Abstract

By means of two-photon excited photoluminescence, we demonstrate the influence of self-absorption on the emission properties of thin (1.5 µm) film CdS formed by laser ablation. The excitation of the sample is performed with 200 fs pulses at 804 nm (1.54 eV). The photoluminescence spectrum takes the form of a single peak centered at 510 nm (2.43 eV) at 300 K. The spectrum is shifted about 45 meV to lower energies with respect to the photoluminescence excited by one photon absorption. By fitting the photoluminescence spectra with the Roosbroeck-Shockley relation and Urbach’s rule, it is shown by Beer’s law that the shift is caused by self-absorption. The results further provide evidence of low impurity concentration and excellent surface quality. They also confirm the outstanding optical properties of thin film CdS formed by pulsed-laser deposition and suggest the application of the films for effective up-conversation materials in ultra-fast experiments.

© 2001 Optical Society of America

Full Article  |  PDF Article
Related Articles
Laser-induced gratings and wave mixing in large-gap semiconductors

H. Kalt, V. G. Lyssenko, R. Renner, and C. Klingshirn
J. Opt. Soc. Am. B 2(7) 1188-1196 (1985)

Nonlinear optical properties of quantum-confined CdSe microcrystallites

S. H. Park, R. A. Morgan, Y. Z. Hu, M. Lindberg, S. W. Koch, and N. Peyghambarian
J. Opt. Soc. Am. B 7(10) 2097-2105 (1990)

Microcavity lasing of optically excited cadmium sulfide thin films at room temperature

D. M. Bagnall, B. Ullrich, X. G. Qiu, Y. Segawa, and H. Sakai
Opt. Lett. 24(18) 1278-1280 (1999)

References

  • View by:
  • |
  • |
  • |

  1. A. V. Nabok, A. K. Ray, and A. K. Hassan, “Electron beam stimulated formation of CdS nanoparticles within calixarene Langmuir-Blodgett films,” J. Appl. Phys. 88, 1333–1338 (2000) and refs. therein.
    [Crossref]
  2. C. Bouchenaki, B. Ullrich, and J. P. Zielinger, “0,” J. Lum. 48/49, 649–654 (1991).
    [Crossref]
  3. O. Zelaya-Angel, A. E. Esparza-Garcia, C. Falcony, and R. Lozada-Morales, “Photoluminescence effects associated with thermally induced crystalline structure changes in CdS films,” Solid State Commun. 94, 81–85 (1995).
    [Crossref]
  4. C. Mejía-García, A. Escamilla-Esquivel, G. Contreras-Puente, M. Tufiño-Velázquez, M. L. Albor-Aguilera, O. Vigil, and L. Vaillant, “Photoluminescence studies of CdS films grown by close-spaced vapor transport hot walls,” J. Appl. Phys. 86, 3171–3174 (1999).
    [Crossref]
  5. B. Ullrich, D. M. Bagnall, H. Sakai, and Y. Segawa, “Photoluminescence properties of thin CdS films on glass formed by laser ablation,” Solid State Commun. 109, 757–760 (1999).
    [Crossref]
  6. B. Ullrich, H. Sakai, and Y. Segawa, “Optoelectronic properties of thin film CdS formed by ultraviolet and infrared pulsed-laser deposition,” Thin Solid Films 385, 220–224 (2001).
    [Crossref]
  7. D. M. Bagnall, B. Ullrich, X. G. Qiu, Y. Segawa, and H. Sakai, “Microcavity lasing of optically excited cadmium sulfide thin films at room temperature,” Optics Letters 24, 1278–1280 (1999).
    [Crossref]
  8. B. Ullrich, D. M. Bagnall, H. Sakai, and Y. Segawa, “Photoluminescence and lasing of thin CdS films on glass formed by pulsed-laser deposition,” J. Lum. 87– 89, 1162–1164 (2000).
    [Crossref]
  9. J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971). * Contribution#418 from the Center for Photochemical Sciences
  10. R. Braunstein and N. Ockman, “Optical douple-photon absorption in CdS,” Phys. Rev. 134, A499–A507 (1964).
    [Crossref]
  11. J.-F. Lami and C. Hirlimann, “Two-photon excited room-temperature luminescence of CdS in the femtosecond regime,” Phys. Rev. B 60, 4763–4770 (1999).
    [Crossref]
  12. B. Ullrich and C. Bouchenaki, “Bistable optical thin CdS film devices: All-optical and optoelectronic features,” Jpn. J. Appl. Phys. 30, L1285–L1288 (1991).
    [Crossref]
  13. W. Van Roosbroeck and W. Shockley, “Photon-radiative recombination of electrons and holes in germanium,” Phys. Rev. 94, 1558–1560 (1954).
    [Crossref]

2001 (1)

B. Ullrich, H. Sakai, and Y. Segawa, “Optoelectronic properties of thin film CdS formed by ultraviolet and infrared pulsed-laser deposition,” Thin Solid Films 385, 220–224 (2001).
[Crossref]

2000 (2)

B. Ullrich, D. M. Bagnall, H. Sakai, and Y. Segawa, “Photoluminescence and lasing of thin CdS films on glass formed by pulsed-laser deposition,” J. Lum. 87– 89, 1162–1164 (2000).
[Crossref]

A. V. Nabok, A. K. Ray, and A. K. Hassan, “Electron beam stimulated formation of CdS nanoparticles within calixarene Langmuir-Blodgett films,” J. Appl. Phys. 88, 1333–1338 (2000) and refs. therein.
[Crossref]

1999 (4)

C. Mejía-García, A. Escamilla-Esquivel, G. Contreras-Puente, M. Tufiño-Velázquez, M. L. Albor-Aguilera, O. Vigil, and L. Vaillant, “Photoluminescence studies of CdS films grown by close-spaced vapor transport hot walls,” J. Appl. Phys. 86, 3171–3174 (1999).
[Crossref]

B. Ullrich, D. M. Bagnall, H. Sakai, and Y. Segawa, “Photoluminescence properties of thin CdS films on glass formed by laser ablation,” Solid State Commun. 109, 757–760 (1999).
[Crossref]

D. M. Bagnall, B. Ullrich, X. G. Qiu, Y. Segawa, and H. Sakai, “Microcavity lasing of optically excited cadmium sulfide thin films at room temperature,” Optics Letters 24, 1278–1280 (1999).
[Crossref]

J.-F. Lami and C. Hirlimann, “Two-photon excited room-temperature luminescence of CdS in the femtosecond regime,” Phys. Rev. B 60, 4763–4770 (1999).
[Crossref]

1995 (1)

O. Zelaya-Angel, A. E. Esparza-Garcia, C. Falcony, and R. Lozada-Morales, “Photoluminescence effects associated with thermally induced crystalline structure changes in CdS films,” Solid State Commun. 94, 81–85 (1995).
[Crossref]

1991 (2)

B. Ullrich and C. Bouchenaki, “Bistable optical thin CdS film devices: All-optical and optoelectronic features,” Jpn. J. Appl. Phys. 30, L1285–L1288 (1991).
[Crossref]

C. Bouchenaki, B. Ullrich, and J. P. Zielinger, “0,” J. Lum. 48/49, 649–654 (1991).
[Crossref]

1964 (1)

R. Braunstein and N. Ockman, “Optical douple-photon absorption in CdS,” Phys. Rev. 134, A499–A507 (1964).
[Crossref]

1954 (1)

W. Van Roosbroeck and W. Shockley, “Photon-radiative recombination of electrons and holes in germanium,” Phys. Rev. 94, 1558–1560 (1954).
[Crossref]

Albor-Aguilera, M. L.

C. Mejía-García, A. Escamilla-Esquivel, G. Contreras-Puente, M. Tufiño-Velázquez, M. L. Albor-Aguilera, O. Vigil, and L. Vaillant, “Photoluminescence studies of CdS films grown by close-spaced vapor transport hot walls,” J. Appl. Phys. 86, 3171–3174 (1999).
[Crossref]

Bagnall, D. M.

B. Ullrich, D. M. Bagnall, H. Sakai, and Y. Segawa, “Photoluminescence and lasing of thin CdS films on glass formed by pulsed-laser deposition,” J. Lum. 87– 89, 1162–1164 (2000).
[Crossref]

B. Ullrich, D. M. Bagnall, H. Sakai, and Y. Segawa, “Photoluminescence properties of thin CdS films on glass formed by laser ablation,” Solid State Commun. 109, 757–760 (1999).
[Crossref]

D. M. Bagnall, B. Ullrich, X. G. Qiu, Y. Segawa, and H. Sakai, “Microcavity lasing of optically excited cadmium sulfide thin films at room temperature,” Optics Letters 24, 1278–1280 (1999).
[Crossref]

Bouchenaki, C.

C. Bouchenaki, B. Ullrich, and J. P. Zielinger, “0,” J. Lum. 48/49, 649–654 (1991).
[Crossref]

B. Ullrich and C. Bouchenaki, “Bistable optical thin CdS film devices: All-optical and optoelectronic features,” Jpn. J. Appl. Phys. 30, L1285–L1288 (1991).
[Crossref]

Braunstein, R.

R. Braunstein and N. Ockman, “Optical douple-photon absorption in CdS,” Phys. Rev. 134, A499–A507 (1964).
[Crossref]

Contreras-Puente, G.

C. Mejía-García, A. Escamilla-Esquivel, G. Contreras-Puente, M. Tufiño-Velázquez, M. L. Albor-Aguilera, O. Vigil, and L. Vaillant, “Photoluminescence studies of CdS films grown by close-spaced vapor transport hot walls,” J. Appl. Phys. 86, 3171–3174 (1999).
[Crossref]

Escamilla-Esquivel, A.

C. Mejía-García, A. Escamilla-Esquivel, G. Contreras-Puente, M. Tufiño-Velázquez, M. L. Albor-Aguilera, O. Vigil, and L. Vaillant, “Photoluminescence studies of CdS films grown by close-spaced vapor transport hot walls,” J. Appl. Phys. 86, 3171–3174 (1999).
[Crossref]

Esparza-Garcia, A. E.

O. Zelaya-Angel, A. E. Esparza-Garcia, C. Falcony, and R. Lozada-Morales, “Photoluminescence effects associated with thermally induced crystalline structure changes in CdS films,” Solid State Commun. 94, 81–85 (1995).
[Crossref]

Falcony, C.

O. Zelaya-Angel, A. E. Esparza-Garcia, C. Falcony, and R. Lozada-Morales, “Photoluminescence effects associated with thermally induced crystalline structure changes in CdS films,” Solid State Commun. 94, 81–85 (1995).
[Crossref]

Hassan, A. K.

A. V. Nabok, A. K. Ray, and A. K. Hassan, “Electron beam stimulated formation of CdS nanoparticles within calixarene Langmuir-Blodgett films,” J. Appl. Phys. 88, 1333–1338 (2000) and refs. therein.
[Crossref]

Hirlimann, C.

J.-F. Lami and C. Hirlimann, “Two-photon excited room-temperature luminescence of CdS in the femtosecond regime,” Phys. Rev. B 60, 4763–4770 (1999).
[Crossref]

Lami, J.-F.

J.-F. Lami and C. Hirlimann, “Two-photon excited room-temperature luminescence of CdS in the femtosecond regime,” Phys. Rev. B 60, 4763–4770 (1999).
[Crossref]

Lozada-Morales, R.

O. Zelaya-Angel, A. E. Esparza-Garcia, C. Falcony, and R. Lozada-Morales, “Photoluminescence effects associated with thermally induced crystalline structure changes in CdS films,” Solid State Commun. 94, 81–85 (1995).
[Crossref]

Mejía-García, C.

C. Mejía-García, A. Escamilla-Esquivel, G. Contreras-Puente, M. Tufiño-Velázquez, M. L. Albor-Aguilera, O. Vigil, and L. Vaillant, “Photoluminescence studies of CdS films grown by close-spaced vapor transport hot walls,” J. Appl. Phys. 86, 3171–3174 (1999).
[Crossref]

Nabok, A. V.

A. V. Nabok, A. K. Ray, and A. K. Hassan, “Electron beam stimulated formation of CdS nanoparticles within calixarene Langmuir-Blodgett films,” J. Appl. Phys. 88, 1333–1338 (2000) and refs. therein.
[Crossref]

Ockman, N.

R. Braunstein and N. Ockman, “Optical douple-photon absorption in CdS,” Phys. Rev. 134, A499–A507 (1964).
[Crossref]

Pankove, J. I.

J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971). * Contribution#418 from the Center for Photochemical Sciences

Qiu, X. G.

D. M. Bagnall, B. Ullrich, X. G. Qiu, Y. Segawa, and H. Sakai, “Microcavity lasing of optically excited cadmium sulfide thin films at room temperature,” Optics Letters 24, 1278–1280 (1999).
[Crossref]

Ray, A. K.

A. V. Nabok, A. K. Ray, and A. K. Hassan, “Electron beam stimulated formation of CdS nanoparticles within calixarene Langmuir-Blodgett films,” J. Appl. Phys. 88, 1333–1338 (2000) and refs. therein.
[Crossref]

Sakai, H.

B. Ullrich, H. Sakai, and Y. Segawa, “Optoelectronic properties of thin film CdS formed by ultraviolet and infrared pulsed-laser deposition,” Thin Solid Films 385, 220–224 (2001).
[Crossref]

B. Ullrich, D. M. Bagnall, H. Sakai, and Y. Segawa, “Photoluminescence and lasing of thin CdS films on glass formed by pulsed-laser deposition,” J. Lum. 87– 89, 1162–1164 (2000).
[Crossref]

D. M. Bagnall, B. Ullrich, X. G. Qiu, Y. Segawa, and H. Sakai, “Microcavity lasing of optically excited cadmium sulfide thin films at room temperature,” Optics Letters 24, 1278–1280 (1999).
[Crossref]

B. Ullrich, D. M. Bagnall, H. Sakai, and Y. Segawa, “Photoluminescence properties of thin CdS films on glass formed by laser ablation,” Solid State Commun. 109, 757–760 (1999).
[Crossref]

Segawa, Y.

B. Ullrich, H. Sakai, and Y. Segawa, “Optoelectronic properties of thin film CdS formed by ultraviolet and infrared pulsed-laser deposition,” Thin Solid Films 385, 220–224 (2001).
[Crossref]

B. Ullrich, D. M. Bagnall, H. Sakai, and Y. Segawa, “Photoluminescence and lasing of thin CdS films on glass formed by pulsed-laser deposition,” J. Lum. 87– 89, 1162–1164 (2000).
[Crossref]

D. M. Bagnall, B. Ullrich, X. G. Qiu, Y. Segawa, and H. Sakai, “Microcavity lasing of optically excited cadmium sulfide thin films at room temperature,” Optics Letters 24, 1278–1280 (1999).
[Crossref]

B. Ullrich, D. M. Bagnall, H. Sakai, and Y. Segawa, “Photoluminescence properties of thin CdS films on glass formed by laser ablation,” Solid State Commun. 109, 757–760 (1999).
[Crossref]

Shockley, W.

W. Van Roosbroeck and W. Shockley, “Photon-radiative recombination of electrons and holes in germanium,” Phys. Rev. 94, 1558–1560 (1954).
[Crossref]

Tufiño-Velázquez, M.

C. Mejía-García, A. Escamilla-Esquivel, G. Contreras-Puente, M. Tufiño-Velázquez, M. L. Albor-Aguilera, O. Vigil, and L. Vaillant, “Photoluminescence studies of CdS films grown by close-spaced vapor transport hot walls,” J. Appl. Phys. 86, 3171–3174 (1999).
[Crossref]

Ullrich, B.

B. Ullrich, H. Sakai, and Y. Segawa, “Optoelectronic properties of thin film CdS formed by ultraviolet and infrared pulsed-laser deposition,” Thin Solid Films 385, 220–224 (2001).
[Crossref]

B. Ullrich, D. M. Bagnall, H. Sakai, and Y. Segawa, “Photoluminescence and lasing of thin CdS films on glass formed by pulsed-laser deposition,” J. Lum. 87– 89, 1162–1164 (2000).
[Crossref]

B. Ullrich, D. M. Bagnall, H. Sakai, and Y. Segawa, “Photoluminescence properties of thin CdS films on glass formed by laser ablation,” Solid State Commun. 109, 757–760 (1999).
[Crossref]

D. M. Bagnall, B. Ullrich, X. G. Qiu, Y. Segawa, and H. Sakai, “Microcavity lasing of optically excited cadmium sulfide thin films at room temperature,” Optics Letters 24, 1278–1280 (1999).
[Crossref]

C. Bouchenaki, B. Ullrich, and J. P. Zielinger, “0,” J. Lum. 48/49, 649–654 (1991).
[Crossref]

B. Ullrich and C. Bouchenaki, “Bistable optical thin CdS film devices: All-optical and optoelectronic features,” Jpn. J. Appl. Phys. 30, L1285–L1288 (1991).
[Crossref]

Vaillant, L.

C. Mejía-García, A. Escamilla-Esquivel, G. Contreras-Puente, M. Tufiño-Velázquez, M. L. Albor-Aguilera, O. Vigil, and L. Vaillant, “Photoluminescence studies of CdS films grown by close-spaced vapor transport hot walls,” J. Appl. Phys. 86, 3171–3174 (1999).
[Crossref]

Van Roosbroeck, W.

W. Van Roosbroeck and W. Shockley, “Photon-radiative recombination of electrons and holes in germanium,” Phys. Rev. 94, 1558–1560 (1954).
[Crossref]

Vigil, O.

C. Mejía-García, A. Escamilla-Esquivel, G. Contreras-Puente, M. Tufiño-Velázquez, M. L. Albor-Aguilera, O. Vigil, and L. Vaillant, “Photoluminescence studies of CdS films grown by close-spaced vapor transport hot walls,” J. Appl. Phys. 86, 3171–3174 (1999).
[Crossref]

Zelaya-Angel, O.

O. Zelaya-Angel, A. E. Esparza-Garcia, C. Falcony, and R. Lozada-Morales, “Photoluminescence effects associated with thermally induced crystalline structure changes in CdS films,” Solid State Commun. 94, 81–85 (1995).
[Crossref]

Zielinger, J. P.

C. Bouchenaki, B. Ullrich, and J. P. Zielinger, “0,” J. Lum. 48/49, 649–654 (1991).
[Crossref]

J. Appl. Phys. (2)

A. V. Nabok, A. K. Ray, and A. K. Hassan, “Electron beam stimulated formation of CdS nanoparticles within calixarene Langmuir-Blodgett films,” J. Appl. Phys. 88, 1333–1338 (2000) and refs. therein.
[Crossref]

C. Mejía-García, A. Escamilla-Esquivel, G. Contreras-Puente, M. Tufiño-Velázquez, M. L. Albor-Aguilera, O. Vigil, and L. Vaillant, “Photoluminescence studies of CdS films grown by close-spaced vapor transport hot walls,” J. Appl. Phys. 86, 3171–3174 (1999).
[Crossref]

J. Lum. (2)

C. Bouchenaki, B. Ullrich, and J. P. Zielinger, “0,” J. Lum. 48/49, 649–654 (1991).
[Crossref]

B. Ullrich, D. M. Bagnall, H. Sakai, and Y. Segawa, “Photoluminescence and lasing of thin CdS films on glass formed by pulsed-laser deposition,” J. Lum. 87– 89, 1162–1164 (2000).
[Crossref]

Jpn. J. Appl. Phys. (1)

B. Ullrich and C. Bouchenaki, “Bistable optical thin CdS film devices: All-optical and optoelectronic features,” Jpn. J. Appl. Phys. 30, L1285–L1288 (1991).
[Crossref]

Optics Letters (1)

D. M. Bagnall, B. Ullrich, X. G. Qiu, Y. Segawa, and H. Sakai, “Microcavity lasing of optically excited cadmium sulfide thin films at room temperature,” Optics Letters 24, 1278–1280 (1999).
[Crossref]

Phys. Rev. (2)

W. Van Roosbroeck and W. Shockley, “Photon-radiative recombination of electrons and holes in germanium,” Phys. Rev. 94, 1558–1560 (1954).
[Crossref]

R. Braunstein and N. Ockman, “Optical douple-photon absorption in CdS,” Phys. Rev. 134, A499–A507 (1964).
[Crossref]

Phys. Rev. B (1)

J.-F. Lami and C. Hirlimann, “Two-photon excited room-temperature luminescence of CdS in the femtosecond regime,” Phys. Rev. B 60, 4763–4770 (1999).
[Crossref]

Solid State Commun. (2)

O. Zelaya-Angel, A. E. Esparza-Garcia, C. Falcony, and R. Lozada-Morales, “Photoluminescence effects associated with thermally induced crystalline structure changes in CdS films,” Solid State Commun. 94, 81–85 (1995).
[Crossref]

B. Ullrich, D. M. Bagnall, H. Sakai, and Y. Segawa, “Photoluminescence properties of thin CdS films on glass formed by laser ablation,” Solid State Commun. 109, 757–760 (1999).
[Crossref]

Thin Solid Films (1)

B. Ullrich, H. Sakai, and Y. Segawa, “Optoelectronic properties of thin film CdS formed by ultraviolet and infrared pulsed-laser deposition,” Thin Solid Films 385, 220–224 (2001).
[Crossref]

Other (1)

J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971). * Contribution#418 from the Center for Photochemical Sciences

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig.1:
Fig.1:

Two-photon photoluminescence intensity vs. incident intensity. The line represents the power law I outIin2 .

Fig. 2.
Fig. 2.

Two-photon photoluminescence spectrum at an excitation intensity of 80 GW cm-2.,

Fig. 3.
Fig. 3.

Two-photon photoluminescence spectrum at an excitation intensity of 34 GW cm-2 (green squares) and theory (red line).

Fig.4:
Fig.4:

(a) Two-photon photoluminescence spectrum in Fig.2; (b) corrected two-photon photoluminescence spectrum; (c) single-photon photoluminescence spectrum.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α ( E ) = A 0 E E g for E E cr
a ( E ) = A 0 kT 2 σ exp ( σ kT ( E E cr ) ) for E E cr ,
I ( E ) E 2 α ( E ) ( exp ( E / kT c 1 ) ,
I 0 ( E ) = α ( E ) tI ( E ) ( 1 R ) ( 1 exp [ α ( E ) t ) ] ,

Metrics