Abstract

The reflectivity of absorbing Bragg reflectors consisting of a GaAs/AlAs Bragg mirror and a InGaAs/InGaAsP multiple-quantum-well cavity layer was studied as a function of temperature. An absorption dip in the stop band due to the optical confinement of the Fabry-Perot resonance was observed in the reflectivity spectra. The absorption intensity of the dip increased with temperature and was explained by the resonant coincidence of the Fabry-Perot cavity mode and the quantum-well absorption. The temperature-dependent reflectivity spectra were successfully reproduced using the transfer matrix method and the linear dependence of the refractive index on temperature.

© Optical Society of America

PDF Article

References

  • View by:
  • |

  1. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, �Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,� IEEE J. of Selected Topics in Quantum Electron. 2, 454-464 (1996).
  2. J.L. Shen, T. Jung, S. Murthy, T. Chau, M. C. Wu, Y. H. Lo, C. L. Chua and Z. H. Zhu, �Mode locking of external-cavity semiconductor lasers with saturable Bragg reflectors,� J. Opt. Soc. Am. B 16, 1064-1067 (1999).
  3. K. Ogawa, Y. Matsui, T. Itatani, and K. Ouchi, �Spectral characteristics of an InP/InGaAs distribution absorbing Bragg reflector,� Appl. Phys. Lett. 72, 155-157 (1998).
  4. V.V. Evstropov, M. A. Kaliteevskii, A. L. Lipko, M. A. Sinitsyn, B. V. Tsarenkov, Yu. M. Shernyakov, and B. S. Yavich, �Semiconductor Bragg reflector with absorbing layers,� Semicond. 30, 57- 59 (1996).
  5. A.V. Kavokin, M. A. Kaliteevski, �Light-absorption effect on Bragg interference in multilayer semiconductor heterostructures,� J. Appl. Phys. 79, 595-598 (1997).
  6. K. Ogawa, Y. Matsui, T. Itatani, and K. Ouchi, �Carrier relaxation in an InP/InGaAs nonlinear Bragg reflector,� Appl. Phys. Lett. 73, 297-299 (1998).
  7. E.J. Mozdy, M. A. Jaspan, Z. H. Zhu, Y. H. Lo, C. R. Pollock, R. Bhat, and H. Hong, �NaCl:OH - color center laser modelocked by a novel bonded saturable Bragg reflector,� Opt. Commun. 151, 62-64 (1998).
  8. G.M. Yang, M. H. MacDougal, H. Zhao, and P. D. Kapkus, �Microcavity effects on the spontaneous emission from InGaAs/GaAs quantum wells,� J. Appl. Phys. 78, 3605-3609 (1995).
  9. J.I. Pankove, Optical processes in semiconductors (Prentice-Hall, 1971).
  10. P. Yeh, Optical waves and layered media (John Wiley& Sons, 1991).
  11. R.E. Fern and A. Onton, �Refractive index of AlAs,� J. Appl. Phys. 42, 3499-3500 (1971).
  12. J.S. Blakemore, �Intrinsic density ni (T) in GaAs: Deduced from band gap and effective mass parameters and derived independently from Cr acceptor capture and emission coefficients,� J. Appl. Phys. 53, 520-531 (1982).
  13. A. Yariv and P. Yeh, Optical waves in crystals (Wiley, 1983).
  14. J. Talghader and J. S. Smith, �Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multiplayer optical cavities,� Appl. Phys. Lett. 66, 335-337 (1995).
  15. E. Zielinski, H. Schweizer, K. Streubel, H. Eisele, and G. Weimann, �Excitonic transitions and exciton damping processes in InGaAs/InP,� J. Appl. Phys. 58, 2196 (1986).
  16. J.L. Shen, J. Y. Chang, H. C. Liu, W. C. Chou, Y. F. Chen, T. Jung, and M. C. Wu, �Nearly in-plane photoluminescence studies in asymmetric semiconductor microcavities,� Solid State Commun. 116, 431-435 (2000).

Other

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, �Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,� IEEE J. of Selected Topics in Quantum Electron. 2, 454-464 (1996).

J.L. Shen, T. Jung, S. Murthy, T. Chau, M. C. Wu, Y. H. Lo, C. L. Chua and Z. H. Zhu, �Mode locking of external-cavity semiconductor lasers with saturable Bragg reflectors,� J. Opt. Soc. Am. B 16, 1064-1067 (1999).

K. Ogawa, Y. Matsui, T. Itatani, and K. Ouchi, �Spectral characteristics of an InP/InGaAs distribution absorbing Bragg reflector,� Appl. Phys. Lett. 72, 155-157 (1998).

V.V. Evstropov, M. A. Kaliteevskii, A. L. Lipko, M. A. Sinitsyn, B. V. Tsarenkov, Yu. M. Shernyakov, and B. S. Yavich, �Semiconductor Bragg reflector with absorbing layers,� Semicond. 30, 57- 59 (1996).

A.V. Kavokin, M. A. Kaliteevski, �Light-absorption effect on Bragg interference in multilayer semiconductor heterostructures,� J. Appl. Phys. 79, 595-598 (1997).

K. Ogawa, Y. Matsui, T. Itatani, and K. Ouchi, �Carrier relaxation in an InP/InGaAs nonlinear Bragg reflector,� Appl. Phys. Lett. 73, 297-299 (1998).

E.J. Mozdy, M. A. Jaspan, Z. H. Zhu, Y. H. Lo, C. R. Pollock, R. Bhat, and H. Hong, �NaCl:OH - color center laser modelocked by a novel bonded saturable Bragg reflector,� Opt. Commun. 151, 62-64 (1998).

G.M. Yang, M. H. MacDougal, H. Zhao, and P. D. Kapkus, �Microcavity effects on the spontaneous emission from InGaAs/GaAs quantum wells,� J. Appl. Phys. 78, 3605-3609 (1995).

J.I. Pankove, Optical processes in semiconductors (Prentice-Hall, 1971).

P. Yeh, Optical waves and layered media (John Wiley& Sons, 1991).

R.E. Fern and A. Onton, �Refractive index of AlAs,� J. Appl. Phys. 42, 3499-3500 (1971).

J.S. Blakemore, �Intrinsic density ni (T) in GaAs: Deduced from band gap and effective mass parameters and derived independently from Cr acceptor capture and emission coefficients,� J. Appl. Phys. 53, 520-531 (1982).

A. Yariv and P. Yeh, Optical waves in crystals (Wiley, 1983).

J. Talghader and J. S. Smith, �Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multiplayer optical cavities,� Appl. Phys. Lett. 66, 335-337 (1995).

E. Zielinski, H. Schweizer, K. Streubel, H. Eisele, and G. Weimann, �Excitonic transitions and exciton damping processes in InGaAs/InP,� J. Appl. Phys. 58, 2196 (1986).

J.L. Shen, J. Y. Chang, H. C. Liu, W. C. Chou, Y. F. Chen, T. Jung, and M. C. Wu, �Nearly in-plane photoluminescence studies in asymmetric semiconductor microcavities,� Solid State Commun. 116, 431-435 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics