Abstract

Photonic crystal slab enables us to form an ultrasmall laser cavity with a modal volume close to the diffraction limit of light. However, the thermal resistance of such nanolasers, as high as 106 K/W, has prevented continuous-wave operation at room temperature. The present paper reports on the first successful continuous-wave operation at room temperature for the smallest nanolaser reported to date, achieved through fabrication of a laser with a low threshold of 1.2 μW. Near-thresholdless lasing and spontaneous emission enhancement due to the Purcell effect are also demonstrated in a moderately low Q nanolaser, both of which are well explained by a detailed rate equation analysis.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
    [Crossref]
  2. I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett. 17, 109–111 (1970).
    [Crossref]
  3. K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron, 24, 1845–1855 (1988).
    [Crossref]
  4. J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1347 (1991).
    [Crossref]
  5. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
    [Crossref]
  6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, D. D. Dapkus, and I. Kim, “Two dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
    [Crossref] [PubMed]
  7. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  8. T. Kobayashi, Y. Morimoto, and T. Sueta, “Closed microcavity laser,” Nat. Top. Meet. Rad. Sci. RS85-06 (1985).
  9. E. Yablonovitch and T. J. Gmitter, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  10. Y. Yamamoto, ed., “Coherence, Amplification, and Quantum effects in Semiconductor Lasers,” (John Wiley & Sons, New York, 1991).
  11. H. Yokoyama and K. Ujihara, eds., “Spontaneous Emission and Laser Oscillation in Microcavities,” (CRC Press, New York, 1995).
  12. T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP-InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808–830 (1997).
    [Crossref]
  13. J. M. Gérard and B. Gayral, “Strong purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17, 2089–2095 (1999).
    [Crossref]
  14. M. Loncâr, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682 (2002).
    [Crossref]
  15. H. Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, “Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser,” Appl. Phys. Lett. 84, 1067–1069 (2004).
    [Crossref]
  16. T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3989–3991 (2004).
    [Crossref]
  17. T. Baba and D. Sano, “Low threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. Sel. Top. Quantum Electron. 9, 1340–1346 (2003).
    [Crossref]
  18. R. Coccioli, M. Boroditsky, K.W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.-Optoelectron. 145, 391–397 (1998).
    [Crossref]
  19. Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Exp. 12, 3988–3995 (2004).
    [Crossref]
  20. K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng, and T. Baba, “Photonic crystal point shift nanolaser with ultimate small modal volume,” Electron. Lett. 41, 843–845 (2005).
    [Crossref]
  21. K. Nozaki and T. Baba, “Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers,” Appl. Phys. Lett. 88, 211101 (2006).
    [Crossref]
  22. K. Inoshita and T. Baba, “Fabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defects,” IEEE J. Sel. Top. Quantum Electron. 9, 1347–1354 (2003).
    [Crossref]
  23. J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” Photon. Tech. Lett. 12, 1295–1297 (2000).
    [Crossref]
  24. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Exp. 14, 6308–6315 (2006).
    [Crossref]
  25. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
    [Crossref] [PubMed]
  26. W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
    [Crossref] [PubMed]
  27. M. Fujita, A. Sugitatsu, T. Uesugi, and S. Noda, “Fabrication of indium phosphide compound photonic crystal by iodine/xenon inductively coupled plasma etching,” Jpn. J. Appl. Phys. 43, L1400–1402 (2004).
    [Crossref]
  28. T. Ide, J. Hashimoto, K. Nozaki, E. Mizuta, and T. Baba, “InP etching by HI/Xe inductively coupled plasma for photonic-crystal device fabrication,” Jpn. J. Appl. Phys. 45, L102–L104 (2006).
    [Crossref]
  29. K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, “Ultralow threshold and singlemode lasing in microgear lasers and its fusion with quasiperiodic photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 9, 1355–1360 (2003).
    [Crossref]
  30. K. Nozaki and T. Baba, “Carrier and photon analyses of photonic microlasers by two-dimensional rate equations,” IEEE J. Sel. Area. Commun. 23, 1411–1417 (2005).
    [Crossref]
  31. M. Fujita, A. Sakai, and T. Baba, “Ultra-small and ultra-low threshold microdisk injection laser - design, fabrication, lasing characteristics and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673–681 (1999).
    [Crossref]
  32. J. Vučkovič, O. Painter, Y. Xu, A. Yariv, and A. Scherer, “Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities,” IEEE J. Quantum Electron. 35, 1168–1175 (1999).
    [Crossref]
  33. Y. Suematsu and S. Akiba, “High-speed pulse modulation of injection lasers at non-bias condition,” Trans. IECE of Japan 59, 1–8 (1976).
  34. H. Ichikawa, K. Inoshita, and T. Baba, “Reduction in surface recombination of GaInAsP/InP micro-columns by CH4 plasma irradiation,” Appl. Phys. Lett., 78, 2119–2121 (2001).
    [Crossref]

2006 (4)

K. Nozaki and T. Baba, “Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers,” Appl. Phys. Lett. 88, 211101 (2006).
[Crossref]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Exp. 14, 6308–6315 (2006).
[Crossref]

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[Crossref] [PubMed]

T. Ide, J. Hashimoto, K. Nozaki, E. Mizuta, and T. Baba, “InP etching by HI/Xe inductively coupled plasma for photonic-crystal device fabrication,” Jpn. J. Appl. Phys. 45, L102–L104 (2006).
[Crossref]

2005 (3)

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng, and T. Baba, “Photonic crystal point shift nanolaser with ultimate small modal volume,” Electron. Lett. 41, 843–845 (2005).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

K. Nozaki and T. Baba, “Carrier and photon analyses of photonic microlasers by two-dimensional rate equations,” IEEE J. Sel. Area. Commun. 23, 1411–1417 (2005).
[Crossref]

2004 (4)

M. Fujita, A. Sugitatsu, T. Uesugi, and S. Noda, “Fabrication of indium phosphide compound photonic crystal by iodine/xenon inductively coupled plasma etching,” Jpn. J. Appl. Phys. 43, L1400–1402 (2004).
[Crossref]

Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Exp. 12, 3988–3995 (2004).
[Crossref]

H. Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, “Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser,” Appl. Phys. Lett. 84, 1067–1069 (2004).
[Crossref]

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3989–3991 (2004).
[Crossref]

2003 (3)

T. Baba and D. Sano, “Low threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. Sel. Top. Quantum Electron. 9, 1340–1346 (2003).
[Crossref]

K. Inoshita and T. Baba, “Fabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defects,” IEEE J. Sel. Top. Quantum Electron. 9, 1347–1354 (2003).
[Crossref]

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, “Ultralow threshold and singlemode lasing in microgear lasers and its fusion with quasiperiodic photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 9, 1355–1360 (2003).
[Crossref]

2002 (1)

M. Loncâr, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682 (2002).
[Crossref]

2001 (1)

H. Ichikawa, K. Inoshita, and T. Baba, “Reduction in surface recombination of GaInAsP/InP micro-columns by CH4 plasma irradiation,” Appl. Phys. Lett., 78, 2119–2121 (2001).
[Crossref]

2000 (1)

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” Photon. Tech. Lett. 12, 1295–1297 (2000).
[Crossref]

1999 (4)

M. Fujita, A. Sakai, and T. Baba, “Ultra-small and ultra-low threshold microdisk injection laser - design, fabrication, lasing characteristics and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673–681 (1999).
[Crossref]

J. Vučkovič, O. Painter, Y. Xu, A. Yariv, and A. Scherer, “Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities,” IEEE J. Quantum Electron. 35, 1168–1175 (1999).
[Crossref]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, D. D. Dapkus, and I. Kim, “Two dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

J. M. Gérard and B. Gayral, “Strong purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17, 2089–2095 (1999).
[Crossref]

1998 (1)

R. Coccioli, M. Boroditsky, K.W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.-Optoelectron. 145, 391–397 (1998).
[Crossref]

1997 (1)

T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP-InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808–830 (1997).
[Crossref]

1992 (1)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

1991 (1)

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1347 (1991).
[Crossref]

1988 (1)

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron, 24, 1845–1855 (1988).
[Crossref]

1987 (1)

E. Yablonovitch and T. J. Gmitter, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

1976 (1)

Y. Suematsu and S. Akiba, “High-speed pulse modulation of injection lasers at non-bias condition,” Trans. IECE of Japan 59, 1–8 (1976).

1970 (1)

I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett. 17, 109–111 (1970).
[Crossref]

1960 (1)

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Akiba, S.

Y. Suematsu and S. Akiba, “High-speed pulse modulation of injection lasers at non-bias condition,” Trans. IECE of Japan 59, 1–8 (1976).

Arakawa, Y.

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Exp. 14, 6308–6315 (2006).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

Baba, T.

K. Nozaki and T. Baba, “Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers,” Appl. Phys. Lett. 88, 211101 (2006).
[Crossref]

T. Ide, J. Hashimoto, K. Nozaki, E. Mizuta, and T. Baba, “InP etching by HI/Xe inductively coupled plasma for photonic-crystal device fabrication,” Jpn. J. Appl. Phys. 45, L102–L104 (2006).
[Crossref]

K. Nozaki and T. Baba, “Carrier and photon analyses of photonic microlasers by two-dimensional rate equations,” IEEE J. Sel. Area. Commun. 23, 1411–1417 (2005).
[Crossref]

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng, and T. Baba, “Photonic crystal point shift nanolaser with ultimate small modal volume,” Electron. Lett. 41, 843–845 (2005).
[Crossref]

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3989–3991 (2004).
[Crossref]

T. Baba and D. Sano, “Low threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. Sel. Top. Quantum Electron. 9, 1340–1346 (2003).
[Crossref]

K. Inoshita and T. Baba, “Fabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defects,” IEEE J. Sel. Top. Quantum Electron. 9, 1347–1354 (2003).
[Crossref]

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, “Ultralow threshold and singlemode lasing in microgear lasers and its fusion with quasiperiodic photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 9, 1355–1360 (2003).
[Crossref]

H. Ichikawa, K. Inoshita, and T. Baba, “Reduction in surface recombination of GaInAsP/InP micro-columns by CH4 plasma irradiation,” Appl. Phys. Lett., 78, 2119–2121 (2001).
[Crossref]

M. Fujita, A. Sakai, and T. Baba, “Ultra-small and ultra-low threshold microdisk injection laser - design, fabrication, lasing characteristics and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673–681 (1999).
[Crossref]

T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP-InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808–830 (1997).
[Crossref]

Boroditsky, M.

R. Coccioli, M. Boroditsky, K.W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.-Optoelectron. 145, 391–397 (1998).
[Crossref]

Chang, H. S.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[Crossref] [PubMed]

Chang, W. H.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[Crossref] [PubMed]

Chen, W. Y.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[Crossref] [PubMed]

Chyi, J. I.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[Crossref] [PubMed]

Coccioli, R.

R. Coccioli, M. Boroditsky, K.W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.-Optoelectron. 145, 391–397 (1998).
[Crossref]

Dapkus, D. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, D. D. Dapkus, and I. Kim, “Two dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Englund, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

Florez, L. T.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1347 (1991).
[Crossref]

Foy, P. W.

I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett. 17, 109–111 (1970).
[Crossref]

Fujita, M.

M. Fujita, A. Sugitatsu, T. Uesugi, and S. Noda, “Fabrication of indium phosphide compound photonic crystal by iodine/xenon inductively coupled plasma etching,” Jpn. J. Appl. Phys. 43, L1400–1402 (2004).
[Crossref]

M. Fujita, A. Sakai, and T. Baba, “Ultra-small and ultra-low threshold microdisk injection laser - design, fabrication, lasing characteristics and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673–681 (1999).
[Crossref]

Gayral, B.

Gérard, J. M.

Gmitter, T. J.

E. Yablonovitch and T. J. Gmitter, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Gogna, P.

M. Loncâr, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682 (2002).
[Crossref]

Han, I. Y.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” Photon. Tech. Lett. 12, 1295–1297 (2000).
[Crossref]

Harbison, J. P.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1347 (1991).
[Crossref]

Hashimoto, J.

T. Ide, J. Hashimoto, K. Nozaki, E. Mizuta, and T. Baba, “InP etching by HI/Xe inductively coupled plasma for photonic-crystal device fabrication,” Jpn. J. Appl. Phys. 45, L102–L104 (2006).
[Crossref]

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng, and T. Baba, “Photonic crystal point shift nanolaser with ultimate small modal volume,” Electron. Lett. 41, 843–845 (2005).
[Crossref]

Hayashi, I.

I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett. 17, 109–111 (1970).
[Crossref]

Hsieh, T. P.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[Crossref] [PubMed]

Hsu, T. M.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[Crossref] [PubMed]

Hwang, J. K.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” Photon. Tech. Lett. 12, 1295–1297 (2000).
[Crossref]

Ichikawa, H.

H. Ichikawa, K. Inoshita, and T. Baba, “Reduction in surface recombination of GaInAsP/InP micro-columns by CH4 plasma irradiation,” Appl. Phys. Lett., 78, 2119–2121 (2001).
[Crossref]

Ide, T.

T. Ide, J. Hashimoto, K. Nozaki, E. Mizuta, and T. Baba, “InP etching by HI/Xe inductively coupled plasma for photonic-crystal device fabrication,” Jpn. J. Appl. Phys. 45, L102–L104 (2006).
[Crossref]

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng, and T. Baba, “Photonic crystal point shift nanolaser with ultimate small modal volume,” Electron. Lett. 41, 843–845 (2005).
[Crossref]

Iga, K.

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron, 24, 1845–1855 (1988).
[Crossref]

Inoshita, K.

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3989–3991 (2004).
[Crossref]

K. Inoshita and T. Baba, “Fabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defects,” IEEE J. Sel. Top. Quantum Electron. 9, 1347–1354 (2003).
[Crossref]

H. Ichikawa, K. Inoshita, and T. Baba, “Reduction in surface recombination of GaInAsP/InP micro-columns by CH4 plasma irradiation,” Appl. Phys. Lett., 78, 2119–2121 (2001).
[Crossref]

Ishida, S.

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Exp. 14, 6308–6315 (2006).
[Crossref]

Iwamoto, S.

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Exp. 14, 6308–6315 (2006).
[Crossref]

Jang, D. H.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” Photon. Tech. Lett. 12, 1295–1297 (2000).
[Crossref]

Jewell, J. L.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1347 (1991).
[Crossref]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, D. D. Dapkus, and I. Kim, “Two dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Kim, K.W.

R. Coccioli, M. Boroditsky, K.W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.-Optoelectron. 145, 391–397 (1998).
[Crossref]

Kinoshita, S.

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron, 24, 1845–1855 (1988).
[Crossref]

Kobayashi, T.

T. Kobayashi, Y. Morimoto, and T. Sueta, “Closed microcavity laser,” Nat. Top. Meet. Rad. Sci. RS85-06 (1985).

Koyama, F.

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3989–3991 (2004).
[Crossref]

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron, 24, 1845–1855 (1988).
[Crossref]

Kumagai, N.

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Exp. 14, 6308–6315 (2006).
[Crossref]

Kuramochi, E.

H. Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, “Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser,” Appl. Phys. Lett. 84, 1067–1069 (2004).
[Crossref]

Kuroki, Y.

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3989–3991 (2004).
[Crossref]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, D. D. Dapkus, and I. Kim, “Two dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Lee, Y. H.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” Photon. Tech. Lett. 12, 1295–1297 (2000).
[Crossref]

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1347 (1991).
[Crossref]

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Loncâr, M.

M. Loncâr, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682 (2002).
[Crossref]

Maiman, T. H.

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[Crossref]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Mizuta, E.

T. Ide, J. Hashimoto, K. Nozaki, E. Mizuta, and T. Baba, “InP etching by HI/Xe inductively coupled plasma for photonic-crystal device fabrication,” Jpn. J. Appl. Phys. 45, L102–L104 (2006).
[Crossref]

Morimoto, Y.

T. Kobayashi, Y. Morimoto, and T. Sueta, “Closed microcavity laser,” Nat. Top. Meet. Rad. Sci. RS85-06 (1985).

Nakagawa, A.

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, “Ultralow threshold and singlemode lasing in microgear lasers and its fusion with quasiperiodic photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 9, 1355–1360 (2003).
[Crossref]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

Nakata, Y.

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Exp. 14, 6308–6315 (2006).
[Crossref]

Noda, S.

M. Fujita, A. Sugitatsu, T. Uesugi, and S. Noda, “Fabrication of indium phosphide compound photonic crystal by iodine/xenon inductively coupled plasma etching,” Jpn. J. Appl. Phys. 43, L1400–1402 (2004).
[Crossref]

Nomura, M.

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Exp. 14, 6308–6315 (2006).
[Crossref]

Notomi, M.

H. Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, “Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser,” Appl. Phys. Lett. 84, 1067–1069 (2004).
[Crossref]

Nozaki, K.

K. Nozaki and T. Baba, “Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers,” Appl. Phys. Lett. 88, 211101 (2006).
[Crossref]

T. Ide, J. Hashimoto, K. Nozaki, E. Mizuta, and T. Baba, “InP etching by HI/Xe inductively coupled plasma for photonic-crystal device fabrication,” Jpn. J. Appl. Phys. 45, L102–L104 (2006).
[Crossref]

K. Nozaki and T. Baba, “Carrier and photon analyses of photonic microlasers by two-dimensional rate equations,” IEEE J. Sel. Area. Commun. 23, 1411–1417 (2005).
[Crossref]

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng, and T. Baba, “Photonic crystal point shift nanolaser with ultimate small modal volume,” Electron. Lett. 41, 843–845 (2005).
[Crossref]

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3989–3991 (2004).
[Crossref]

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, “Ultralow threshold and singlemode lasing in microgear lasers and its fusion with quasiperiodic photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 9, 1355–1360 (2003).
[Crossref]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, D. D. Dapkus, and I. Kim, “Two dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, D. D. Dapkus, and I. Kim, “Two dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

J. Vučkovič, O. Painter, Y. Xu, A. Yariv, and A. Scherer, “Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities,” IEEE J. Quantum Electron. 35, 1168–1175 (1999).
[Crossref]

Panish, M. B.

I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett. 17, 109–111 (1970).
[Crossref]

Park, H. K.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” Photon. Tech. Lett. 12, 1295–1297 (2000).
[Crossref]

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Qiu, M.

Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Exp. 12, 3988–3995 (2004).
[Crossref]

Qiu, Y.

M. Loncâr, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682 (2002).
[Crossref]

Rahmat-Samii, Y.

R. Coccioli, M. Boroditsky, K.W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.-Optoelectron. 145, 391–397 (1998).
[Crossref]

Ryu, H. Y.

H. Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, “Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser,” Appl. Phys. Lett. 84, 1067–1069 (2004).
[Crossref]

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” Photon. Tech. Lett. 12, 1295–1297 (2000).
[Crossref]

Sakai, A.

M. Fujita, A. Sakai, and T. Baba, “Ultra-small and ultra-low threshold microdisk injection laser - design, fabrication, lasing characteristics and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673–681 (1999).
[Crossref]

Sano, D.

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3989–3991 (2004).
[Crossref]

T. Baba and D. Sano, “Low threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. Sel. Top. Quantum Electron. 9, 1340–1346 (2003).
[Crossref]

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, “Ultralow threshold and singlemode lasing in microgear lasers and its fusion with quasiperiodic photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 9, 1355–1360 (2003).
[Crossref]

Scherer, A.

M. Loncâr, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682 (2002).
[Crossref]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, D. D. Dapkus, and I. Kim, “Two dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

J. Vučkovič, O. Painter, Y. Xu, A. Yariv, and A. Scherer, “Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities,” IEEE J. Quantum Electron. 35, 1168–1175 (1999).
[Crossref]

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1347 (1991).
[Crossref]

Segawa, T.

H. Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, “Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser,” Appl. Phys. Lett. 84, 1067–1069 (2004).
[Crossref]

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

Song, D. S.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” Photon. Tech. Lett. 12, 1295–1297 (2000).
[Crossref]

Suematsu, Y.

Y. Suematsu and S. Akiba, “High-speed pulse modulation of injection lasers at non-bias condition,” Trans. IECE of Japan 59, 1–8 (1976).

Sueta, T.

T. Kobayashi, Y. Morimoto, and T. Sueta, “Closed microcavity laser,” Nat. Top. Meet. Rad. Sci. RS85-06 (1985).

Sugitatsu, A.

M. Fujita, A. Sugitatsu, T. Uesugi, and S. Noda, “Fabrication of indium phosphide compound photonic crystal by iodine/xenon inductively coupled plasma etching,” Jpn. J. Appl. Phys. 43, L1400–1402 (2004).
[Crossref]

Sumski, S.

I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett. 17, 109–111 (1970).
[Crossref]

Uesugi, T.

M. Fujita, A. Sugitatsu, T. Uesugi, and S. Noda, “Fabrication of indium phosphide compound photonic crystal by iodine/xenon inductively coupled plasma etching,” Jpn. J. Appl. Phys. 43, L1400–1402 (2004).
[Crossref]

Vuckovic, J.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

J. Vučkovič, O. Painter, Y. Xu, A. Yariv, and A. Scherer, “Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities,” IEEE J. Quantum Electron. 35, 1168–1175 (1999).
[Crossref]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

Watanabe, K.

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Exp. 14, 6308–6315 (2006).
[Crossref]

Xu, Y.

J. Vučkovič, O. Painter, Y. Xu, A. Yariv, and A. Scherer, “Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities,” IEEE J. Quantum Electron. 35, 1168–1175 (1999).
[Crossref]

Yablonovitch, E.

R. Coccioli, M. Boroditsky, K.W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.-Optoelectron. 145, 391–397 (1998).
[Crossref]

E. Yablonovitch and T. J. Gmitter, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

Yariv, A.

J. Vučkovič, O. Painter, Y. Xu, A. Yariv, and A. Scherer, “Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities,” IEEE J. Quantum Electron. 35, 1168–1175 (1999).
[Crossref]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, D. D. Dapkus, and I. Kim, “Two dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Yoshie, T.

M. Loncâr, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682 (2002).
[Crossref]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Exp. 12, 3988–3995 (2004).
[Crossref]

Zheng, W. H.

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng, and T. Baba, “Photonic crystal point shift nanolaser with ultimate small modal volume,” Electron. Lett. 41, 843–845 (2005).
[Crossref]

Appl. Phys. Lett. (6)

I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett. 17, 109–111 (1970).
[Crossref]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

M. Loncâr, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682 (2002).
[Crossref]

H. Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, “Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser,” Appl. Phys. Lett. 84, 1067–1069 (2004).
[Crossref]

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3989–3991 (2004).
[Crossref]

K. Nozaki and T. Baba, “Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers,” Appl. Phys. Lett. 88, 211101 (2006).
[Crossref]

Appl. Phys. Lett., (1)

H. Ichikawa, K. Inoshita, and T. Baba, “Reduction in surface recombination of GaInAsP/InP micro-columns by CH4 plasma irradiation,” Appl. Phys. Lett., 78, 2119–2121 (2001).
[Crossref]

Electron. Lett. (1)

K. Nozaki, T. Ide, J. Hashimoto, W. H. Zheng, and T. Baba, “Photonic crystal point shift nanolaser with ultimate small modal volume,” Electron. Lett. 41, 843–845 (2005).
[Crossref]

IEE Proc.-Optoelectron. (1)

R. Coccioli, M. Boroditsky, K.W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.-Optoelectron. 145, 391–397 (1998).
[Crossref]

IEEE J. Quantum Electron, (1)

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron, 24, 1845–1855 (1988).
[Crossref]

IEEE J. Quantum Electron. (2)

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1347 (1991).
[Crossref]

J. Vučkovič, O. Painter, Y. Xu, A. Yariv, and A. Scherer, “Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities,” IEEE J. Quantum Electron. 35, 1168–1175 (1999).
[Crossref]

IEEE J. Sel. Area. Commun. (1)

K. Nozaki and T. Baba, “Carrier and photon analyses of photonic microlasers by two-dimensional rate equations,” IEEE J. Sel. Area. Commun. 23, 1411–1417 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (5)

M. Fujita, A. Sakai, and T. Baba, “Ultra-small and ultra-low threshold microdisk injection laser - design, fabrication, lasing characteristics and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673–681 (1999).
[Crossref]

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, “Ultralow threshold and singlemode lasing in microgear lasers and its fusion with quasiperiodic photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 9, 1355–1360 (2003).
[Crossref]

K. Inoshita and T. Baba, “Fabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defects,” IEEE J. Sel. Top. Quantum Electron. 9, 1347–1354 (2003).
[Crossref]

T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP-InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808–830 (1997).
[Crossref]

T. Baba and D. Sano, “Low threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. Sel. Top. Quantum Electron. 9, 1340–1346 (2003).
[Crossref]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (2)

M. Fujita, A. Sugitatsu, T. Uesugi, and S. Noda, “Fabrication of indium phosphide compound photonic crystal by iodine/xenon inductively coupled plasma etching,” Jpn. J. Appl. Phys. 43, L1400–1402 (2004).
[Crossref]

T. Ide, J. Hashimoto, K. Nozaki, E. Mizuta, and T. Baba, “InP etching by HI/Xe inductively coupled plasma for photonic-crystal device fabrication,” Jpn. J. Appl. Phys. 45, L102–L104 (2006).
[Crossref]

Nature (1)

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[Crossref]

Opt. Exp. (2)

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Exp. 14, 6308–6315 (2006).
[Crossref]

Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Exp. 12, 3988–3995 (2004).
[Crossref]

Photon. Tech. Lett. (1)

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal lasers at 1.6 μm,” Photon. Tech. Lett. 12, 1295–1297 (2000).
[Crossref]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. Lett. (3)

E. Yablonovitch and T. J. Gmitter, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[Crossref] [PubMed]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, D. D. Dapkus, and I. Kim, “Two dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

Trans. IECE of Japan (1)

Y. Suematsu and S. Akiba, “High-speed pulse modulation of injection lasers at non-bias condition,” Trans. IECE of Japan 59, 1–8 (1976).

Other (3)

Y. Yamamoto, ed., “Coherence, Amplification, and Quantum effects in Semiconductor Lasers,” (John Wiley & Sons, New York, 1991).

H. Yokoyama and K. Ujihara, eds., “Spontaneous Emission and Laser Oscillation in Microcavities,” (CRC Press, New York, 1995).

T. Kobayashi, Y. Morimoto, and T. Sueta, “Closed microcavity laser,” Nat. Top. Meet. Rad. Sci. RS85-06 (1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Scanning electron micrograph of fabricated device. (a) Whole device. (b) Magnified view of the H0 nanolaser. Center two airholes are laterally shifted.

Fig. 2.
Fig. 2.

CW lasing characteristic of H0 nanolaser with lattice constant a = 560 nm, normalized hole diameter 2r/a = 0.57, and normalized hole shift s/a = 0.28. (a) Scanning electron micrograph of fabricated device (top view). (b) Calculated modal distribution (Hz ). (c) Mode intensity characteristic and lasing spectrum above the lasing threshold. (d) Logarithmic plots of modal intensity versus normalized pump power characteristic.

Fig. 3.
Fig. 3.

CW lasing characteristic of H1 nanolaser with a = 480 nm, 2r/a = 0.62, and normalized innermost hole diameter 2r′/a = 0.52. (a) Scanning electron micrograph of fabricated device (top view). (b) Calculated modal distribution (Hz ). (c) Mode intensity characteristics and lasing spectrum above the lasing threshold. (d) Logarithmic plots of modal intensity versus normalized pump power characteristic.

Fig. 4.
Fig. 4.

SpE decay for H0 nanolaser under on-resonant condition observed at pump power of 0.45–0.85P th. Results for a uniform PC area without nanocavity and an unpatterned wafer at 0.85P th are also shown.

Fig. 5.
Fig. 5.

Logarithmic plots of experimental and theoretical results for modal intensity (upper) and decay lifetime (lower) characteristics for pulsed measurements. (a) H0 nanolaser with Q = 20,000. Results for unpatterned wafer and PC area without cavity are also shown. (b) H1 nanolaser with Q = 1,500.

Fig. 6.
Fig. 6.

SpE intensity dependence on carrier losses. (a) Calculated modal intensity characteristics for different loss parameters whose details are shown in Table I. (b) Simplified schematic of carrier and photon behaviors in the cavity.

Fig. 7.
Fig. 7.

Calculated modal intensity characteristics, where F and cavity Q are taken as a parameter for (a) and (b), respectively. Other parameters are the same as for (A) in Fig. 5.

Tables (1)

Tables Icon

Tabel I. Calculation parameters.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

dN dt = P pump ħ ω pump GS n 2 E 2 V m [ FC n 2 E 2 V m + ( 1 C ) ] B N 2 + C A N 3 + D 2 N
dS dt = QW GS n 2 E 2 dxdydz + QW FCB N 2 n 2 E 2 dxdydz S τ ph
eN ν s = eD N ( at semiconductor / air boundaries )

Metrics