Abstract

We describe an approach for converting reflection coefficients of any structure into colors, taking into account human color perception. This procedure is applied to the study of the colors reflected by Morpho rhetenor butterflies wings. The scales of these wings have a tree-like periodic structure which is modeled with the help of a rigorous lamellar grating electromagnetic theory. In this way, we are able to determine the colors reflected by the wing under various illumination conditions.

© 2001 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies

Radwanul Hasan Siddique, Silvia Diewald, Juerg Leuthold, and Hendrik Hölscher
Opt. Express 21(12) 14351-14361 (2013)

Detailed electromagnetic simulation for the structural color of butterfly wings

R. Todd Lee and Glenn S. Smith
Appl. Opt. 48(21) 4177-4190 (2009)

High angular and spectral selectivity of purple emperor (Lepidoptera: Apatura iris and A. ilia) butterfly wings

Dejan Pantelić, Srećko Ćurčić, Svetlana Savić-Šević, Aleksandra Korać, Aleksander Kovačević, Božidar Ćurčić, and Bojana Bokić
Opt. Express 19(7) 5817-5826 (2011)

References

  • View by:
  • |
  • |
  • |

  1. P. Vukusic, J.R. Sambles, C.R. Lawrence, and R.J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proceedings: Biological Sciences, The Royal Society of London 266, 1403–1411 (1999).
    [Crossref]
  2. H. Tada, S. Mann, I. Miaoulis, and P. Wong, “Effects of a butterfly scale microstructure on the iridescent color observed at different angles,” Opt. Express 5, 87 (1999), http://epubs.osa.org/oearchive/source/11782.htm.
    [Crossref] [PubMed]
  3. Educational color applets, The Spectrum Applet, http://www.cs.rit.edu/~ncs/color/
  4. Colourware, Colour FAQ, http://www.colourware.co.uk/cpfaq.htm
  5. CVRL Color & Vision database, http://www.cvrl.org/
  6. Color resources, http://institut.fresnel.free.fr
  7. Charles A. Poynton, Color technology, http://www.inforamp.net/~poynton/ColorFAQ.html
  8. Color Science, http://www.physics.sfasu.edu/astro/color.html
  9. H. Ghiradella, “Light and color on the wing: structural colors in butterflies and moths,” Applied Optics 30, 3492–3500 (1991).
    [Crossref] [PubMed]
  10. P. Vukusic, J.R. Sambles, and H. Ghiradella, “Optical classification of microstructure in butterfly wing-scales,” Photonics Science News 6, 61–66 (2000).
  11. P. Vukusic, J. R. Sambles, C.R. Lawrence, and R.J. Wootton, “Structural colour: now you see it - now you don’t,” Nature 410, 36 (2001).
    [Crossref] [PubMed]
  12. L.C. Botten, M.S. Craig, R.C. McPhedran, J.L. Adams, and J.R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Optica Acta 28, 1087–1102 (1981).
    [Crossref]
  13. S.E. Sandström, G. Tayeb, and R. Petit, “Lossy multistep lamellar gratings in conical diffraction mountings: an exact eigenfunction solution,” Journal of Electromagnetic Waves and Applications 7, No.5, 631–649 (1993).
    [Crossref]
  14. L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Modern Optics 40, 553–573, 1993.
    [Crossref]
  15. B. Gralak, “Étude théorique et numérique des propriétés des structures à bandes interdites photoniques,” PhD thesis, Université Aix-Marseille (2001), http://institut.fresnel.free.fr.
  16. OLE (Opto & Laser Europe), feature article, June 1998 issue.
  17. S. Berthier, Les couleurs des papillons ou l’impérative beauté, Springer-Verlag France (2000).

2001 (1)

P. Vukusic, J. R. Sambles, C.R. Lawrence, and R.J. Wootton, “Structural colour: now you see it - now you don’t,” Nature 410, 36 (2001).
[Crossref] [PubMed]

2000 (1)

P. Vukusic, J.R. Sambles, and H. Ghiradella, “Optical classification of microstructure in butterfly wing-scales,” Photonics Science News 6, 61–66 (2000).

1999 (2)

P. Vukusic, J.R. Sambles, C.R. Lawrence, and R.J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proceedings: Biological Sciences, The Royal Society of London 266, 1403–1411 (1999).
[Crossref]

H. Tada, S. Mann, I. Miaoulis, and P. Wong, “Effects of a butterfly scale microstructure on the iridescent color observed at different angles,” Opt. Express 5, 87 (1999), http://epubs.osa.org/oearchive/source/11782.htm.
[Crossref] [PubMed]

1993 (2)

S.E. Sandström, G. Tayeb, and R. Petit, “Lossy multistep lamellar gratings in conical diffraction mountings: an exact eigenfunction solution,” Journal of Electromagnetic Waves and Applications 7, No.5, 631–649 (1993).
[Crossref]

L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Modern Optics 40, 553–573, 1993.
[Crossref]

1991 (1)

H. Ghiradella, “Light and color on the wing: structural colors in butterflies and moths,” Applied Optics 30, 3492–3500 (1991).
[Crossref] [PubMed]

1981 (1)

L.C. Botten, M.S. Craig, R.C. McPhedran, J.L. Adams, and J.R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Optica Acta 28, 1087–1102 (1981).
[Crossref]

Adams, J.L.

L.C. Botten, M.S. Craig, R.C. McPhedran, J.L. Adams, and J.R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Optica Acta 28, 1087–1102 (1981).
[Crossref]

Andrewartha, J.R.

L.C. Botten, M.S. Craig, R.C. McPhedran, J.L. Adams, and J.R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Optica Acta 28, 1087–1102 (1981).
[Crossref]

Berthier, S.

S. Berthier, Les couleurs des papillons ou l’impérative beauté, Springer-Verlag France (2000).

Botten, L.C.

L.C. Botten, M.S. Craig, R.C. McPhedran, J.L. Adams, and J.R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Optica Acta 28, 1087–1102 (1981).
[Crossref]

Craig, M.S.

L.C. Botten, M.S. Craig, R.C. McPhedran, J.L. Adams, and J.R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Optica Acta 28, 1087–1102 (1981).
[Crossref]

Ghiradella, H.

P. Vukusic, J.R. Sambles, and H. Ghiradella, “Optical classification of microstructure in butterfly wing-scales,” Photonics Science News 6, 61–66 (2000).

H. Ghiradella, “Light and color on the wing: structural colors in butterflies and moths,” Applied Optics 30, 3492–3500 (1991).
[Crossref] [PubMed]

Gralak, B.

B. Gralak, “Étude théorique et numérique des propriétés des structures à bandes interdites photoniques,” PhD thesis, Université Aix-Marseille (2001), http://institut.fresnel.free.fr.

Lawrence, C.R.

P. Vukusic, J. R. Sambles, C.R. Lawrence, and R.J. Wootton, “Structural colour: now you see it - now you don’t,” Nature 410, 36 (2001).
[Crossref] [PubMed]

P. Vukusic, J.R. Sambles, C.R. Lawrence, and R.J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proceedings: Biological Sciences, The Royal Society of London 266, 1403–1411 (1999).
[Crossref]

Li, L.

L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Modern Optics 40, 553–573, 1993.
[Crossref]

Mann, S.

McPhedran, R.C.

L.C. Botten, M.S. Craig, R.C. McPhedran, J.L. Adams, and J.R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Optica Acta 28, 1087–1102 (1981).
[Crossref]

Miaoulis, I.

Petit, R.

S.E. Sandström, G. Tayeb, and R. Petit, “Lossy multistep lamellar gratings in conical diffraction mountings: an exact eigenfunction solution,” Journal of Electromagnetic Waves and Applications 7, No.5, 631–649 (1993).
[Crossref]

Poynton, Charles A.

Charles A. Poynton, Color technology, http://www.inforamp.net/~poynton/ColorFAQ.html

Sambles, J. R.

P. Vukusic, J. R. Sambles, C.R. Lawrence, and R.J. Wootton, “Structural colour: now you see it - now you don’t,” Nature 410, 36 (2001).
[Crossref] [PubMed]

Sambles, J.R.

P. Vukusic, J.R. Sambles, and H. Ghiradella, “Optical classification of microstructure in butterfly wing-scales,” Photonics Science News 6, 61–66 (2000).

P. Vukusic, J.R. Sambles, C.R. Lawrence, and R.J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proceedings: Biological Sciences, The Royal Society of London 266, 1403–1411 (1999).
[Crossref]

Sandström, S.E.

S.E. Sandström, G. Tayeb, and R. Petit, “Lossy multistep lamellar gratings in conical diffraction mountings: an exact eigenfunction solution,” Journal of Electromagnetic Waves and Applications 7, No.5, 631–649 (1993).
[Crossref]

Tada, H.

Tayeb, G.

S.E. Sandström, G. Tayeb, and R. Petit, “Lossy multistep lamellar gratings in conical diffraction mountings: an exact eigenfunction solution,” Journal of Electromagnetic Waves and Applications 7, No.5, 631–649 (1993).
[Crossref]

Vukusic, P.

P. Vukusic, J. R. Sambles, C.R. Lawrence, and R.J. Wootton, “Structural colour: now you see it - now you don’t,” Nature 410, 36 (2001).
[Crossref] [PubMed]

P. Vukusic, J.R. Sambles, and H. Ghiradella, “Optical classification of microstructure in butterfly wing-scales,” Photonics Science News 6, 61–66 (2000).

P. Vukusic, J.R. Sambles, C.R. Lawrence, and R.J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proceedings: Biological Sciences, The Royal Society of London 266, 1403–1411 (1999).
[Crossref]

Wong, P.

Wootton, R.J.

P. Vukusic, J. R. Sambles, C.R. Lawrence, and R.J. Wootton, “Structural colour: now you see it - now you don’t,” Nature 410, 36 (2001).
[Crossref] [PubMed]

P. Vukusic, J.R. Sambles, C.R. Lawrence, and R.J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proceedings: Biological Sciences, The Royal Society of London 266, 1403–1411 (1999).
[Crossref]

Applied Optics (1)

H. Ghiradella, “Light and color on the wing: structural colors in butterflies and moths,” Applied Optics 30, 3492–3500 (1991).
[Crossref] [PubMed]

J. Modern Optics (1)

L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Modern Optics 40, 553–573, 1993.
[Crossref]

Journal of Electromagnetic Waves and Applications (1)

S.E. Sandström, G. Tayeb, and R. Petit, “Lossy multistep lamellar gratings in conical diffraction mountings: an exact eigenfunction solution,” Journal of Electromagnetic Waves and Applications 7, No.5, 631–649 (1993).
[Crossref]

Nature (1)

P. Vukusic, J. R. Sambles, C.R. Lawrence, and R.J. Wootton, “Structural colour: now you see it - now you don’t,” Nature 410, 36 (2001).
[Crossref] [PubMed]

Opt. Express (1)

Optica Acta (1)

L.C. Botten, M.S. Craig, R.C. McPhedran, J.L. Adams, and J.R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Optica Acta 28, 1087–1102 (1981).
[Crossref]

Photonics Science News (1)

P. Vukusic, J.R. Sambles, and H. Ghiradella, “Optical classification of microstructure in butterfly wing-scales,” Photonics Science News 6, 61–66 (2000).

Proceedings: Biological Sciences, The Royal Society of London (1)

P. Vukusic, J.R. Sambles, C.R. Lawrence, and R.J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proceedings: Biological Sciences, The Royal Society of London 266, 1403–1411 (1999).
[Crossref]

Other (9)

B. Gralak, “Étude théorique et numérique des propriétés des structures à bandes interdites photoniques,” PhD thesis, Université Aix-Marseille (2001), http://institut.fresnel.free.fr.

OLE (Opto & Laser Europe), feature article, June 1998 issue.

S. Berthier, Les couleurs des papillons ou l’impérative beauté, Springer-Verlag France (2000).

Educational color applets, The Spectrum Applet, http://www.cs.rit.edu/~ncs/color/

Colourware, Colour FAQ, http://www.colourware.co.uk/cpfaq.htm

CVRL Color & Vision database, http://www.cvrl.org/

Color resources, http://institut.fresnel.free.fr

Charles A. Poynton, Color technology, http://www.inforamp.net/~poynton/ColorFAQ.html

Color Science, http://www.physics.sfasu.edu/astro/color.html

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

a: Relative energy distribution of the D65 illuminant (blue) and its 5th order polynomial approximation (red) versus the wavelength λ. b: Spectral tristimulus values.

Fig. 2.
Fig. 2.

a: Transmission electron microscope image showing the cross-section through a single Morpho rhetenor scale. Image reprinted from [1], with permission from P. Vukusic and the Royal Society. b: Modeled structure; the two red lines define a grating layer, the optical index of black regions is n, and that of white regions is 1.

Fig. 3.
Fig. 3.

a: k i is the incident wave vector, with angles θ i and φ i . s i and p i are respectively normal and parallel to the incidence plane Π i . The polarization of the incident electric field E i is defined by the angle δi . b: Schematic representation of two conical subregions of the upper hemisphere.

Fig. 4.
Fig. 4.

Characteristic dimensions of the modeled scale (in nanometers). The white regions are filled with air (or with a liquid solvent), and the gray regions are filled with a material with optical index n. In this figure, and using the tree image, we will say that each tree has four branches. The lower layer models the bottom membrane of the scale. Apart from the bottom air layer, all the dimensions are scaled.

Fig. 5.
Fig. 5.

Diffracted efficiencies by a scale in air and in IPA. The reflected angles are between 0 and 180° and the transmitted angles are between 180 and 360°. The normals to the scale correspond to 90° and 270°.

Fig. 6.
Fig. 6.

Total reflection and transmission for both polarizations.

Fig. 7.
Fig. 7.

Reflected colors by a scale with 16 branches in air. The horizontal axis gives the θ r value, from 0 to 80°, and the vertical axis gives the φ r value, from 0 to 180°. The angular shift between two neighboring squares is equal to 10°.

Fig. 8.
Fig. 8.

Same as Fig.7, but the scale is immersed in IPA.

Fig. 9.
Fig. 9.

Characteristic dimensions of the second modeled scale (in nanometers). The nine lower lamellae have the same dimensions as those described in Fig.4, and the upper lamellae have decreasing widths. Apart from the bottom air layer, all the dimensions are scaled.

Fig. 10.
Fig. 10.

Reflected colors by the structure of Fig.9 lying in air.

Fig. 11.
Fig. 11.

Reflected colors by the structure of Fig.9 lying in IPA.

Fig. 12.
Fig. 12.

Reflected energy near the normal when the structure with 16 branches in air is illuminated from the left (φ i =0) and from the right (φ i =180°).

Fig. 13.
Fig. 13.

Field maps of the squared modulus of the total electric field for the structure of Fig.9 illuminated by a E//polarized plane wave in normal incidence.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

X = 1 k D ( λ ) R ( λ ) x ¯ ( λ ) d λ
Y = 1 k D ( λ ) R ( λ ) y ¯ ( λ ) d λ
Z = 1 k D ( λ ) R ( λ ) z ¯ ( λ ) d λ
k = D ( λ ) y ¯ ( λ ) d λ
[ R G B ] = [ 3.240479 1.537150 0.498535 0.969256 1.875992 0.041556 0.055648 0.204043 1.057311 ] [ X Y Z ]

Metrics