Abstract

Time-dependent density functional theory (TDDFT) is employed to study the interaction of a Ne atom with short and strong 800 nm laser pulses. In the intensity regime covered (1014–1016 W/cm2) up to triply ionized Ne is observed. Good quantitative agreement with the experimental Ne+ ion-yield (and the Ne2+-yield near saturation) is obtained. Nonsequential ionization (NSI) leads to a strong increase of the probability for double and triple ionization when compared to a single active electron (SAE)-approach. A NSI-“knee” is observed but the agreement with its experimental counterpart is not satisfactory.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. N. Fittinghoff, P. R. Bolton, B. Chang, and K. C. Kulander, "Observation of nonsequential double ionization of helium with optical tunneling," Phys. Rev. Lett. 69, 2642-2645 (1992).
    [CrossRef] [PubMed]
  2. R. M. Dreizler and E. K. U. Gross, "Density Functional Theory: An Approach to the Quantum Many-Body Problem," (Springer, Berlin, 1990).
  3. Erich Runge and E. K. U. Gross, "Density-Functional Theory for Time-Dependent Systems," Phys. Rev. Lett. 52, 997-1000 (1984).
    [CrossRef]
  4. Miroslaw Brewczyk, Kazimierz Rzazewski, and Charles W. Clark, "Appearance intensities for multiply charged ions in a strong laser field," Phys. Rev. A 52, 1468-1473 (1995).
    [CrossRef] [PubMed]
  5. H. G. Muller, "An Efficient Propagation Scheme for the Time-Dependent Schroedinger Equation in the Velocity Gauge," Laser Physics 9, 138-148 (1999).
  6. S. Larochelle, A. Talebpour and S. L. Chin, "Non-sequential multiple ionization of rare gas atoms in a Ti:Sapphire laser field," J. Phys. B: At. Mol. Opt. Phys. 31, 1201-1214 (1998).
    [CrossRef]
  7. J. B. Watson, A. Sanpera, D. G. Lappas, P. L. Knight, and K. Burnett, "Nonsequential Double Ionization of Helium," Phys. Rev. Lett. 78, 1884-1887 (1997).
    [CrossRef]
  8. C. A. Ullrich and E. K. U. Gross, "Many-electron atoms in strong femto-second laser pulses: A density-functional study," Comm. At. Mol. Phys. 33, 211 (1997).
  9. B. Walker, B. Sheehy, L. F. DiMauro, P. Agostini, K. J. Schafer, and K. C. Kulander, "Precision Measurement of Strong Field Double Ionization of Helium," Phys. Rev. Lett. 73, 1227-1230 (1994).
    [CrossRef] [PubMed]
  10. M. Petersilka and E. K. U. Gross, "Strong-Field Double Ionization of Helium: A Density-Functional Perspective," Laser Physics 9, 105-114 (1999).
  11. A. Becker and F. H. M. Faisal, "S-matrix analysis of ionization yields of noble gas atoms at the focus of Ti:sapphire laser pulses," J. Phys. B: At. Mol. Opt. Phys. 32, L335-L343 (1999).
    [CrossRef]
  12. U. Eichmann, M. Doerr, H. Maeda, W. Becker, and W. Sandner, "Collective Multielectron Tunneling Ionization in Strong Fields," Phys. Rev. Lett. 84, 3550-3553 (2000).
    [CrossRef] [PubMed]

Other

D. N. Fittinghoff, P. R. Bolton, B. Chang, and K. C. Kulander, "Observation of nonsequential double ionization of helium with optical tunneling," Phys. Rev. Lett. 69, 2642-2645 (1992).
[CrossRef] [PubMed]

R. M. Dreizler and E. K. U. Gross, "Density Functional Theory: An Approach to the Quantum Many-Body Problem," (Springer, Berlin, 1990).

Erich Runge and E. K. U. Gross, "Density-Functional Theory for Time-Dependent Systems," Phys. Rev. Lett. 52, 997-1000 (1984).
[CrossRef]

Miroslaw Brewczyk, Kazimierz Rzazewski, and Charles W. Clark, "Appearance intensities for multiply charged ions in a strong laser field," Phys. Rev. A 52, 1468-1473 (1995).
[CrossRef] [PubMed]

H. G. Muller, "An Efficient Propagation Scheme for the Time-Dependent Schroedinger Equation in the Velocity Gauge," Laser Physics 9, 138-148 (1999).

S. Larochelle, A. Talebpour and S. L. Chin, "Non-sequential multiple ionization of rare gas atoms in a Ti:Sapphire laser field," J. Phys. B: At. Mol. Opt. Phys. 31, 1201-1214 (1998).
[CrossRef]

J. B. Watson, A. Sanpera, D. G. Lappas, P. L. Knight, and K. Burnett, "Nonsequential Double Ionization of Helium," Phys. Rev. Lett. 78, 1884-1887 (1997).
[CrossRef]

C. A. Ullrich and E. K. U. Gross, "Many-electron atoms in strong femto-second laser pulses: A density-functional study," Comm. At. Mol. Phys. 33, 211 (1997).

B. Walker, B. Sheehy, L. F. DiMauro, P. Agostini, K. J. Schafer, and K. C. Kulander, "Precision Measurement of Strong Field Double Ionization of Helium," Phys. Rev. Lett. 73, 1227-1230 (1994).
[CrossRef] [PubMed]

M. Petersilka and E. K. U. Gross, "Strong-Field Double Ionization of Helium: A Density-Functional Perspective," Laser Physics 9, 105-114 (1999).

A. Becker and F. H. M. Faisal, "S-matrix analysis of ionization yields of noble gas atoms at the focus of Ti:sapphire laser pulses," J. Phys. B: At. Mol. Opt. Phys. 32, L335-L343 (1999).
[CrossRef]

U. Eichmann, M. Doerr, H. Maeda, W. Becker, and W. Sandner, "Collective Multielectron Tunneling Ionization in Strong Fields," Phys. Rev. Lett. 84, 3550-3553 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Ionization probability of the KS orbitals after a 20 cycle pulse vs. the peak intensity of the pulse. In (a) the result for the 2p0 orbital from the full TDKS run (red) is compared with the DFT-SAE result one would expect for sequential ionization (blue: first electron; green: second electron). In (b) the full TDKS results for the 2p1 and 2s orbitals are shown. Results obtained on a different numerical grid, appropriate for higher intensities, are drawn in orange.

Fig. 2.
Fig. 2.

Ne ion yields after a 20 cycle laser pulse vs. its peak intensity. The red solid, dashed, and dashed-dotted lines are results for singly, doubly, and triply ionized Ne, respectively. The blue line is the DFT-SAE result for the first 2p0 KS electron. The green line is the sequential double ionization result for the second 2p0 KS electron, again from a DFT-SAE run. Results obtained on a different numerical grid are drawn in orange. The symbols are experimental yields from [6] (diamonds: Ne+, triangles: Ne2+).

Fig. 3.
Fig. 3.

Focus averaged results for singly (solid) and doubly (dashed and dotted, red) ionized Ne, calculated as described in the text. The green, dashed curve is the DFT-SAE Ne2+-result. The symbols are from experiment, like in Fig. 2 (no relative shift in intensity was necessary).

Tables (1)

Tables Icon

Table 1. Stationary Ne configurations as obtained from our TDDFT solver. All values in Hartrees. For conversion to eV multiply with 27.21.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

i t Ψ i σ ( r , t ) = ( 1 2 2 + V ( r ) + V I ( t ) + V ee σ [ n ( r , t ) , n ( r , t ) ] ) Ψ i σ ( r , t ) .
U [ n ] = d 3 r n ( r , t ) r r
V xc σ Slater ( r , t ) = i = 1 N σ n i σ ( r , t ) n σ ( r , t ) u xc i σ ( r , t ) ,
P 0 = s ¯ 2 p 0 ¯ 2 p 1 ¯ 4 ,
P + = 2 s ¯ s p 0 ¯ 2 p 1 ¯ 4 + 2 s ¯ 2 p 0 ¯ p 0 p 1 ¯ 4 + 4 s ¯ 2 p 0 ¯ 2 p 1 ¯ 3 p 1 ,
P 2 + = s ¯ 2 p 0 2 p 1 ¯ 4 + s 2 p 0 ¯ 2 p 1 ¯ 4 + 4 s ¯ s p 0 ¯ p 0 p 1 ¯ 4
+ 6 s ¯ 2 p 0 ¯ 2 p 1 ¯ 2 p 1 2 + 8 s ¯ p 0 ¯ p 1 ¯ 3 ( s p 0 ¯ p 1 + s ¯ p 0 p 1 ) ,

Metrics