, 625–627 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Q. Tong, Q. Gan, G. Hudson, G. Fountain, and P. Enquist, “Low temperature InP/Si wafer bonding,” Appl. Phys. Lett. 84, 732–734 (2004).
[CrossRef]

S. Arahira, S. Oshiba, Y. Matsui, T. Kunii, and Y. Ogawa, “500 GHz optical short pulse generation from a monolithic passively mode-locked distributed Bragg reflector laser diode,” Appl. Phys. Lett. 64, 1917–1919 (1994).
[CrossRef]

Electron. Lett (1)

D. J. Derickson, A. Mar, and J. E. Bowers, “Residual and absolute timing jitter in actively mode-locked semiconductor lasers,” Electron. Lett,  26, 2026–2028 (1990).
[CrossRef]

IEE Proc. Optoelectron. (1)

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, “Monolithic and multi-gigahertz mode locked semiconductor lasers: constructions, experiments, models, and applications,” IEE Proc. Optoelectron. 147, 251–278 (2000).
[CrossRef]

IEEE J. Lightwave Technol. (1)

M. Lipson, “Guiding, modulating, and emitting light on Silicon-challenges and opportunities,” IEEE J. Lightwave Technol. 23, 4222–4238 (2005).
[CrossRef]

IEEE J. Quantum Electron. (3)

S. Arahira and Y. Ogawa, “Retiming and reshaping function of all optical clock extraction at 160 Gb/s in monolithic mode-locked laser diode,” IEEE J. Quantum Electron. 41, 937–944 (2005).
[CrossRef]

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, “Short pulse generation using multisegment mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 28, 2186–2202 (1992).
[CrossRef]

I. Kim and K. Y. Lau, “Frequency and timing stability of mode-locked semiconductor lasers-passive and active mode locking up to millimeter wave frequencies,” IEEE J. Quantum Electron. 29, 1081–1090 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

D. Pasquariello and K. Hjort, “Plasma-Assisted InP-to-Si Low Temperature Wafer Bonding,” IEEE J. Sel. Top. Quantum Electron. 8, 118–130 (2002).
[CrossRef]

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[CrossRef]

IEEE Microwave Mag. (1)

B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microwave Mag. 7, 58–68 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

B. R. Koch, J. S. Barton, M. Masanovic, Z. Hu, J. E. Bowers, and D. J. Blumenthal, “Monolithic mode-locked laser and optical amplifier for regenerative pulsed optical clock recovery,” IEEE Photon. Technol. Lett. 19, 641–643 (2007).
[CrossRef]

S. Arahira and Y. Ogawa, “Electrical clock recovery based on all-optical signal processing in a monolithic passively mode-locked laser diode,” IEEE Photon. Technol. Lett. 18, 1765–1767 (2005).
[CrossRef]

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs-Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19, 230–232 (2007).
[CrossRef]

C. Ji, N. Chubun, R. G. Broeke, J. Cao, Y. Du, S. J. B. Yoo, K. Y. Liou, J. R. Lothian, S. Vatanapradit, S. N. G. Chu, B. Patel, W. S. Hobson, and W. T. Tsang, “Synchronized transform limited operation of 10-GHz colliding pulse mode-locked laser,” IEEE Photon. Technol. Lett. 18, 625–627 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Quant. Electron. (1)

H. A. Haus, “Theory of mode locking with a slow saturable absorber,” J. Quant. Electron. 11, 736–746 (1975).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Arahira and Y. Ogawa, “40 GHz actively mode-locked distributed Bragg reflector laser diode module with an impedance-matching circuit for efficient RF signal injection,” Jpn. J. Appl. Phys. 43, 1960–1964 (2004).
[CrossRef]

Nature (1)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. W. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[CrossRef] [PubMed]

Opt. Express (8)

A. W Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[CrossRef] [PubMed]

Y. Barbarin, E. A. J. M. Bente, M. J. R. Heck, Y. S. Oei, R. Notzel, and M. K. Smit, “Characterization of a 15 GHz integrated bulk InGaAsP passively modelocked ring laser at 1.53 µm,” Opt. Express 14, 9716–9727 (2005).
[CrossRef]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[CrossRef] [PubMed]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[CrossRef] [PubMed]

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15, 2315–2322 (2007).
[CrossRef] [PubMed]

J. E. Roth, O Fidaner, R. K. Schaevitz, Y.-H. Kuo, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Optical modulator on silicon employing germanium quantum wells,” Opt. Express 15, 5851–5859 (2007).
[CrossRef] [PubMed]

H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express 15, 6044–6052 (2007).
[CrossRef] [PubMed]

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269–5273 (2004).
[CrossRef] [PubMed]

Proc. SPIE (1)

H. Rong, et al., “Silicon based laser, amplifier, and wavelength converter for optoelectronic integration,” Proc. SPIE 6125, 37–49 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic of the mode locked silicon evanescent laser. (b) Scanning electron micrograph of the saturable absorber end of an MLL with the adjacent gain section.

Fig. 2.
Fig. 2.

Schematic of the experimental setup. Solid lines are optical fiber links, and dotted lines are RF connections. EDFA=erbium doped fiber amplifier, SHG=second harmonic generation autocorrelator, OSA=optical spectrum analyzer, RFSA=43 GHz radio frequency spectrum analyzer, PD=40 GHz photodetector, LO=Local oscillator, IF=intermediate frequency. Blue RF connections were used for residual jitter measurements, while the black RF connection from the PD to the RFSA was used for absolute jitter measurements.

Fig. 3.
Fig. 3.

10 GHz MLL (a) SHG autocorrelation trace, (b) optical spectrum, (c) 0 to 40 GHz RFSA trace, and (d) RFSA trace for a 100 MHz span about the fundamental frequency, for passive mode locking and hybrid mode locking at various RF input powers.

Fig. 4.
Fig. 4.

(a). Plot of jitter measurements versus the RF input power. (b) FWHM pulsewidth and single sided fiber coupled peak output power versus saturable absorber bias.

Fig. 5.
Fig. 5.

40 GHz MLL (a) SHG autocorrelation trace, (b) optical spectrum, (c) 0 to 40 GHz RFSA trace, and (d) RFSA trace with 100 MHz span about the mode locking frequency, showing passive mode locking and subharmonic hybrid mode locking.

Metrics