Abstract

Optical devices in free-space laser communication systems are affected by their environment, particularly in relation to the effects of temperature while in orbit. The mutual alignment error between the transmitted and received optical axes is caused by deformation of the optics due to temperature variation in spite of the common optics used for transmission and reception of the optical beams. When a Gaussian beam wave for transmission is aligned at the center of a received plane wave, 3rd-order Coma aberrations have the most influence on the mutual alignment error, which is an inevitable open pointing error under only the Tip/Tilt tracking control. As an example, a mutual alignment error of less than 0.2 µrad is predicted for a laser communication terminal in orbit using the results from space chamber thermal vacuum tests. The relative power penalty due to aberration is estimated to be about 0.4 dB. The results will mitigate surface quality in an optical antenna and contribute to the design of free-space laser communication systems.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. Nakagawa and A. Yamamoto, "Preliminary design of Laser Utilizing Communications Experiment (LUCE) installed on Optical Inter-Orbit Communications Engineering Test Satellite (OICETS)," in Free-Space Laser communication Technologies VII, G. S. Mecherle, ed., Proc. SPIE 2381, 14-25 (1995).
  2. K. Nakagawa, A. Yamamoto and Y. Suzuki, "OICETS optical link communications experiment in space," in Semiconductor Laser II, S. Forouhar and Q. Wang, eds., Proc. SPIE 2886, 172-183 (1996).
  3. K. Nakagawa and A. Yamamoto, "Engineering model test of LUCE (Laser Utilizing Communications Equipment)," in Free-Space Laser communication Technologies III, G. S. Mecherle, ed., Proc. SPIE 2699, 114-120 (1996).
  4. Y. Suzuki, K. Nakagawa, T. Jono and A. Yamamoto, "Current status of OICETS laser-communication-terminal development: development of laser diodes and sensors for OICETS program," in Free-Space Laser communication Technologies IX, G. S. Mecherle, ed., Proc. SPIE 2990, 31-37 (1997).
  5. T. Jono, M. Toyoda, K. Nakagawa, A. Yamamoto, K. Shiratama, T. Kurii and Y. Koyama, "Acquisition, tracking and pointing system of OICETS for free space laser communications," in Acquisition, Tracking, and Pointing XIII, M. K. Masten and L. A. Stockum, eds., Proc. SPIE 3692, 41-50 (1999).
  6. M. Born and E. Wolf, Principles of Optics, 7th Edition, (Cambridge, Cambridge University Press, 1999).
  7. R. J. Noll, "Zernike polynomials and atmospheric turbulence," J. Opt. Soc. Am. 66, 207-211 (1976).
    [CrossRef]
  8. J. Y. Wang and D. E. Silva, "Wave-front interpretation with Zernike polynomials," Appl. Opt. 19, 1510-1517 (1980).
    [CrossRef] [PubMed]
  9. N. Roddier, "Atmospheric wavefront simulation using Zernike polynomials," Opt. Eng. 29, 1174-1180 (1990).
    [CrossRef]
  10. F. Roddier, Ed., Adaptive Optics in Astronomy, (Cambridge, Cambridge University Press, 1999).
    [CrossRef]
  11. J. W. Goodman, Introduction to Fourier Optics, Second Edition, (New York, McGraw-Hill, 1996).
  12. M. Katzman, Ed., Laser Satellite Communications, (Englewood Cliffs, N.J., Prentice-Hall, 1987).
  13. C. C. Chen and C. S. Gardner, "Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links," IEEE T Commun. 37, 252-260 (1989).
    [CrossRef]
  14. M. Toyoshima, T. Jono, K. Nakagawa, and A. Yamamoto, "Optimum divergence angle of a Gaussian beam wave in the presence of random jitter in free-space laser communication systems," J. Opt. Soc. Am. A, (to be published).
  15. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, (Bellingham, Washington, SPIE Press, 1998).
  16. B. J. Klein and J. J. Degnan, "Optical Antenna Gain," Appl. Opt. 13, 2134-2142 (1974).
    [CrossRef] [PubMed]
  17. S. G. Lambert and W. L. Casey, Laser communications in space, (Boston, London, Artech House, 1995).
  18. T. Jono, M. Toyoshima, K. Nakagawa, and A. Yamamoto, "Design methodology for free-space laser communication terminal onboard a satellite," Technical report of IEICE, SANE 2000-27, 35-40 (2000).

Other

K. Nakagawa and A. Yamamoto, "Preliminary design of Laser Utilizing Communications Experiment (LUCE) installed on Optical Inter-Orbit Communications Engineering Test Satellite (OICETS)," in Free-Space Laser communication Technologies VII, G. S. Mecherle, ed., Proc. SPIE 2381, 14-25 (1995).

K. Nakagawa, A. Yamamoto and Y. Suzuki, "OICETS optical link communications experiment in space," in Semiconductor Laser II, S. Forouhar and Q. Wang, eds., Proc. SPIE 2886, 172-183 (1996).

K. Nakagawa and A. Yamamoto, "Engineering model test of LUCE (Laser Utilizing Communications Equipment)," in Free-Space Laser communication Technologies III, G. S. Mecherle, ed., Proc. SPIE 2699, 114-120 (1996).

Y. Suzuki, K. Nakagawa, T. Jono and A. Yamamoto, "Current status of OICETS laser-communication-terminal development: development of laser diodes and sensors for OICETS program," in Free-Space Laser communication Technologies IX, G. S. Mecherle, ed., Proc. SPIE 2990, 31-37 (1997).

T. Jono, M. Toyoda, K. Nakagawa, A. Yamamoto, K. Shiratama, T. Kurii and Y. Koyama, "Acquisition, tracking and pointing system of OICETS for free space laser communications," in Acquisition, Tracking, and Pointing XIII, M. K. Masten and L. A. Stockum, eds., Proc. SPIE 3692, 41-50 (1999).

M. Born and E. Wolf, Principles of Optics, 7th Edition, (Cambridge, Cambridge University Press, 1999).

R. J. Noll, "Zernike polynomials and atmospheric turbulence," J. Opt. Soc. Am. 66, 207-211 (1976).
[CrossRef]

J. Y. Wang and D. E. Silva, "Wave-front interpretation with Zernike polynomials," Appl. Opt. 19, 1510-1517 (1980).
[CrossRef] [PubMed]

N. Roddier, "Atmospheric wavefront simulation using Zernike polynomials," Opt. Eng. 29, 1174-1180 (1990).
[CrossRef]

F. Roddier, Ed., Adaptive Optics in Astronomy, (Cambridge, Cambridge University Press, 1999).
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics, Second Edition, (New York, McGraw-Hill, 1996).

M. Katzman, Ed., Laser Satellite Communications, (Englewood Cliffs, N.J., Prentice-Hall, 1987).

C. C. Chen and C. S. Gardner, "Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links," IEEE T Commun. 37, 252-260 (1989).
[CrossRef]

M. Toyoshima, T. Jono, K. Nakagawa, and A. Yamamoto, "Optimum divergence angle of a Gaussian beam wave in the presence of random jitter in free-space laser communication systems," J. Opt. Soc. Am. A, (to be published).

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, (Bellingham, Washington, SPIE Press, 1998).

B. J. Klein and J. J. Degnan, "Optical Antenna Gain," Appl. Opt. 13, 2134-2142 (1974).
[CrossRef] [PubMed]

S. G. Lambert and W. L. Casey, Laser communications in space, (Boston, London, Artech House, 1995).

T. Jono, M. Toyoshima, K. Nakagawa, and A. Yamamoto, "Design methodology for free-space laser communication terminal onboard a satellite," Technical report of IEICE, SANE 2000-27, 35-40 (2000).

Supplementary Material (4)

» Media 1: MOV (906 KB)     
» Media 2: MOV (846 KB)     
» Media 3: MOV (1696 KB)     
» Media 4: MOV (1527 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Definition of the coordinate systems.

Fig. 2.
Fig. 2.

Definition of the received optical axis.

Fig. 3.
Fig. 3.

Definition of the transmitted optical axis.

Fig. 4.
Fig. 4.

X-axis mutual alignment error due to wave-front aberration (F 0=α, γ=0.0 and α=1.579).

Fig. 5.
Fig. 5.

Y-axis mutual alignment error due to wave-front aberration (F 0=α, γ=0.0 and α=1.579).

Fig. 6.
Fig. 6.

Phase displacement of the Coma aberration (Z7).

Fig. 7.
Fig. 7.

Movie of the received intensity distribution due to the Coma aberration (Z7) generated from the plane wave on the optical sensor as the Zernike coefficient a7 varies with time (γ=0.0 and α=1.579). (906 KB)

Fig. 8.
Fig. 8.

Movie of the transmitted intensity distribution due to the Coma aberration (Z7) generated from the Gaussian beam wave at the far-field as the Zernike coefficient a7 varies with time (F 0=α, γ=0.0 and α=1.579). (847 KB)

Fig. 9.
Fig. 9.

X-axis mutual alignment error due to the Coma aberration (Z7) as a function of the truncation ratio α (F 0=α and γ=0.0).

Fig. 10.
Fig. 10.

X-axis mutual alignment error due to wave-front aberrations for the OICETS optical antenna (F 0=α, γ=0.2889 and α=1.579).

Fig. 11.
Fig. 11.

Y-axis mutual alignment error due to wave-front aberrations for the OICETS optical antenna (F 0=α, γ=0.2889 and α=1.579).

Fig. 12.
Fig. 12.

Movie of the wave-front variation of LD1 onboard the OICETS laser terminal measured during the thermal vacuum test. (1.70 MB)

Fig. 13.
Fig. 13.

Movie of the wave-front variation of LD2 for the OICETS laser terminal measured during the thermal vacuum test. (1.53 MB)

Fig. 14.
Fig. 14.

Trend of wave-front errors of LD1 onboard the OICETS laser terminal measured during the thermal vacuum test.

Fig. 15.
Fig. 15.

Trend of wave-front errors of LD2 onboard the OICETS laser terminal measured during the thermal vacuum test.

Fig. 16.
Fig. 16.

Degradation of the transmitted optical power due to wave-front aberrations at the counter terminal for the OICETS laser terminal (F 0=α, γ=0.2889 and α=1.579).

Fig. 17.
Fig. 17.

Trends in the relative peak intensities of the far-field pattern transmitted from LD1 and LD2 onboard the OICETS laser terminal measured during the thermal vacuum test.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Φ ( ρ , θ ) = i = 1 a i Z i ( 2 ρ D , θ ) ,
Z i ( r , θ ) = { Z even i = n + 1 R n m ( r ) 2 cos m θ , m 0 Z odd i = n + 1 R n m ( r ) 2 sin m θ , m 0 , Z i = n + 1 R n 0 ( r ) , m = 0
R n m ( r ) = s = 0 ( n m ) 2 ( 1 ) s ( n s ) ! s ! [ ( n + m ) 2 s ] ! [ ( n m ) 2 s ] ! r n 2 s ,
Φ rms 2 = 1 π d 2 r W ( Dr 2 , θ ) Φ 2 ( Dr 2 , θ ) ,
= 1 π d 2 r W ( Dr 2 , θ ) [ i = 1 a i Z i ( r , θ ) ] 2 ,
= 1 π i = 1 { d 2 r W ( Dr 2 , θ ) [ a i Z i ( r , θ ) ] 2 } ,
= Φ rms , 1 2 + Φ rms , 2 2 + Φ rms , 3 2 + ,
{ W ( ρ , θ ) = 4 π D 2 for ρ D 2 W ( ρ , θ ) = 0 for D 2 < ρ .
U f ( x , y ) = A j λ f e j k 2 f ( x 2 + y 2 ) U l ( u , v ) exp [ j 2 π λ f ( xu + yv ) ] dudv ,
U l ( u , v ) = W ( ρ , θ ) exp [ j Φ ( ρ , θ ) ] ,
I f ( x , y ) = A 2 λ 2 f 2 U l ( u , v ) exp [ j 2 π λ f ( xu + yv ) ] dudv 2 .
{ 0 I f ( x X , y ) dxdy 0 I f ( x X , y ) dxdy I f ( x , y ) dxdy = 0 0 I f ( x , y Y ) dxdy 0 I f ( x , y Y ) dxdy I f ( x , y ) dxdy = 0 .
I ffp ( η , ξ ) = A 2 λ 2 z 2 W ( ρ , θ ) exp [ ρ 2 W 0 2 j k ρ 2 2 F 0
+ j Φ ( ρ , θ ) ] exp [ j 2 π λ z ( η u + ξ v ) ] dudv 2 ,

Metrics