Abstract

The field-of-view (FOV) of a simple imaging system can be dramatically improved using a liquid crystal spatial light modulator (SLM). A SLM can be used to correct the off-axis aberrations that often limit the useful FOV of an imaging system giving near diffraction-limited performance at much larger field angles than would otherwise be possible. Foveated imaging refers to the variation in spatial resolution across the image caused by using the SLM in this application, and it is useful in reducing bandwidth requirements for data transmission.

© 2001 Optical Society of America

Full Article  |  PDF Article
Related Articles
Foveated imaging demonstration

D. V. Wick, T. Martinez, S. R. Restaino, and B. R. Stone
Opt. Express 10(1) 60-65 (2002)

Mosaic imaging with spatial light modulator technology

Mark T. Gruneisen, Matthew B. Garvin, Raymond C. Dymale, and James R. Rotgé
Appl. Opt. 45(28) 7211-7223 (2006)

Optical design of interferometric telescopes with wide fields of view

Erin E. Sabatke, James H. Burge, and Philip Hinz
Appl. Opt. 45(31) 8026-8035 (2006)

References

  • View by:
  • |
  • |
  • |

  1. See for example, R.R. Shannon, The art and science of optical design (Cambridge University Press, New York, 1997), Ch. 7.
    [Crossref]
  2. G.K. Wallace, “The JPEG still picture compression standard,” Communications of the ACM 34, 30–44 (1991).
    [Crossref]
  3. N. Tsumura, C. Endo, H. Haneishi, and Y. Miyake, “Image compression and decompression based on gazing area,” Proc. SPIE 2657, 361–367 (1996).
    [Crossref]
  4. W.S. Geisler and J.S. Perry, “A real-time foveated multi-resolution system for low-bandwidth video communication,” Proc. SPIE 3299, 294–305 (1998).
    [Crossref]
  5. E. Chang, S. Mallat, and C.K. Yap, “Wavelet foveation,” Applied and Computational Harmonic Analysis 9, 312–35 (2000).
    [Crossref]
  6. S.R. Restaino, J.T. Baker, D.C. Dayton, D. Werling, and S.L. Browne, “State of the art in liquid crystal technologies for wavefront compensation: an AFRL perspective,” Proc. SPIE 4167, 157–161 (2000).
  7. P.F. McManamon, T.A. Dorschner, D.L. Corkum, L.J. Friedman, D.S. Hobbs, M. Holtz, S. Liberman, H.Q. Nguyen, D.P. Resler, R.C. Sharp, and E.A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
    [Crossref]
  8. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1524 (1997).
    [Crossref] [PubMed]
  9. D.S. Acton, “Correction of static optical errors in a segmented adaptive optical system,” Appl. Opt. 34, 7965–7968 (1995).
    [Crossref] [PubMed]

2000 (2)

E. Chang, S. Mallat, and C.K. Yap, “Wavelet foveation,” Applied and Computational Harmonic Analysis 9, 312–35 (2000).
[Crossref]

S.R. Restaino, J.T. Baker, D.C. Dayton, D. Werling, and S.L. Browne, “State of the art in liquid crystal technologies for wavefront compensation: an AFRL perspective,” Proc. SPIE 4167, 157–161 (2000).

1998 (1)

W.S. Geisler and J.S. Perry, “A real-time foveated multi-resolution system for low-bandwidth video communication,” Proc. SPIE 3299, 294–305 (1998).
[Crossref]

1997 (1)

1996 (2)

P.F. McManamon, T.A. Dorschner, D.L. Corkum, L.J. Friedman, D.S. Hobbs, M. Holtz, S. Liberman, H.Q. Nguyen, D.P. Resler, R.C. Sharp, and E.A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

N. Tsumura, C. Endo, H. Haneishi, and Y. Miyake, “Image compression and decompression based on gazing area,” Proc. SPIE 2657, 361–367 (1996).
[Crossref]

1995 (1)

1991 (1)

G.K. Wallace, “The JPEG still picture compression standard,” Communications of the ACM 34, 30–44 (1991).
[Crossref]

Acton, D.S.

Baker, J.T.

S.R. Restaino, J.T. Baker, D.C. Dayton, D. Werling, and S.L. Browne, “State of the art in liquid crystal technologies for wavefront compensation: an AFRL perspective,” Proc. SPIE 4167, 157–161 (2000).

Browne, S.L.

S.R. Restaino, J.T. Baker, D.C. Dayton, D. Werling, and S.L. Browne, “State of the art in liquid crystal technologies for wavefront compensation: an AFRL perspective,” Proc. SPIE 4167, 157–161 (2000).

Chang, E.

E. Chang, S. Mallat, and C.K. Yap, “Wavelet foveation,” Applied and Computational Harmonic Analysis 9, 312–35 (2000).
[Crossref]

Corkum, D.L.

P.F. McManamon, T.A. Dorschner, D.L. Corkum, L.J. Friedman, D.S. Hobbs, M. Holtz, S. Liberman, H.Q. Nguyen, D.P. Resler, R.C. Sharp, and E.A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Dayton, D.C.

S.R. Restaino, J.T. Baker, D.C. Dayton, D. Werling, and S.L. Browne, “State of the art in liquid crystal technologies for wavefront compensation: an AFRL perspective,” Proc. SPIE 4167, 157–161 (2000).

Dorschner, T.A.

P.F. McManamon, T.A. Dorschner, D.L. Corkum, L.J. Friedman, D.S. Hobbs, M. Holtz, S. Liberman, H.Q. Nguyen, D.P. Resler, R.C. Sharp, and E.A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Endo, C.

N. Tsumura, C. Endo, H. Haneishi, and Y. Miyake, “Image compression and decompression based on gazing area,” Proc. SPIE 2657, 361–367 (1996).
[Crossref]

Friedman, L.J.

P.F. McManamon, T.A. Dorschner, D.L. Corkum, L.J. Friedman, D.S. Hobbs, M. Holtz, S. Liberman, H.Q. Nguyen, D.P. Resler, R.C. Sharp, and E.A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Geisler, W.S.

W.S. Geisler and J.S. Perry, “A real-time foveated multi-resolution system for low-bandwidth video communication,” Proc. SPIE 3299, 294–305 (1998).
[Crossref]

Haneishi, H.

N. Tsumura, C. Endo, H. Haneishi, and Y. Miyake, “Image compression and decompression based on gazing area,” Proc. SPIE 2657, 361–367 (1996).
[Crossref]

Hobbs, D.S.

P.F. McManamon, T.A. Dorschner, D.L. Corkum, L.J. Friedman, D.S. Hobbs, M. Holtz, S. Liberman, H.Q. Nguyen, D.P. Resler, R.C. Sharp, and E.A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Holtz, M.

P.F. McManamon, T.A. Dorschner, D.L. Corkum, L.J. Friedman, D.S. Hobbs, M. Holtz, S. Liberman, H.Q. Nguyen, D.P. Resler, R.C. Sharp, and E.A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Liberman, S.

P.F. McManamon, T.A. Dorschner, D.L. Corkum, L.J. Friedman, D.S. Hobbs, M. Holtz, S. Liberman, H.Q. Nguyen, D.P. Resler, R.C. Sharp, and E.A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Love, G. D.

Mallat, S.

E. Chang, S. Mallat, and C.K. Yap, “Wavelet foveation,” Applied and Computational Harmonic Analysis 9, 312–35 (2000).
[Crossref]

McManamon, P.F.

P.F. McManamon, T.A. Dorschner, D.L. Corkum, L.J. Friedman, D.S. Hobbs, M. Holtz, S. Liberman, H.Q. Nguyen, D.P. Resler, R.C. Sharp, and E.A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Miyake, Y.

N. Tsumura, C. Endo, H. Haneishi, and Y. Miyake, “Image compression and decompression based on gazing area,” Proc. SPIE 2657, 361–367 (1996).
[Crossref]

Nguyen, H.Q.

P.F. McManamon, T.A. Dorschner, D.L. Corkum, L.J. Friedman, D.S. Hobbs, M. Holtz, S. Liberman, H.Q. Nguyen, D.P. Resler, R.C. Sharp, and E.A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Perry, J.S.

W.S. Geisler and J.S. Perry, “A real-time foveated multi-resolution system for low-bandwidth video communication,” Proc. SPIE 3299, 294–305 (1998).
[Crossref]

Resler, D.P.

P.F. McManamon, T.A. Dorschner, D.L. Corkum, L.J. Friedman, D.S. Hobbs, M. Holtz, S. Liberman, H.Q. Nguyen, D.P. Resler, R.C. Sharp, and E.A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Restaino, S.R.

S.R. Restaino, J.T. Baker, D.C. Dayton, D. Werling, and S.L. Browne, “State of the art in liquid crystal technologies for wavefront compensation: an AFRL perspective,” Proc. SPIE 4167, 157–161 (2000).

Shannon, R.R.

See for example, R.R. Shannon, The art and science of optical design (Cambridge University Press, New York, 1997), Ch. 7.
[Crossref]

Sharp, R.C.

P.F. McManamon, T.A. Dorschner, D.L. Corkum, L.J. Friedman, D.S. Hobbs, M. Holtz, S. Liberman, H.Q. Nguyen, D.P. Resler, R.C. Sharp, and E.A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Tsumura, N.

N. Tsumura, C. Endo, H. Haneishi, and Y. Miyake, “Image compression and decompression based on gazing area,” Proc. SPIE 2657, 361–367 (1996).
[Crossref]

Wallace, G.K.

G.K. Wallace, “The JPEG still picture compression standard,” Communications of the ACM 34, 30–44 (1991).
[Crossref]

Watson, E.A.

P.F. McManamon, T.A. Dorschner, D.L. Corkum, L.J. Friedman, D.S. Hobbs, M. Holtz, S. Liberman, H.Q. Nguyen, D.P. Resler, R.C. Sharp, and E.A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Werling, D.

S.R. Restaino, J.T. Baker, D.C. Dayton, D. Werling, and S.L. Browne, “State of the art in liquid crystal technologies for wavefront compensation: an AFRL perspective,” Proc. SPIE 4167, 157–161 (2000).

Yap, C.K.

E. Chang, S. Mallat, and C.K. Yap, “Wavelet foveation,” Applied and Computational Harmonic Analysis 9, 312–35 (2000).
[Crossref]

Appl. Opt. (2)

Applied and Computational Harmonic Analysis (1)

E. Chang, S. Mallat, and C.K. Yap, “Wavelet foveation,” Applied and Computational Harmonic Analysis 9, 312–35 (2000).
[Crossref]

Communications of the ACM (1)

G.K. Wallace, “The JPEG still picture compression standard,” Communications of the ACM 34, 30–44 (1991).
[Crossref]

Proc. IEEE (1)

P.F. McManamon, T.A. Dorschner, D.L. Corkum, L.J. Friedman, D.S. Hobbs, M. Holtz, S. Liberman, H.Q. Nguyen, D.P. Resler, R.C. Sharp, and E.A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Proc. SPIE (3)

N. Tsumura, C. Endo, H. Haneishi, and Y. Miyake, “Image compression and decompression based on gazing area,” Proc. SPIE 2657, 361–367 (1996).
[Crossref]

W.S. Geisler and J.S. Perry, “A real-time foveated multi-resolution system for low-bandwidth video communication,” Proc. SPIE 3299, 294–305 (1998).
[Crossref]

S.R. Restaino, J.T. Baker, D.C. Dayton, D. Werling, and S.L. Browne, “State of the art in liquid crystal technologies for wavefront compensation: an AFRL perspective,” Proc. SPIE 4167, 157–161 (2000).

Other (1)

See for example, R.R. Shannon, The art and science of optical design (Cambridge University Press, New York, 1997), Ch. 7.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Optical layout for fast imaging system (f/# = 2.4) with a +/-45o field-of-view

Fig. 2.
Fig. 2.

Foveated image created from an aerial picture of airport

Fig. 3.
Fig. 3.

OPD ray fans with no correction on the SLM at (a) 0° and (b) 45°

Fig. 4.
Fig. 4.

OPD ray fans with correction on the SLM for 45° at (a) 0° and (b) 45°

Fig. 5.
Fig. 5.

OPD ray fans with correction on the SLM for 0° at (a) 0° and (b) 45°

Metrics