Abstract

We introduce a novel algorithm for band structure computations based on multigrid methods. In addition, we demonstrate how the results of these band structure calculations may be used to compute group velocities and effective photon masses. The results are of direct relevance to studies of pulse propagation in such materials.

© 2001 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic band gap analysis using finite-difference frequency-domain method

Shangping Guo, Feng Wu, Sacharia Albin, and Robert S. Rogowski
Opt. Express 12(8) 1741-1746 (2004)

Bloch wave decomposition for prediction of strong light coupling efficiency into extended planar photonic crystals

Eric Cassan, Damien Bernier, Guillaume Maire, Delphine Marris-Morini, and Laurent Vivien
J. Opt. Soc. Am. B 24(5) 1211-1215 (2007)

References

  • View by:
  • |
  • |
  • |

  1. C.M. Soukoulis (Ed.), Photonic Band Gap Materials, NATO ASI Series E315, Kluwer Academic Publishers1996
    [Crossref]
  2. A. Birner et al., “Macroporous Silicon: A Two-Dimensional Photonic Bandgap Material Suitable for the Near-Infrared Spectral Range,” phys. stat. sol (a) 165, 111–117 (1998)
    [Crossref]
  3. K.M. Ho, C.T. Chan, and C.M. Soukoulis, “Existence of a photonic band gap in periodic structures,” Phys. Rev. Lett. 65, 3152–3155 (1990)
    [Crossref] [PubMed]
  4. K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896–3908 (1998)
    [Crossref]
  5. K. Busch and S. John. “Liquid crystal photonic band gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999)
    [Crossref]
  6. P. Wesseling, An Introduction to Multigrid Methods, John Wiley & Sons (1992)
  7. A. Brandt, S. McCormick, and J. Ruge, “Multigrid methods for differential eigenproblems,” SIAM J. Sci. Stat. Comput. 4, 244–260 (1983).
    [Crossref]
  8. C. Martijn de Sterke and J.E. Sipe, “Envelope-function approach for the electrodynamics of nonlinear periodic media,” Phys. Rev. A 38, 5149–5165 (1988)
    [Crossref]

1999 (1)

K. Busch and S. John. “Liquid crystal photonic band gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999)
[Crossref]

1998 (2)

A. Birner et al., “Macroporous Silicon: A Two-Dimensional Photonic Bandgap Material Suitable for the Near-Infrared Spectral Range,” phys. stat. sol (a) 165, 111–117 (1998)
[Crossref]

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896–3908 (1998)
[Crossref]

1990 (1)

K.M. Ho, C.T. Chan, and C.M. Soukoulis, “Existence of a photonic band gap in periodic structures,” Phys. Rev. Lett. 65, 3152–3155 (1990)
[Crossref] [PubMed]

1988 (1)

C. Martijn de Sterke and J.E. Sipe, “Envelope-function approach for the electrodynamics of nonlinear periodic media,” Phys. Rev. A 38, 5149–5165 (1988)
[Crossref]

1983 (1)

A. Brandt, S. McCormick, and J. Ruge, “Multigrid methods for differential eigenproblems,” SIAM J. Sci. Stat. Comput. 4, 244–260 (1983).
[Crossref]

Birner, A.

A. Birner et al., “Macroporous Silicon: A Two-Dimensional Photonic Bandgap Material Suitable for the Near-Infrared Spectral Range,” phys. stat. sol (a) 165, 111–117 (1998)
[Crossref]

Brandt, A.

A. Brandt, S. McCormick, and J. Ruge, “Multigrid methods for differential eigenproblems,” SIAM J. Sci. Stat. Comput. 4, 244–260 (1983).
[Crossref]

Busch, K.

K. Busch and S. John. “Liquid crystal photonic band gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999)
[Crossref]

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896–3908 (1998)
[Crossref]

Chan, C.T.

K.M. Ho, C.T. Chan, and C.M. Soukoulis, “Existence of a photonic band gap in periodic structures,” Phys. Rev. Lett. 65, 3152–3155 (1990)
[Crossref] [PubMed]

Ho, K.M.

K.M. Ho, C.T. Chan, and C.M. Soukoulis, “Existence of a photonic band gap in periodic structures,” Phys. Rev. Lett. 65, 3152–3155 (1990)
[Crossref] [PubMed]

John, S.

K. Busch and S. John. “Liquid crystal photonic band gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999)
[Crossref]

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896–3908 (1998)
[Crossref]

Martijn de Sterke, C.

C. Martijn de Sterke and J.E. Sipe, “Envelope-function approach for the electrodynamics of nonlinear periodic media,” Phys. Rev. A 38, 5149–5165 (1988)
[Crossref]

McCormick, S.

A. Brandt, S. McCormick, and J. Ruge, “Multigrid methods for differential eigenproblems,” SIAM J. Sci. Stat. Comput. 4, 244–260 (1983).
[Crossref]

Ruge, J.

A. Brandt, S. McCormick, and J. Ruge, “Multigrid methods for differential eigenproblems,” SIAM J. Sci. Stat. Comput. 4, 244–260 (1983).
[Crossref]

Sipe, J.E.

C. Martijn de Sterke and J.E. Sipe, “Envelope-function approach for the electrodynamics of nonlinear periodic media,” Phys. Rev. A 38, 5149–5165 (1988)
[Crossref]

Soukoulis, C.M.

K.M. Ho, C.T. Chan, and C.M. Soukoulis, “Existence of a photonic band gap in periodic structures,” Phys. Rev. Lett. 65, 3152–3155 (1990)
[Crossref] [PubMed]

Wesseling, P.

P. Wesseling, An Introduction to Multigrid Methods, John Wiley & Sons (1992)

Phys. Rev. A (1)

C. Martijn de Sterke and J.E. Sipe, “Envelope-function approach for the electrodynamics of nonlinear periodic media,” Phys. Rev. A 38, 5149–5165 (1988)
[Crossref]

Phys. Rev. E (1)

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896–3908 (1998)
[Crossref]

Phys. Rev. Lett. (2)

K. Busch and S. John. “Liquid crystal photonic band gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999)
[Crossref]

K.M. Ho, C.T. Chan, and C.M. Soukoulis, “Existence of a photonic band gap in periodic structures,” Phys. Rev. Lett. 65, 3152–3155 (1990)
[Crossref] [PubMed]

phys. stat. sol (a) (1)

A. Birner et al., “Macroporous Silicon: A Two-Dimensional Photonic Bandgap Material Suitable for the Near-Infrared Spectral Range,” phys. stat. sol (a) 165, 111–117 (1998)
[Crossref]

SIAM J. Sci. Stat. Comput. (1)

A. Brandt, S. McCormick, and J. Ruge, “Multigrid methods for differential eigenproblems,” SIAM J. Sci. Stat. Comput. 4, 244–260 (1983).
[Crossref]

Other (2)

C.M. Soukoulis (Ed.), Photonic Band Gap Materials, NATO ASI Series E315, Kluwer Academic Publishers1996
[Crossref]

P. Wesseling, An Introduction to Multigrid Methods, John Wiley & Sons (1992)

Supplementary Material (1)

» Media 1: MOV (813 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Graphical illustration of the V-cycle used in the multigrid iteration of Eq. (5) depicting four levels of grids. A movie (881.mov(0.8M)) shows the multigrid iteration using two levels for the third band at the x-point in the TM-polarized case (see Fig. 2).

Fig. 2.
Fig. 2.

Photonic band structure for a square lattice of dielectric rods (a =13, r/a=0.45) in air (b =1) for TM-polarization (blue) and TE-polarization (green).

Fig. 3.
Fig. 3.

Group velocity of the first three bands (first band: black; second band: red; third band: green) for a square lattice of dielectric rods (a =13, r/a=0.45) in air (b =1) for TM-polarized light. The corresponding band structure is displayed in Fig. 2.

Tables (1)

Tables Icon

Table 1. Comparison of numerical data obtained from PWM (upper part) and the multigrid method (lower part) using different numbers N of plane waves and different mesh-sizes (128×128 and 256×256), respectively. The values for the defect give an estimate of the absolute error of the Bloch-functions [7]. The computations have been performed at the X-point for TM-polarization using a 466 MHz Celeron processor.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

1 ( r ) ( x 2 + y 2 ) E ( r ) + ω 2 c 2 E ( r ) = 0 ,
x + ( 1 ( r ) x H ( r ) ) + y ( 1 ( r ) y H ( r ) ) + ω 2 c 2 H ( r ) = 0 .
E k ( r + a i ) = e i k a i E k ( r )
H k ( r + a i ) = e i k a i H k ( r ) ,
k U i = Λ i U i ,
1 V w s c d 2 r E n k * ( r ) ( r ) E m k ( r ) = δ n m
1 V w s c d 2 r H n k * ( r ) H m k ( r ) = δ n m ,
Λ i = k 1 U i 1 , U i 1 U i 1 , U i 1 ,
E k ( r ) = e i k r u k ( r ) ,
( Δ + 2 i · k k 2 ) u k ( r ) + ω k 2 c 2 ( r ) u k ( r ) ) ) = 0 .
H ̂ ( k ) u k + q ( r ) + ( 2 q · Ω q 2 ) u k + q ( r ) + ω k + q 2 c 2 ( r ) u k + q ( r ) = 0 .
ω k + q = ω k + ( 1 st order kp PT ) + ( 2 nd order kp PT ) +
= ω k + q · υ k + q · M k · q + .

Metrics