Abstract

A highly birefringent silicate glass photonic-crystal fiber (PCF) is employed for polarization-controlled nonlinear-optical frequency conversion of femtosecond Cr: forsterite laser pulses with a central wavelength of 1.24 μm to the 530╍720-nm wavelength range through soliton dispersion-wave emission. The fiber exhibits a modal birefringence of 1.2·10-3 at the wavelength of 1.24 μm due to a strong form anisotropy of its core, allowing polarization switching of the central wavelength of its blue-shifted output by 75 nm. Polarization properties and the beam quality of the blue-shifted PCF output are shown to be ideally suited for polarization-sensitive nonlinear Raman microspectroscopy.

©2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-demultiplexed two-color frequency conversion of femtosecond pulses in birefringent photonic-crystal fibers

Ming-Lie Hu, Ching-Yue Wang, Yan-Feng Li, Lu Chai, and Aleksei M. Zheltikov
Opt. Express 13(16) 5947-5952 (2005)

Stabilized soliton self-frequency shift and 0.1-PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core

Bo-Wen Liu, Ming-Lie Hu, Xiao-Hui Fang, Yan-Feng Li, Lu Chai, Ching-Yue Wang, Weijun Tong, Jie Luo, Aleksandr A. Voronin, and Aleksei M. Zheltikov
Opt. Express 16(19) 14987-14996 (2008)

Ultrafast photonic-crystal fiber light flash for streak-camera fluorescence measurements

Stanislav Konorov, Anatoly Ivanov, Denis Ivanov, Mikhail Alfimov, and Aleksei Zheltikov
Opt. Express 13(15) 5682-5688 (2005)

References

  • View by:
  • |
  • |
  • |

  1. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).
  2. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, 1989).
  3. S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic Sagnac interferometer,” Phys. Rev. Lett. 81, 2446–1449 (1998).
    [Crossref]
  4. Ch. Silberhorn, P. K. Lam, O. Wei., F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
    [Crossref] [PubMed]
  5. K.-H. Tsai, K.-S. Kim, and T. F. Morse, “General solution for stress-induced polarization in optical fibers,” J. Lightwave Technol. 9, 7–17 (1991).
    [Crossref]
  6. P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [Crossref] [PubMed]
  7. J. C. Knight, “Photonic crystal fibers,” Nature 424, 847–851 (2003).
    [Crossref] [PubMed]
  8. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
    [Crossref]
  9. M. J. Steel and J. R. M. Osgood, “Elliptical-hole photonic crystal fibers,” Opt. Lett. 26, 229–231 (2001).
    [Crossref]
  10. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
    [Crossref]
  11. A. Ortigosa-Blanch, J. C. Knight, and P. St. J. Russell, “Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 2567 (2002).
    [Crossref]
  12. A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Spectral shaping of a supercontinuum in a cobweb photonic- crystal fiber with sub-20-fs pulses,” J. Opt. Soc. Am. B 19, 2165 (2002).
    [Crossref]
  13. M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197–2199 (2003).
    [Crossref]
  14. M. Hu, C. Y. Wang, L. Chai, and A. Zheltikov, “Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber,” Opt. Express 12, 1932–1937 (2004).
    [Crossref] [PubMed]
  15. A. A. Ivanov, M. V. Alfimov, A. M. Zheltikov, M. Szpulak, W. Urbanczyk, and J. Wójcik, “Polarization-controlled vectorial spectral transformations of femtosecond pulses in a birefringent photonic-crystal fiber,” J. Opt. Soc. Am. B 23, 986–991 (2006).
    [Crossref]
  16. M. Hu, C. Wang, Y. Li, L. Chai, and A. M. Zheltikov, “Polarization-demultiplexed two-color frequency conversion of femtosecond pulses in birefringent photonic-crystal fibers,” Opt. Express 13, 5947–5952 (2005).
    [Crossref] [PubMed]
  17. M. -L. Hu, C. -Y. Wang, Y. -J. Song, Y. -F. Li, L. Chai, E. Serebryannikov, and A. Zheltikov, “Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers,” Opt. Express 14, 1189–1198 (2006).
    [Crossref] [PubMed]
  18. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676–680 (2001).
    [Crossref] [PubMed]
  19. L. Zhang and C. Yang, “Polarization splitter based on photonic crystal fibers,” Opt. Express 11, 1015–1020 (2003).
    [Crossref] [PubMed]
  20. M. Fiorentino, J. E. Sharping, P. Kumar, A. Porzio, and R. S. Windeler, “Soliton squeezing in microstructure fiber,” Opt. Lett. 27, 649–651 (2002).
    [Crossref]
  21. M. Fiorentino, J. E. Sharping, P. Kumar, and A. Porzio, “Amplitude squeezing in a Mach-Zehnder interferometer: numerical analysis of experiments with microstructure fiber,” Opt. Express 10, 128–138 (2002).
    [PubMed]
  22. A. M. Zheltikov, “Birefringence of guided modes in photonic wires: Gaussian-mode analysis,” Opt. Commun. 252, 78–83 (2005).
    [Crossref]
  23. P. Szarniak, M. Foroni, R. Buczynski, D. Pysz, P. Wasylczyk, P. Gaboardi, F. Poli, A. Cucinotta, S. Selleri, and R. Stępien, “Nonlinear photonic crystal fiber with high birefringence made of silicate glass,” in Photonic Crystal Materials and Devices III (i.e. V), R. M. De La Rue, P. Viktorovitch, C. Lopez, and M. Midrio, eds., Proc. SPIE 6182, 618220, (2006).
  24. D. Pysz, R. Stępien, P. Szarniak, R. Buczynski, and T. Szoplik, “Highly birefringent photonic crystal fibers with a square lattice,” in Lightguides and their Applications II, J. Wojcik and W. Wojcik, eds., Proc. SPIE 5576, 81–87 (2004).
    [Crossref]
  25. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey Fiber Analysis through the Finite-Element Method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
    [Crossref]
  26. E. Silvestre, M. V. Andres, and P. Andres, “Biorthonormal-basis method for the vector description of optical-fiber modes,” J. Lightwave Technol. 16, 923–928 (1998).
    [Crossref]
  27. A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “Femtosecond pulses in nanophotonics” Phys. Usp. 47, 687–704 (2004).
    [Crossref]
  28. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
    [Crossref] [PubMed]
  29. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Mann, and P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19, 2148–2155 (2002).
    [Crossref]
  30. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
    [Crossref] [PubMed]
  31. S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “Cross-correlation FROG CARS with frequency-converting photonic-crystal fibers,” Phys. Rev. E 70, 057601 (2004).
    [Crossref]
  32. H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett. 28, 1123–1125 (2003).
    [Crossref] [PubMed]
  33. A. M. Zheltikov, “Nanoscale nonlinear optics in photonic-crystal fibres,” J. Opt. A: Pure Appl. Opt. 8, S47–S72 (2006).
    [Crossref]

2006 (4)

A. A. Ivanov, M. V. Alfimov, A. M. Zheltikov, M. Szpulak, W. Urbanczyk, and J. Wójcik, “Polarization-controlled vectorial spectral transformations of femtosecond pulses in a birefringent photonic-crystal fiber,” J. Opt. Soc. Am. B 23, 986–991 (2006).
[Crossref]

M. -L. Hu, C. -Y. Wang, Y. -J. Song, Y. -F. Li, L. Chai, E. Serebryannikov, and A. Zheltikov, “Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers,” Opt. Express 14, 1189–1198 (2006).
[Crossref] [PubMed]

P. Szarniak, M. Foroni, R. Buczynski, D. Pysz, P. Wasylczyk, P. Gaboardi, F. Poli, A. Cucinotta, S. Selleri, and R. Stępien, “Nonlinear photonic crystal fiber with high birefringence made of silicate glass,” in Photonic Crystal Materials and Devices III (i.e. V), R. M. De La Rue, P. Viktorovitch, C. Lopez, and M. Midrio, eds., Proc. SPIE 6182, 618220, (2006).

A. M. Zheltikov, “Nanoscale nonlinear optics in photonic-crystal fibres,” J. Opt. A: Pure Appl. Opt. 8, S47–S72 (2006).
[Crossref]

2005 (2)

2004 (4)

M. Hu, C. Y. Wang, L. Chai, and A. Zheltikov, “Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber,” Opt. Express 12, 1932–1937 (2004).
[Crossref] [PubMed]

S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “Cross-correlation FROG CARS with frequency-converting photonic-crystal fibers,” Phys. Rev. E 70, 057601 (2004).
[Crossref]

D. Pysz, R. Stępien, P. Szarniak, R. Buczynski, and T. Szoplik, “Highly birefringent photonic crystal fibers with a square lattice,” in Lightguides and their Applications II, J. Wojcik and W. Wojcik, eds., Proc. SPIE 5576, 81–87 (2004).
[Crossref]

A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “Femtosecond pulses in nanophotonics” Phys. Usp. 47, 687–704 (2004).
[Crossref]

2003 (5)

H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett. 28, 1123–1125 (2003).
[Crossref] [PubMed]

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197–2199 (2003).
[Crossref]

L. Zhang and C. Yang, “Polarization splitter based on photonic crystal fibers,” Opt. Express 11, 1015–1020 (2003).
[Crossref] [PubMed]

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref] [PubMed]

J. C. Knight, “Photonic crystal fibers,” Nature 424, 847–851 (2003).
[Crossref] [PubMed]

2002 (7)

A. Ortigosa-Blanch, J. C. Knight, and P. St. J. Russell, “Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 2567 (2002).
[Crossref]

A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Spectral shaping of a supercontinuum in a cobweb photonic- crystal fiber with sub-20-fs pulses,” J. Opt. Soc. Am. B 19, 2165 (2002).
[Crossref]

M. Fiorentino, J. E. Sharping, P. Kumar, A. Porzio, and R. S. Windeler, “Soliton squeezing in microstructure fiber,” Opt. Lett. 27, 649–651 (2002).
[Crossref]

M. Fiorentino, J. E. Sharping, P. Kumar, and A. Porzio, “Amplitude squeezing in a Mach-Zehnder interferometer: numerical analysis of experiments with microstructure fiber,” Opt. Express 10, 128–138 (2002).
[PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Mann, and P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19, 2148–2155 (2002).
[Crossref]

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey Fiber Analysis through the Finite-Element Method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
[Crossref]

2001 (4)

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676–680 (2001).
[Crossref] [PubMed]

M. J. Steel and J. R. M. Osgood, “Elliptical-hole photonic crystal fibers,” Opt. Lett. 26, 229–231 (2001).
[Crossref]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

Ch. Silberhorn, P. K. Lam, O. Wei., F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
[Crossref] [PubMed]

2000 (1)

1998 (2)

S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic Sagnac interferometer,” Phys. Rev. Lett. 81, 2446–1449 (1998).
[Crossref]

E. Silvestre, M. V. Andres, and P. Andres, “Biorthonormal-basis method for the vector description of optical-fiber modes,” J. Lightwave Technol. 16, 923–928 (1998).
[Crossref]

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

1991 (1)

K.-H. Tsai, K.-S. Kim, and T. F. Morse, “General solution for stress-induced polarization in optical fibers,” J. Lightwave Technol. 9, 7–17 (1991).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, 1989).

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

Akimov, D. A.

S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “Cross-correlation FROG CARS with frequency-converting photonic-crystal fibers,” Phys. Rev. E 70, 057601 (2004).
[Crossref]

Alfimov, M. V.

A. A. Ivanov, M. V. Alfimov, A. M. Zheltikov, M. Szpulak, W. Urbanczyk, and J. Wójcik, “Polarization-controlled vectorial spectral transformations of femtosecond pulses in a birefringent photonic-crystal fiber,” J. Opt. Soc. Am. B 23, 986–991 (2006).
[Crossref]

S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “Cross-correlation FROG CARS with frequency-converting photonic-crystal fibers,” Phys. Rev. E 70, 057601 (2004).
[Crossref]

A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “Femtosecond pulses in nanophotonics” Phys. Usp. 47, 687–704 (2004).
[Crossref]

Andres, M. V.

Andres, P.

Apolonski, A.

Arriaga, J.

Birks, T. A.

Bjarklev, A.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

Broeng, J.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

Buczynski, R.

P. Szarniak, M. Foroni, R. Buczynski, D. Pysz, P. Wasylczyk, P. Gaboardi, F. Poli, A. Cucinotta, S. Selleri, and R. Stępien, “Nonlinear photonic crystal fiber with high birefringence made of silicate glass,” in Photonic Crystal Materials and Devices III (i.e. V), R. M. De La Rue, P. Viktorovitch, C. Lopez, and M. Midrio, eds., Proc. SPIE 6182, 618220, (2006).

D. Pysz, R. Stępien, P. Szarniak, R. Buczynski, and T. Szoplik, “Highly birefringent photonic crystal fibers with a square lattice,” in Lightguides and their Applications II, J. Wojcik and W. Wojcik, eds., Proc. SPIE 5576, 81–87 (2004).
[Crossref]

Chai, L.

Cucinotta, A.

P. Szarniak, M. Foroni, R. Buczynski, D. Pysz, P. Wasylczyk, P. Gaboardi, F. Poli, A. Cucinotta, S. Selleri, and R. Stępien, “Nonlinear photonic crystal fiber with high birefringence made of silicate glass,” in Photonic Crystal Materials and Devices III (i.e. V), R. M. De La Rue, P. Viktorovitch, C. Lopez, and M. Midrio, eds., Proc. SPIE 6182, 618220, (2006).

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey Fiber Analysis through the Finite-Element Method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
[Crossref]

Drexler, W.

Ficker, J.

S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic Sagnac interferometer,” Phys. Rev. Lett. 81, 2446–1449 (1998).
[Crossref]

Fiorentino, M.

Foroni, M.

P. Szarniak, M. Foroni, R. Buczynski, D. Pysz, P. Wasylczyk, P. Gaboardi, F. Poli, A. Cucinotta, S. Selleri, and R. Stępien, “Nonlinear photonic crystal fiber with high birefringence made of silicate glass,” in Photonic Crystal Materials and Devices III (i.e. V), R. M. De La Rue, P. Viktorovitch, C. Lopez, and M. Midrio, eds., Proc. SPIE 6182, 618220, (2006).

Fujita, M.

Gaboardi, P.

P. Szarniak, M. Foroni, R. Buczynski, D. Pysz, P. Wasylczyk, P. Gaboardi, F. Poli, A. Cucinotta, S. Selleri, and R. Stępien, “Nonlinear photonic crystal fiber with high birefringence made of silicate glass,” in Photonic Crystal Materials and Devices III (i.e. V), R. M. De La Rue, P. Viktorovitch, C. Lopez, and M. Midrio, eds., Proc. SPIE 6182, 618220, (2006).

Genty, G.

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197–2199 (2003).
[Crossref]

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Hansen, T. P.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

Herrmann, J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Hilligsøe, K. M.

Hu, M.

Hu, M. -L.

Husakou, A.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Ivanov, A. A.

A. A. Ivanov, M. V. Alfimov, A. M. Zheltikov, M. Szpulak, W. Urbanczyk, and J. Wójcik, “Polarization-controlled vectorial spectral transformations of femtosecond pulses in a birefringent photonic-crystal fiber,” J. Opt. Soc. Am. B 23, 986–991 (2006).
[Crossref]

A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “Femtosecond pulses in nanophotonics” Phys. Usp. 47, 687–704 (2004).
[Crossref]

S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “Cross-correlation FROG CARS with frequency-converting photonic-crystal fibers,” Phys. Rev. E 70, 057601 (2004).
[Crossref]

Jensen, J. R.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

Kaivola, M.

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197–2199 (2003).
[Crossref]

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

Kawanishi, S.

Keiding, S. R.

Kim, K.-S.

K.-H. Tsai, K.-S. Kim, and T. F. Morse, “General solution for stress-induced polarization in optical fibers,” J. Lightwave Technol. 9, 7–17 (1991).
[Crossref]

Knight, J. C.

Knudsen, E.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

König, F.

Ch. Silberhorn, P. K. Lam, O. Wei., F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
[Crossref] [PubMed]

S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic Sagnac interferometer,” Phys. Rev. Lett. 81, 2446–1449 (1998).
[Crossref]

Konorov, S. O.

S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “Cross-correlation FROG CARS with frequency-converting photonic-crystal fibers,” Phys. Rev. E 70, 057601 (2004).
[Crossref]

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Korolkova, N.

Ch. Silberhorn, P. K. Lam, O. Wei., F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
[Crossref] [PubMed]

Kubota, H.

Kumar, P.

Lam, P. K.

Ch. Silberhorn, P. K. Lam, O. Wei., F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
[Crossref] [PubMed]

Larsen, J. J.

Lehtonen, M.

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197–2199 (2003).
[Crossref]

Leuchs, G.

Ch. Silberhorn, P. K. Lam, O. Wei., F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
[Crossref] [PubMed]

S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic Sagnac interferometer,” Phys. Rev. Lett. 81, 2446–1449 (1998).
[Crossref]

Li, Y.

Li, Y. -F.

Libori, S. E. B.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).

Ludvigsen, H.

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197–2199 (2003).
[Crossref]

Mangan, B. J.

Mann, T. P. M.

Morse, T. F.

K.-H. Tsai, K.-S. Kim, and T. F. Morse, “General solution for stress-induced polarization in optical fibers,” J. Lightwave Technol. 9, 7–17 (1991).
[Crossref]

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Ortigosa-Blanch, A.

Osgood, J. R. M.

Paulsen, H. N.

Poli, F.

P. Szarniak, M. Foroni, R. Buczynski, D. Pysz, P. Wasylczyk, P. Gaboardi, F. Poli, A. Cucinotta, S. Selleri, and R. Stępien, “Nonlinear photonic crystal fiber with high birefringence made of silicate glass,” in Photonic Crystal Materials and Devices III (i.e. V), R. M. De La Rue, P. Viktorovitch, C. Lopez, and M. Midrio, eds., Proc. SPIE 6182, 618220, (2006).

Porzio, A.

Povazay, B.

Pysz, D.

P. Szarniak, M. Foroni, R. Buczynski, D. Pysz, P. Wasylczyk, P. Gaboardi, F. Poli, A. Cucinotta, S. Selleri, and R. Stępien, “Nonlinear photonic crystal fiber with high birefringence made of silicate glass,” in Photonic Crystal Materials and Devices III (i.e. V), R. M. De La Rue, P. Viktorovitch, C. Lopez, and M. Midrio, eds., Proc. SPIE 6182, 618220, (2006).

D. Pysz, R. Stępien, P. Szarniak, R. Buczynski, and T. Szoplik, “Highly birefringent photonic crystal fibers with a square lattice,” in Lightguides and their Applications II, J. Wojcik and W. Wojcik, eds., Proc. SPIE 5576, 81–87 (2004).
[Crossref]

Russell, P. St. J.

Schmitt, S.

S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic Sagnac interferometer,” Phys. Rev. Lett. 81, 2446–1449 (1998).
[Crossref]

Selleri, S.

P. Szarniak, M. Foroni, R. Buczynski, D. Pysz, P. Wasylczyk, P. Gaboardi, F. Poli, A. Cucinotta, S. Selleri, and R. Stępien, “Nonlinear photonic crystal fiber with high birefringence made of silicate glass,” in Photonic Crystal Materials and Devices III (i.e. V), R. M. De La Rue, P. Viktorovitch, C. Lopez, and M. Midrio, eds., Proc. SPIE 6182, 618220, (2006).

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey Fiber Analysis through the Finite-Element Method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
[Crossref]

Serebryannikov, E.

Serebryannikov, E. E.

S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “Cross-correlation FROG CARS with frequency-converting photonic-crystal fibers,” Phys. Rev. E 70, 057601 (2004).
[Crossref]

Sharping, J. E.

Silberhorn, Ch.

Ch. Silberhorn, P. K. Lam, O. Wei., F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
[Crossref] [PubMed]

Silvestre, E.

Simonsen, H.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

Sizmann, A.

S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic Sagnac interferometer,” Phys. Rev. Lett. 81, 2446–1449 (1998).
[Crossref]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).

Song, Y. -J.

Steel, M. J.

Stepien, R.

P. Szarniak, M. Foroni, R. Buczynski, D. Pysz, P. Wasylczyk, P. Gaboardi, F. Poli, A. Cucinotta, S. Selleri, and R. Stępien, “Nonlinear photonic crystal fiber with high birefringence made of silicate glass,” in Photonic Crystal Materials and Devices III (i.e. V), R. M. De La Rue, P. Viktorovitch, C. Lopez, and M. Midrio, eds., Proc. SPIE 6182, 618220, (2006).

D. Pysz, R. Stępien, P. Szarniak, R. Buczynski, and T. Szoplik, “Highly birefringent photonic crystal fibers with a square lattice,” in Lightguides and their Applications II, J. Wojcik and W. Wojcik, eds., Proc. SPIE 5576, 81–87 (2004).
[Crossref]

Suzuki, K.

Szarniak, P.

P. Szarniak, M. Foroni, R. Buczynski, D. Pysz, P. Wasylczyk, P. Gaboardi, F. Poli, A. Cucinotta, S. Selleri, and R. Stępien, “Nonlinear photonic crystal fiber with high birefringence made of silicate glass,” in Photonic Crystal Materials and Devices III (i.e. V), R. M. De La Rue, P. Viktorovitch, C. Lopez, and M. Midrio, eds., Proc. SPIE 6182, 618220, (2006).

D. Pysz, R. Stępien, P. Szarniak, R. Buczynski, and T. Szoplik, “Highly birefringent photonic crystal fibers with a square lattice,” in Lightguides and their Applications II, J. Wojcik and W. Wojcik, eds., Proc. SPIE 5576, 81–87 (2004).
[Crossref]

Szoplik, T.

D. Pysz, R. Stępien, P. Szarniak, R. Buczynski, and T. Szoplik, “Highly birefringent photonic crystal fibers with a square lattice,” in Lightguides and their Applications II, J. Wojcik and W. Wojcik, eds., Proc. SPIE 5576, 81–87 (2004).
[Crossref]

Szpulak, M.

Tanaka, M.

Thøgersen, J.

Tsai, K.-H.

K.-H. Tsai, K.-S. Kim, and T. F. Morse, “General solution for stress-induced polarization in optical fibers,” J. Lightwave Technol. 9, 7–17 (1991).
[Crossref]

Unterhuber, A.

Urbanczyk, W.

Vincetti, L.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey Fiber Analysis through the Finite-Element Method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
[Crossref]

Wadsworth, W. J.

Wang, C.

Wang, C. Y.

Wang, C. -Y.

Wasylczyk, P.

P. Szarniak, M. Foroni, R. Buczynski, D. Pysz, P. Wasylczyk, P. Gaboardi, F. Poli, A. Cucinotta, S. Selleri, and R. Stępien, “Nonlinear photonic crystal fiber with high birefringence made of silicate glass,” in Photonic Crystal Materials and Devices III (i.e. V), R. M. De La Rue, P. Viktorovitch, C. Lopez, and M. Midrio, eds., Proc. SPIE 6182, 618220, (2006).

Wei., O.

Ch. Silberhorn, P. K. Lam, O. Wei., F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
[Crossref] [PubMed]

Windeler, R. S.

Wójcik, J.

Wolff, M.

S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic Sagnac interferometer,” Phys. Rev. Lett. 81, 2446–1449 (1998).
[Crossref]

Yang, C.

Zhang, L.

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Zheltikov, A.

Zheltikov, A. M.

A. A. Ivanov, M. V. Alfimov, A. M. Zheltikov, M. Szpulak, W. Urbanczyk, and J. Wójcik, “Polarization-controlled vectorial spectral transformations of femtosecond pulses in a birefringent photonic-crystal fiber,” J. Opt. Soc. Am. B 23, 986–991 (2006).
[Crossref]

A. M. Zheltikov, “Nanoscale nonlinear optics in photonic-crystal fibres,” J. Opt. A: Pure Appl. Opt. 8, S47–S72 (2006).
[Crossref]

M. Hu, C. Wang, Y. Li, L. Chai, and A. M. Zheltikov, “Polarization-demultiplexed two-color frequency conversion of femtosecond pulses in birefringent photonic-crystal fibers,” Opt. Express 13, 5947–5952 (2005).
[Crossref] [PubMed]

A. M. Zheltikov, “Birefringence of guided modes in photonic wires: Gaussian-mode analysis,” Opt. Commun. 252, 78–83 (2005).
[Crossref]

S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “Cross-correlation FROG CARS with frequency-converting photonic-crystal fibers,” Phys. Rev. E 70, 057601 (2004).
[Crossref]

A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “Femtosecond pulses in nanophotonics” Phys. Usp. 47, 687–704 (2004).
[Crossref]

Zoboli, M.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey Fiber Analysis through the Finite-Element Method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
[Crossref]

Appl. Phys. Lett. (1)

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82, 2197–2199 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (2)

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588–590 (2001).
[Crossref]

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey Fiber Analysis through the Finite-Element Method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
[Crossref]

J. Lightwave Technol. (2)

E. Silvestre, M. V. Andres, and P. Andres, “Biorthonormal-basis method for the vector description of optical-fiber modes,” J. Lightwave Technol. 16, 923–928 (1998).
[Crossref]

K.-H. Tsai, K.-S. Kim, and T. F. Morse, “General solution for stress-induced polarization in optical fibers,” J. Lightwave Technol. 9, 7–17 (1991).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

A. M. Zheltikov, “Nanoscale nonlinear optics in photonic-crystal fibres,” J. Opt. A: Pure Appl. Opt. 8, S47–S72 (2006).
[Crossref]

J. Opt. Soc. Am. B (4)

Nature (1)

J. C. Knight, “Photonic crystal fibers,” Nature 424, 847–851 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

A. M. Zheltikov, “Birefringence of guided modes in photonic wires: Gaussian-mode analysis,” Opt. Commun. 252, 78–83 (2005).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. A (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

Phys. Rev. E (1)

S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “Cross-correlation FROG CARS with frequency-converting photonic-crystal fibers,” Phys. Rev. E 70, 057601 (2004).
[Crossref]

Phys. Rev. Lett. (3)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic Sagnac interferometer,” Phys. Rev. Lett. 81, 2446–1449 (1998).
[Crossref]

Ch. Silberhorn, P. K. Lam, O. Wei., F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
[Crossref] [PubMed]

Phys. Usp. (1)

A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “Femtosecond pulses in nanophotonics” Phys. Usp. 47, 687–704 (2004).
[Crossref]

Proc. SPIE (2)

P. Szarniak, M. Foroni, R. Buczynski, D. Pysz, P. Wasylczyk, P. Gaboardi, F. Poli, A. Cucinotta, S. Selleri, and R. Stępien, “Nonlinear photonic crystal fiber with high birefringence made of silicate glass,” in Photonic Crystal Materials and Devices III (i.e. V), R. M. De La Rue, P. Viktorovitch, C. Lopez, and M. Midrio, eds., Proc. SPIE 6182, 618220, (2006).

D. Pysz, R. Stępien, P. Szarniak, R. Buczynski, and T. Szoplik, “Highly birefringent photonic crystal fibers with a square lattice,” in Lightguides and their Applications II, J. Wojcik and W. Wojcik, eds., Proc. SPIE 5576, 81–87 (2004).
[Crossref]

Science (1)

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref] [PubMed]

Other (2)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. An SEM image of a highly birefringent silicate glass photonic-crystal fiber
Fig. 2.
Fig. 2. (a). The solid circles show the refractive index of a bulk sample of SK222 glass measured for different wavelengths. The solid curve displays the fit of the experimental data with a Sellmeier formula. (b) The group-velocity dispersion as a function of the wavelength λ for the doublet of fundamental modes in the PCF shown in Fig. 1
Fig. 3.
Fig. 3. The lower panel displays the spectra of the blue-shifted PCF output recorded with the input field (1.24-μm Cr: forsterite laser radiation) polarized along the orthogonal principal axes of the fiber core (curves 1, 2) and the polarization vector of the input field oriented at an angle of 45° with respect to the principal axes of the fiber core. The initial pulse width is 100 fs. The fiber length is 8 cm. The input pulse energy is 7 nJ (curves 1, 2) and 16 nJ (curve 3). The central wavelength of the second-harmonic output of a Cr: forsterite laser is shown by the vertical dashed line. The upper panel shows the mismatch δβ = βs (λ 0) - β(λd ) of the propagation constant β(λd ) of dispersive-wave emission at the wavelength λ d in one of the orthogonal-polarized modes of the fundamental PCF mode doublet and the propagation constant of the soliton βs (λ 0) centered at the pump wavelength λ 0 = 1.24 μm. The inset shows the far-field beam pattern for the 650-nm PCF output. The scale is indicated with respect to the size of the PCF structure and is reconstructed from the far-field image.

Metrics