Abstract

We report on the emission patterns from THz plasmons propagating towards the end of cylindrical metal waveguides. Such waveguides exhibit low loss and dispersion, but little is known about the dynamics of the terahertz radiation at the end of the waveguide, specifically in the near- and intermediate-field. Our experimental results and numerical simulations show that the near- and intermediate-field terahertz spectra, measured at the end of the waveguide, vary with the position relative to the waveguide. This is explained by the frequency-dependent diffraction occurring at the end of the cylindrical waveguide. Our results show that near-field changes in the frequency content of THz pulses for increasing wire-detector distances must be taken into account when studying surface waves on cylindrical waveguides.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Wang, A. Barkan, and D. M. Mittleman, "Propagation effects in apertureless near-field optical antennas," Appl. Phys. Lett. 84, 305-307 (2004).
    [CrossRef]
  2. K. Wang and D. M. Mittleman, "Metal wires for THz wave guiding," Nature (London) 432, 376-379 (2004).
    [CrossRef]
  3. T. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a singel metal wire," Appl. Phys. Lett. 86, 071106/1-3 (2005).
    [CrossRef]
  4. M. Wächter, M. Nagel, and H. Kurz, "Frequency-dependent characterization of THz Sommerfeld wave propagation on single wires," Opt. Express 13, 10815-10822 (2005).
    [CrossRef] [PubMed]
  5. K. Wang and D. M. Mittleman, "Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range," Phys. Rev. Lett. 96, 157401/1-4 (2006).
    [CrossRef]
  6. N. C. J. van der Valk and P. C. M. Planken, "Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires," Appl. Phys. Lett. 87, 071106/1-3 (2005).
    [CrossRef]
  7. N. C. J. van der Valk, "Towards teraherz microscopy," thesis, http://www.library.tudelft.nl/dissertations/dd_list_paged/dd_metadata/index.htm?docname=363824.
  8. M. Walther, M. R. Freeman, and F. A. Hegmann, "Metal wire terahertz time-domain spectroscopy," Appl. Phys. Lett. 87, 261107/1-3 (2005).
    [CrossRef]
  9. M. Walther, G. S. Chambers, Z. Liu, M. R. Freeman, and F. A. Hegmann, "Emission and detection of terahertz pulses from a metal-tip antenna," J. Opt. Soc. Am. B 22, 2357-2365 (2005).
    [CrossRef]
  10. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404/1-4 (2004).
    [CrossRef]
  11. F. Hao and P. Nordlander, "Plasmonic coupling between a metallic nanosphere and a thin metallic wire," Appl. Phys. Lett. 89,103101 (2006).
    [CrossRef]
  12. G. Zhao, R. N. Schouten, N. C. J. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002).
    [CrossRef]
  13. J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, "Enhanced coupling of terahertz radiation to cylindrical wire waveguides," Opt. Express 14,279-290 (2006).
    [CrossRef] [PubMed]
  14. K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715 (2004).
    [CrossRef]
  15. G. Goubau, "Surface waves and their application to transmission lines," J. Appl. Phys. 21, 1119-1128 (1950).
    [CrossRef]
  16. J. Jin, The Finite Element Method in Electromagnetics, (John Wiley & Sons, Inc., New York 2002).

2006 (2)

F. Hao and P. Nordlander, "Plasmonic coupling between a metallic nanosphere and a thin metallic wire," Appl. Phys. Lett. 89,103101 (2006).
[CrossRef]

J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, "Enhanced coupling of terahertz radiation to cylindrical wire waveguides," Opt. Express 14,279-290 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (3)

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715 (2004).
[CrossRef]

K. Wang, A. Barkan, and D. M. Mittleman, "Propagation effects in apertureless near-field optical antennas," Appl. Phys. Lett. 84, 305-307 (2004).
[CrossRef]

K. Wang and D. M. Mittleman, "Metal wires for THz wave guiding," Nature (London) 432, 376-379 (2004).
[CrossRef]

2002 (1)

G. Zhao, R. N. Schouten, N. C. J. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002).
[CrossRef]

1950 (1)

G. Goubau, "Surface waves and their application to transmission lines," J. Appl. Phys. 21, 1119-1128 (1950).
[CrossRef]

Barkan, A.

K. Wang, A. Barkan, and D. M. Mittleman, "Propagation effects in apertureless near-field optical antennas," Appl. Phys. Lett. 84, 305-307 (2004).
[CrossRef]

Chambers, G. S.

Deibel, J. A.

Escarra, M. D.

Freeman, M. R.

Goubau, G.

G. Goubau, "Surface waves and their application to transmission lines," J. Appl. Phys. 21, 1119-1128 (1950).
[CrossRef]

Hao, F.

F. Hao and P. Nordlander, "Plasmonic coupling between a metallic nanosphere and a thin metallic wire," Appl. Phys. Lett. 89,103101 (2006).
[CrossRef]

Hegmann, F. A.

Kurz, H.

Liu, Z.

Mittleman, D. M.

J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, "Enhanced coupling of terahertz radiation to cylindrical wire waveguides," Opt. Express 14,279-290 (2006).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, "Metal wires for THz wave guiding," Nature (London) 432, 376-379 (2004).
[CrossRef]

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715 (2004).
[CrossRef]

K. Wang, A. Barkan, and D. M. Mittleman, "Propagation effects in apertureless near-field optical antennas," Appl. Phys. Lett. 84, 305-307 (2004).
[CrossRef]

Nagel, M.

Nordlander, P.

F. Hao and P. Nordlander, "Plasmonic coupling between a metallic nanosphere and a thin metallic wire," Appl. Phys. Lett. 89,103101 (2006).
[CrossRef]

Planken, P. C. M.

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715 (2004).
[CrossRef]

G. Zhao, R. N. Schouten, N. C. J. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002).
[CrossRef]

Schouten, R. N.

G. Zhao, R. N. Schouten, N. C. J. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002).
[CrossRef]

van der Valk, N. C. J.

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715 (2004).
[CrossRef]

G. Zhao, R. N. Schouten, N. C. J. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002).
[CrossRef]

Wächter, M.

Walther, M.

Wang, K.

J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, "Enhanced coupling of terahertz radiation to cylindrical wire waveguides," Opt. Express 14,279-290 (2006).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, "Metal wires for THz wave guiding," Nature (London) 432, 376-379 (2004).
[CrossRef]

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715 (2004).
[CrossRef]

K. Wang, A. Barkan, and D. M. Mittleman, "Propagation effects in apertureless near-field optical antennas," Appl. Phys. Lett. 84, 305-307 (2004).
[CrossRef]

Wenckebach, W. Th.

G. Zhao, R. N. Schouten, N. C. J. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002).
[CrossRef]

Zhao, G.

G. Zhao, R. N. Schouten, N. C. J. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002).
[CrossRef]

Appl. Phys. Lett. (3)

K. Wang, A. Barkan, and D. M. Mittleman, "Propagation effects in apertureless near-field optical antennas," Appl. Phys. Lett. 84, 305-307 (2004).
[CrossRef]

F. Hao and P. Nordlander, "Plasmonic coupling between a metallic nanosphere and a thin metallic wire," Appl. Phys. Lett. 89,103101 (2006).
[CrossRef]

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715 (2004).
[CrossRef]

J. Appl. Phys. (1)

G. Goubau, "Surface waves and their application to transmission lines," J. Appl. Phys. 21, 1119-1128 (1950).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (London) (1)

K. Wang and D. M. Mittleman, "Metal wires for THz wave guiding," Nature (London) 432, 376-379 (2004).
[CrossRef]

Opt. Express (2)

Rev. Sci. Instrum. (1)

G. Zhao, R. N. Schouten, N. C. J. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter," Rev. Sci. Instrum. 73, 1715-1719 (2002).
[CrossRef]

Other (7)

J. Jin, The Finite Element Method in Electromagnetics, (John Wiley & Sons, Inc., New York 2002).

T. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a singel metal wire," Appl. Phys. Lett. 86, 071106/1-3 (2005).
[CrossRef]

K. Wang and D. M. Mittleman, "Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range," Phys. Rev. Lett. 96, 157401/1-4 (2006).
[CrossRef]

N. C. J. van der Valk and P. C. M. Planken, "Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires," Appl. Phys. Lett. 87, 071106/1-3 (2005).
[CrossRef]

N. C. J. van der Valk, "Towards teraherz microscopy," thesis, http://www.library.tudelft.nl/dissertations/dd_list_paged/dd_metadata/index.htm?docname=363824.

M. Walther, M. R. Freeman, and F. A. Hegmann, "Metal wire terahertz time-domain spectroscopy," Appl. Phys. Lett. 87, 261107/1-3 (2005).
[CrossRef]

M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404/1-4 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig.1. .
Fig.1. .

a). Schematic diagram of the setup used to measure the emission from surface waves near the end of a 1 mm diameter stainless steel wire. The THz electric field is measured using electro-optic detection in a (110) oriented ZnTe crystal. (b) Schematic diagram used to measure the THz electric field present near the end of a 0.9 mm diameter stainless steel waveguide using fiber-coupled THz emitters and detectors. In both figures, w is the transverse separation between the center of the waveguide and the position where the field is measured. d is the longitudinal distance.

Fig. 2.
Fig. 2.

(a). THz spectra measured near the end of the 1 mm diameter stainless steel wire at a transverse separation w=1 mm, for seven values of the distance d between the detector and the end of the wire [see Fig. 1 (a)]. (b) THz spectra measured near the end of the 0.9 mm diameter stainless steel wire at a transverse separation of w=2 mm, for five values of the distance d. [see also Fig, 1 (b)]

Fig. 3.
Fig. 3.

Calculated THz intensity distribution in a plane containing the axis of a 0.9 mm thick wire, for five different frequencies. Red indicates a high intensity, blue indicates a low intensity. The color scale in these images has been saturated to enhance the visibility of the fields propagating away from the end of the wire. The higher intensities near the wire are therefore beyond the limits of this saturated color scale, and are depicted in white.

Metrics