Abstract

We present an improved method of polarization sensitive optical coherence tomography that enables measurement and imaging of backscattered intensity, birefringence, and fast optic axis orientation simultaneously with only one single A-scan per transverse measurement location. While intensity and birefringence data are obtained in a conventional way, the optic axis orientation is determined from the phase difference recorded in two orthogonal polarization channels. We report on accuracy and precision of the method by measuring birefringence and optic axis orientation of well defined polarization states in a technical object and present maps of birefringence and, what we believe for the first time, of optic axis orientation in biological tissue.

© 2001 Optical Society of America

Full Article  |  PDF Article
Related Articles
Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT

Michael Pircher, Erich Götzinger, Rainer Leitgeb, Harald Sattmann, Oliver Findl, and Christoph. K. Hitzenberger
Opt. Express 12(24) 5940-5951 (2004)

High speed spectral domain polarization sensitive optical coherence tomography of the human retina

Erich Götzinger, Michael Pircher, and Christoph K. Hitzenberger
Opt. Express 13(25) 10217-10229 (2005)

In vivo detection of exercise-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography

James J. Pasquesi, Simon C. Schlachter, Marni D. Boppart, Eric Chaney, Stephen J. Kaufman, and Stephen A. Boppart
Opt. Express 14(4) 1547-1556 (2006)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref] [PubMed]
  2. A.F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
    [Crossref] [PubMed]
  3. A. F. Fercher and C. K. Hitzenberger, “Optical coherence tomography in medicine” in International trends in optics and photonics ICO IV, T. Asakura, ed. (Springer, Berlin, 1999).
  4. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
    [Crossref] [PubMed]
  5. M. J. Everett, K. Schoenenberger, B. W. Colston, and L. B. Da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228–230 (1998).
    [Crossref]
  6. K. Schoenenberger, B. W. Colston, D. J. Maitland, L. B. Da Silva, and M. J. Everett, “Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography,” Appl. Opt. 37, 6026–6036 (1998).
    [Crossref]
  7. J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quant. Electron. 5, 1200–1203 (1999).
    [Crossref]
  8. A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, and A. F. Fercher: “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
    [Crossref]
  9. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging”, J. Opt. Soc. Am. B 9, 903–908 (1992).
    [Crossref]
  10. J. F. de Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999).
    [Crossref]
  11. S. Jiao, G. Yao, and L.V. Wang, “Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography,” Appl. Opt. 39, 6318–6324 (2000).
    [Crossref]
  12. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355–1357 (2000).
    [Crossref]
  13. J. E. Roth, J. A. Kozak, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Simplified method for polarization-sensitive optical coherence tomography,” Opt. Lett. 26, 1069–1071 (2001).
    [Crossref]
  14. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).
    [Crossref]
  15. M. Sticker, C. K. Hitzenberger, R. Leitgeb, and A. F. Fercher, “Quantitative differential phase measurement and imaging in transparent and turbid media using optical coherence tomography,” Opt. Lett. 26, 518–520 (2001).
    [Crossref]
  16. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt Lett 17, 151–153 (1992).
    [Crossref] [PubMed]
  17. C. R. Jones, “A new calculus for the treatment of optical systems. I. Description and discussion of the calculus,” J. Opt. Soc. Am. 31, 488–493 (1941).
    [Crossref]
  18. H. Hurwitz and C. R. Jones, “A new calculus for the treatment of optical systems. II. Proof of the three general equivalence theorems,” J. Opt. Soc. Am 31, 493–499 (1941).
  19. A. Gerrard and J. M. Burch, Introduction to matrix methods in optics (John Wiley & Sons, London, 1975).
  20. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1987), Chap. 10.
  21. F. V. Salomon, Lehrbuch der Geflügelanatomie (Gustav Fischer, Jena, 1993).
  22. M. A. Villain, D. S. Greenfield, R. W. Knighton, J. Schiffman, and W. Feuer, “Normative retardation data corrected for corneal polarization axis using scanning laser polarimetry,” Invest. Ophthalmol. Vis. Sci. 42, S135, abstract no. 716 (2001).
    [PubMed]

2001 (3)

2000 (4)

1999 (2)

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quant. Electron. 5, 1200–1203 (1999).
[Crossref]

J. F. de Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999).
[Crossref]

1998 (2)

1997 (1)

1996 (1)

A.F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
[Crossref] [PubMed]

1992 (2)

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging”, J. Opt. Soc. Am. B 9, 903–908 (1992).
[Crossref]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt Lett 17, 151–153 (1992).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

1941 (2)

C. R. Jones, “A new calculus for the treatment of optical systems. I. Description and discussion of the calculus,” J. Opt. Soc. Am. 31, 488–493 (1941).
[Crossref]

H. Hurwitz and C. R. Jones, “A new calculus for the treatment of optical systems. II. Proof of the three general equivalence theorems,” J. Opt. Soc. Am 31, 493–499 (1941).

Baumgartner, A.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, and A. F. Fercher: “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1987), Chap. 10.

Burch, J. M.

A. Gerrard and J. M. Burch, Introduction to matrix methods in optics (John Wiley & Sons, London, 1975).

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Chen, Z.

Colston, B. W.

Da Silva, L. B.

de Boer, J. F.

Dichtl, S.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, and A. F. Fercher: “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[Crossref]

Everett, M. J.

Fercher, A. F.

M. Sticker, C. K. Hitzenberger, R. Leitgeb, and A. F. Fercher, “Quantitative differential phase measurement and imaging in transparent and turbid media using optical coherence tomography,” Opt. Lett. 26, 518–520 (2001).
[Crossref]

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, and A. F. Fercher: “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[Crossref]

A. F. Fercher and C. K. Hitzenberger, “Optical coherence tomography in medicine” in International trends in optics and photonics ICO IV, T. Asakura, ed. (Springer, Berlin, 1999).

Fercher, A.F.

A.F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
[Crossref] [PubMed]

Feuer, W.

M. A. Villain, D. S. Greenfield, R. W. Knighton, J. Schiffman, and W. Feuer, “Normative retardation data corrected for corneal polarization axis using scanning laser polarimetry,” Invest. Ophthalmol. Vis. Sci. 42, S135, abstract no. 716 (2001).
[PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt Lett 17, 151–153 (1992).
[Crossref] [PubMed]

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging”, J. Opt. Soc. Am. B 9, 903–908 (1992).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Gerrard, A.

A. Gerrard and J. M. Burch, Introduction to matrix methods in optics (John Wiley & Sons, London, 1975).

Greenfield, D. S.

M. A. Villain, D. S. Greenfield, R. W. Knighton, J. Schiffman, and W. Feuer, “Normative retardation data corrected for corneal polarization axis using scanning laser polarimetry,” Invest. Ophthalmol. Vis. Sci. 42, S135, abstract no. 716 (2001).
[PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Hee, M. R.

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging”, J. Opt. Soc. Am. B 9, 903–908 (1992).
[Crossref]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt Lett 17, 151–153 (1992).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Hitzenberger, C. K.

M. Sticker, C. K. Hitzenberger, R. Leitgeb, and A. F. Fercher, “Quantitative differential phase measurement and imaging in transparent and turbid media using optical coherence tomography,” Opt. Lett. 26, 518–520 (2001).
[Crossref]

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, and A. F. Fercher: “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[Crossref]

A. F. Fercher and C. K. Hitzenberger, “Optical coherence tomography in medicine” in International trends in optics and photonics ICO IV, T. Asakura, ed. (Springer, Berlin, 1999).

Huang, D.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt Lett 17, 151–153 (1992).
[Crossref] [PubMed]

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging”, J. Opt. Soc. Am. B 9, 903–908 (1992).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Hurwitz, H.

H. Hurwitz and C. R. Jones, “A new calculus for the treatment of optical systems. II. Proof of the three general equivalence theorems,” J. Opt. Soc. Am 31, 493–499 (1941).

Izatt, J. A.

Jiao, S.

Jones, C. R.

H. Hurwitz and C. R. Jones, “A new calculus for the treatment of optical systems. II. Proof of the three general equivalence theorems,” J. Opt. Soc. Am 31, 493–499 (1941).

C. R. Jones, “A new calculus for the treatment of optical systems. I. Description and discussion of the calculus,” J. Opt. Soc. Am. 31, 488–493 (1941).
[Crossref]

Knighton, R. W.

M. A. Villain, D. S. Greenfield, R. W. Knighton, J. Schiffman, and W. Feuer, “Normative retardation data corrected for corneal polarization axis using scanning laser polarimetry,” Invest. Ophthalmol. Vis. Sci. 42, S135, abstract no. 716 (2001).
[PubMed]

Kozak, J. A.

Leitgeb, R.

Lin, C. P.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt Lett 17, 151–153 (1992).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Maitland, D. J.

Milner, T. E.

Moritz, A.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, and A. F. Fercher: “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[Crossref]

Nelson, J. S.

Park, B. H.

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355–1357 (2000).
[Crossref]

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quant. Electron. 5, 1200–1203 (1999).
[Crossref]

Pham, T. H.

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quant. Electron. 5, 1200–1203 (1999).
[Crossref]

Puliafito, C. A.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt Lett 17, 151–153 (1992).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Robl, B.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, and A. F. Fercher: “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[Crossref]

Rollins, A. M.

Roth, J. E.

Salomon, F. V.

F. V. Salomon, Lehrbuch der Geflügelanatomie (Gustav Fischer, Jena, 1993).

Sattmann, H.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, and A. F. Fercher: “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[Crossref]

Saxer, C.

Saxer, C. E.

Schiffman, J.

M. A. Villain, D. S. Greenfield, R. W. Knighton, J. Schiffman, and W. Feuer, “Normative retardation data corrected for corneal polarization axis using scanning laser polarimetry,” Invest. Ophthalmol. Vis. Sci. 42, S135, abstract no. 716 (2001).
[PubMed]

Schoenenberger, K.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Srinivas, S. M.

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quant. Electron. 5, 1200–1203 (1999).
[Crossref]

Sticker, M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt Lett 17, 151–153 (1992).
[Crossref] [PubMed]

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging”, J. Opt. Soc. Am. B 9, 903–908 (1992).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

van Gemert, M. J. C.

Villain, M. A.

M. A. Villain, D. S. Greenfield, R. W. Knighton, J. Schiffman, and W. Feuer, “Normative retardation data corrected for corneal polarization axis using scanning laser polarimetry,” Invest. Ophthalmol. Vis. Sci. 42, S135, abstract no. 716 (2001).
[PubMed]

Wang, L.V.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1987), Chap. 10.

Xiang, S.

Yao, G.

Yazdanfar, S.

Zhao, Y.

Appl. Opt. (2)

Caries Res. (1)

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, and A. F. Fercher: “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[Crossref]

IEEE J. Sel. Top. Quant. Electron. (1)

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quant. Electron. 5, 1200–1203 (1999).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

M. A. Villain, D. S. Greenfield, R. W. Knighton, J. Schiffman, and W. Feuer, “Normative retardation data corrected for corneal polarization axis using scanning laser polarimetry,” Invest. Ophthalmol. Vis. Sci. 42, S135, abstract no. 716 (2001).
[PubMed]

J. Biomed. Opt. (1)

A.F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
[Crossref] [PubMed]

J. Opt. Soc. Am (1)

H. Hurwitz and C. R. Jones, “A new calculus for the treatment of optical systems. II. Proof of the three general equivalence theorems,” J. Opt. Soc. Am 31, 493–499 (1941).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt Lett (1)

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt Lett 17, 151–153 (1992).
[Crossref] [PubMed]

Opt. Lett. (7)

J. F. de Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999).
[Crossref]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
[Crossref] [PubMed]

M. J. Everett, K. Schoenenberger, B. W. Colston, and L. B. Da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228–230 (1998).
[Crossref]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355–1357 (2000).
[Crossref]

J. E. Roth, J. A. Kozak, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Simplified method for polarization-sensitive optical coherence tomography,” Opt. Lett. 26, 1069–1071 (2001).
[Crossref]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).
[Crossref]

M. Sticker, C. K. Hitzenberger, R. Leitgeb, and A. F. Fercher, “Quantitative differential phase measurement and imaging in transparent and turbid media using optical coherence tomography,” Opt. Lett. 26, 518–520 (2001).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Other (4)

A. Gerrard and J. M. Burch, Introduction to matrix methods in optics (John Wiley & Sons, London, 1975).

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1987), Chap. 10.

F. V. Salomon, Lehrbuch der Geflügelanatomie (Gustav Fischer, Jena, 1993).

A. F. Fercher and C. K. Hitzenberger, “Optical coherence tomography in medicine” in International trends in optics and photonics ICO IV, T. Asakura, ed. (Springer, Berlin, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Sketch of instrument. BS, beam splitter; QWP, quarter wave plate.

Fig. 2.
Fig. 2.

Measured versus set retardation. (a) Plot of measured retardation (data points) and standard deviation (error bars) as a function of set retardation for a fast axis orientation of 40°. For better comparison, the expected (set) retardation value is indicated as solid line. (b) Polar plot of measured retardation versus set retardation for several fixed values of fast axis orientation (indicated along circumference of the plot). The color of a data point indicates the set value of retardation, the radial distance from the half-circle center indicates the corresponding measured value. Ideally, the data points should lie on the corresponding half-circle.

Fig. 3.
Fig. 3.

Measured versus set fast axis orientation. (a) Plot of measured axis orientation (data points) and standard deviation (error bars) as a function of set fast axis for a retardation of 30°. For better comparison, the expected (set) axis orientation is indicated as solid line. (b) Polar plot of measured axis orientation versus set fast axis for several fixed values of retardation (indicated along circumference of the plot). The color of a data point indicates the set value of axis orientation, the radial distance from the quarter-circle center indicates the corresponding measured value. Ideally, the data points should lie on the corresponding quarter-circle.

Fig. 4.
Fig. 4.

OCT images recorded in a chicken myocardium in vitro. Dimensions are indicated in mm (the ordinate shows optical distance). (a) Intensity image (color bar: logarithmic intensity scale); (b) phase retardation image (color bar: retardation [deg]); (c) image of fast axis distribution; interpretation: see text (color bar: axis orientation [deg]).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E = E 0 ( 0 1 )
M ( δ , θ ) = [ cos 2 ( θ ) + sin 2 ( θ ) · exp ( i δ ) cos ( θ ) · sin ( θ ) · ( 1 exp ( i δ ) ) cos ( θ ) · sin ( θ ) · ( 1 exp ( i δ ) ) cos 2 ( θ ) · exp ( i δ ) + sin 2 ( θ ) ]
E r = 1 2 M QWP 2 · M QWP 2 · ( 0 1 ) = 1 2 2 ( 1 1 ) .
E s = 1 2 M QWP 1 · M sample ( δ , θ ) · R · M sample ( δ , θ ) · M QWP 1 · ( 0 1 )
= R 2 ( cos ( δ ) exp ( i δ ) sin ( δ ) exp ( i ( π δ 2 θ ) ) )
I k ( z ) = I r , k + I s , k + 2 I r , k I s , k · γ ( z z 0 ) · cos ( Φ k ) .
A ˜ k ( z ) = I k ( z ) + i · H { I k ( z ) } = A k ( z ) · exp [ i · Φ k ( z ) ]
R ( z ) A 1 ( z ) 2 + A 2 ( z ) 2
δ ( z ) = arctan ( A 2 ( z ) A 1 ( z ) ) .
θ = ( 180 o Φ ) / 2 .

Metrics