Abstract

Previous phased array research using anti-phase sources has shown that the phase response to an object scanned through a heavily scattering medium provides information about object position but none about size. In this paper it is demonstrated that controlling the relative phase between the sources enables different phase gradients to be set within the medium. The consequence of this is that the phase response is dependent on the size of an object whilst still maintaining localization information. Furthermore, it is demonstrated that the phase response can be tuned to be most sensitive to the object size under investigation.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M.A. Franchescini, K.T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W.W. Matulin, M. Seeber, P.M. Schlag, and M. Kaschke, “Frequency domain techniques enhance optical mammography: initial clinical results,” P.N.A.S. 94, 6468–6473 (1997).
    [CrossRef]
  2. M.A. Franchescini, V. Toronov, M.E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express. 6, 49–57 (2000), http://www.opticsexpress.org/opticsexpress/framestocv6n3.htm.
    [CrossRef]
  3. A. Knuttel, J.M. Schmitt, and J.R. Knutson, “Spatial localization of absorbing bodies by interfering diffusive photon density waves,” Appl. Opt. 32, 381–389 (1993).
    [CrossRef] [PubMed]
  4. C. Lindquist, A. Pifferi, R. Berg, S. Andersson-Engels, and S. Svanberg, “Reconstruction of diffuse photon-density wave interference in turbid media from time-resolved transmittance measurements,” Appl. Phys. Lett. 69, 1674–1676 (1996).
    [CrossRef]
  5. M.G. Erickson, J.S. Reynolds, and K.J. Webb, “Comparison of sensitivity for single-source and dual-interfering-source configurations in optical diffusion imaging,” J. Opt. Soc. Am. A 14, 3083–3092 (1997).
    [CrossRef]
  6. S.P. Morgan, M.G. Somekh, and K.I. Hopcraft, “Probabilistic method for phased array detection in scattering media,” Opt. Eng. 37, 1618–1626 (1998).
    [CrossRef]
  7. B. Chance, K. Kang, L. He, J. Weng, and E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” P.N.A.S. 90, 3423–3427 (1993).
    [CrossRef] [PubMed]
  8. B. Chance, K.A. Kang, L. He, H. Liu, and S. Zhou, “Precision localization of hidden absorbers in body tissues with phased-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
    [CrossRef]
  9. B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998), http://www.opticsexpress.org/opticsexpress/framestocv2n10.htm.
    [CrossRef] [PubMed]
  10. G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, and W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699–6710 (1994).
    [CrossRef] [PubMed]
  11. S.P. Morgan, M.C. Pitter, M.G. Somekh, and K.Y. Yong, “Conventional optics approach to diffraction of diffuse photon density waves,” Proc. SPIE 3597, 5–14 (1999).
    [CrossRef]
  12. M.A. O’Leary, D.A. Boas, B. Chance, and A.G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett.,  69, 2658–2661 (1992).
    [CrossRef]

2000 (1)

M.A. Franchescini, V. Toronov, M.E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express. 6, 49–57 (2000), http://www.opticsexpress.org/opticsexpress/framestocv6n3.htm.
[CrossRef]

1999 (1)

S.P. Morgan, M.C. Pitter, M.G. Somekh, and K.Y. Yong, “Conventional optics approach to diffraction of diffuse photon density waves,” Proc. SPIE 3597, 5–14 (1999).
[CrossRef]

1998 (2)

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998), http://www.opticsexpress.org/opticsexpress/framestocv2n10.htm.
[CrossRef] [PubMed]

S.P. Morgan, M.G. Somekh, and K.I. Hopcraft, “Probabilistic method for phased array detection in scattering media,” Opt. Eng. 37, 1618–1626 (1998).
[CrossRef]

1997 (2)

M.G. Erickson, J.S. Reynolds, and K.J. Webb, “Comparison of sensitivity for single-source and dual-interfering-source configurations in optical diffusion imaging,” J. Opt. Soc. Am. A 14, 3083–3092 (1997).
[CrossRef]

M.A. Franchescini, K.T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W.W. Matulin, M. Seeber, P.M. Schlag, and M. Kaschke, “Frequency domain techniques enhance optical mammography: initial clinical results,” P.N.A.S. 94, 6468–6473 (1997).
[CrossRef]

1996 (2)

C. Lindquist, A. Pifferi, R. Berg, S. Andersson-Engels, and S. Svanberg, “Reconstruction of diffuse photon-density wave interference in turbid media from time-resolved transmittance measurements,” Appl. Phys. Lett. 69, 1674–1676 (1996).
[CrossRef]

B. Chance, K.A. Kang, L. He, H. Liu, and S. Zhou, “Precision localization of hidden absorbers in body tissues with phased-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
[CrossRef]

1994 (1)

1993 (2)

B. Chance, K. Kang, L. He, J. Weng, and E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” P.N.A.S. 90, 3423–3427 (1993).
[CrossRef] [PubMed]

A. Knuttel, J.M. Schmitt, and J.R. Knutson, “Spatial localization of absorbing bodies by interfering diffusive photon density waves,” Appl. Opt. 32, 381–389 (1993).
[CrossRef] [PubMed]

1992 (1)

M.A. O’Leary, D.A. Boas, B. Chance, and A.G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett.,  69, 2658–2661 (1992).
[CrossRef]

Anday, E.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998), http://www.opticsexpress.org/opticsexpress/framestocv2n10.htm.
[CrossRef] [PubMed]

Andersson-Engels, S.

C. Lindquist, A. Pifferi, R. Berg, S. Andersson-Engels, and S. Svanberg, “Reconstruction of diffuse photon-density wave interference in turbid media from time-resolved transmittance measurements,” Appl. Phys. Lett. 69, 1674–1676 (1996).
[CrossRef]

Berg, R.

C. Lindquist, A. Pifferi, R. Berg, S. Andersson-Engels, and S. Svanberg, “Reconstruction of diffuse photon-density wave interference in turbid media from time-resolved transmittance measurements,” Appl. Phys. Lett. 69, 1674–1676 (1996).
[CrossRef]

Boas, D.A.

M.A. O’Leary, D.A. Boas, B. Chance, and A.G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett.,  69, 2658–2661 (1992).
[CrossRef]

Chance, B.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998), http://www.opticsexpress.org/opticsexpress/framestocv2n10.htm.
[CrossRef] [PubMed]

B. Chance, K.A. Kang, L. He, H. Liu, and S. Zhou, “Precision localization of hidden absorbers in body tissues with phased-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
[CrossRef]

B. Chance, K. Kang, L. He, J. Weng, and E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” P.N.A.S. 90, 3423–3427 (1993).
[CrossRef] [PubMed]

M.A. O’Leary, D.A. Boas, B. Chance, and A.G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett.,  69, 2658–2661 (1992).
[CrossRef]

Erickson, M.G.

Fantini, S.

M.A. Franchescini, V. Toronov, M.E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express. 6, 49–57 (2000), http://www.opticsexpress.org/opticsexpress/framestocv6n3.htm.
[CrossRef]

M.A. Franchescini, K.T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W.W. Matulin, M. Seeber, P.M. Schlag, and M. Kaschke, “Frequency domain techniques enhance optical mammography: initial clinical results,” P.N.A.S. 94, 6468–6473 (1997).
[CrossRef]

Filiaci, M.E.

M.A. Franchescini, V. Toronov, M.E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express. 6, 49–57 (2000), http://www.opticsexpress.org/opticsexpress/framestocv6n3.htm.
[CrossRef]

Franchescini, M.A.

M.A. Franchescini, V. Toronov, M.E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express. 6, 49–57 (2000), http://www.opticsexpress.org/opticsexpress/framestocv6n3.htm.
[CrossRef]

M.A. Franchescini, K.T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W.W. Matulin, M. Seeber, P.M. Schlag, and M. Kaschke, “Frequency domain techniques enhance optical mammography: initial clinical results,” P.N.A.S. 94, 6468–6473 (1997).
[CrossRef]

Gaida, G.

M.A. Franchescini, K.T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W.W. Matulin, M. Seeber, P.M. Schlag, and M. Kaschke, “Frequency domain techniques enhance optical mammography: initial clinical results,” P.N.A.S. 94, 6468–6473 (1997).
[CrossRef]

Gratton, E.

M.A. Franchescini, V. Toronov, M.E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express. 6, 49–57 (2000), http://www.opticsexpress.org/opticsexpress/framestocv6n3.htm.
[CrossRef]

M.A. Franchescini, K.T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W.W. Matulin, M. Seeber, P.M. Schlag, and M. Kaschke, “Frequency domain techniques enhance optical mammography: initial clinical results,” P.N.A.S. 94, 6468–6473 (1997).
[CrossRef]

He, L.

B. Chance, K.A. Kang, L. He, H. Liu, and S. Zhou, “Precision localization of hidden absorbers in body tissues with phased-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
[CrossRef]

B. Chance, K. Kang, L. He, J. Weng, and E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” P.N.A.S. 90, 3423–3427 (1993).
[CrossRef] [PubMed]

Hong, L.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998), http://www.opticsexpress.org/opticsexpress/framestocv2n10.htm.
[CrossRef] [PubMed]

Hopcraft, K.I.

S.P. Morgan, M.G. Somekh, and K.I. Hopcraft, “Probabilistic method for phased array detection in scattering media,” Opt. Eng. 37, 1618–1626 (1998).
[CrossRef]

Jess, H.

M.A. Franchescini, K.T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W.W. Matulin, M. Seeber, P.M. Schlag, and M. Kaschke, “Frequency domain techniques enhance optical mammography: initial clinical results,” P.N.A.S. 94, 6468–6473 (1997).
[CrossRef]

Kang, K.

B. Chance, K. Kang, L. He, J. Weng, and E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” P.N.A.S. 90, 3423–3427 (1993).
[CrossRef] [PubMed]

Kang, K.A.

B. Chance, K.A. Kang, L. He, H. Liu, and S. Zhou, “Precision localization of hidden absorbers in body tissues with phased-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
[CrossRef]

Kaschke, M.

M.A. Franchescini, K.T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W.W. Matulin, M. Seeber, P.M. Schlag, and M. Kaschke, “Frequency domain techniques enhance optical mammography: initial clinical results,” P.N.A.S. 94, 6468–6473 (1997).
[CrossRef]

Knutson, J.R.

Knuttel, A.

Kolzer, J.

Li, C.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998), http://www.opticsexpress.org/opticsexpress/framestocv2n10.htm.
[CrossRef] [PubMed]

Lindquist, C.

C. Lindquist, A. Pifferi, R. Berg, S. Andersson-Engels, and S. Svanberg, “Reconstruction of diffuse photon-density wave interference in turbid media from time-resolved transmittance measurements,” Appl. Phys. Lett. 69, 1674–1676 (1996).
[CrossRef]

Liu, H.

B. Chance, K.A. Kang, L. He, H. Liu, and S. Zhou, “Precision localization of hidden absorbers in body tissues with phased-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
[CrossRef]

Matulin, W.W.

M.A. Franchescini, K.T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W.W. Matulin, M. Seeber, P.M. Schlag, and M. Kaschke, “Frequency domain techniques enhance optical mammography: initial clinical results,” P.N.A.S. 94, 6468–6473 (1997).
[CrossRef]

Mitic, G.

Moesta, K.T.

M.A. Franchescini, K.T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W.W. Matulin, M. Seeber, P.M. Schlag, and M. Kaschke, “Frequency domain techniques enhance optical mammography: initial clinical results,” P.N.A.S. 94, 6468–6473 (1997).
[CrossRef]

Morgan, S.P.

S.P. Morgan, M.C. Pitter, M.G. Somekh, and K.Y. Yong, “Conventional optics approach to diffraction of diffuse photon density waves,” Proc. SPIE 3597, 5–14 (1999).
[CrossRef]

S.P. Morgan, M.G. Somekh, and K.I. Hopcraft, “Probabilistic method for phased array detection in scattering media,” Opt. Eng. 37, 1618–1626 (1998).
[CrossRef]

Murray, T.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998), http://www.opticsexpress.org/opticsexpress/framestocv2n10.htm.
[CrossRef] [PubMed]

Nioka, S.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998), http://www.opticsexpress.org/opticsexpress/framestocv2n10.htm.
[CrossRef] [PubMed]

O’Leary, M.A.

M.A. O’Leary, D.A. Boas, B. Chance, and A.G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett.,  69, 2658–2661 (1992).
[CrossRef]

Otto, J.

Ovetsky, Y.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998), http://www.opticsexpress.org/opticsexpress/framestocv2n10.htm.
[CrossRef] [PubMed]

Pidikiti, D.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998), http://www.opticsexpress.org/opticsexpress/framestocv2n10.htm.
[CrossRef] [PubMed]

Pifferi, A.

C. Lindquist, A. Pifferi, R. Berg, S. Andersson-Engels, and S. Svanberg, “Reconstruction of diffuse photon-density wave interference in turbid media from time-resolved transmittance measurements,” Appl. Phys. Lett. 69, 1674–1676 (1996).
[CrossRef]

Pitter, M.C.

S.P. Morgan, M.C. Pitter, M.G. Somekh, and K.Y. Yong, “Conventional optics approach to diffraction of diffuse photon density waves,” Proc. SPIE 3597, 5–14 (1999).
[CrossRef]

Plies, E.

Reynolds, J.S.

Schlag, P.M.

M.A. Franchescini, K.T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W.W. Matulin, M. Seeber, P.M. Schlag, and M. Kaschke, “Frequency domain techniques enhance optical mammography: initial clinical results,” P.N.A.S. 94, 6468–6473 (1997).
[CrossRef]

Schmitt, J.M.

Seeber, M.

M.A. Franchescini, K.T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W.W. Matulin, M. Seeber, P.M. Schlag, and M. Kaschke, “Frequency domain techniques enhance optical mammography: initial clinical results,” P.N.A.S. 94, 6468–6473 (1997).
[CrossRef]

Sevick, E.

B. Chance, K. Kang, L. He, J. Weng, and E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” P.N.A.S. 90, 3423–3427 (1993).
[CrossRef] [PubMed]

Solkner, G.

Somekh, M.G.

S.P. Morgan, M.C. Pitter, M.G. Somekh, and K.Y. Yong, “Conventional optics approach to diffraction of diffuse photon density waves,” Proc. SPIE 3597, 5–14 (1999).
[CrossRef]

S.P. Morgan, M.G. Somekh, and K.I. Hopcraft, “Probabilistic method for phased array detection in scattering media,” Opt. Eng. 37, 1618–1626 (1998).
[CrossRef]

Svanberg, S.

C. Lindquist, A. Pifferi, R. Berg, S. Andersson-Engels, and S. Svanberg, “Reconstruction of diffuse photon-density wave interference in turbid media from time-resolved transmittance measurements,” Appl. Phys. Lett. 69, 1674–1676 (1996).
[CrossRef]

Thomas, R.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998), http://www.opticsexpress.org/opticsexpress/framestocv2n10.htm.
[CrossRef] [PubMed]

Toronov, V.

M.A. Franchescini, V. Toronov, M.E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express. 6, 49–57 (2000), http://www.opticsexpress.org/opticsexpress/framestocv6n3.htm.
[CrossRef]

Webb, K.J.

Weng, J.

B. Chance, K. Kang, L. He, J. Weng, and E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” P.N.A.S. 90, 3423–3427 (1993).
[CrossRef] [PubMed]

Worden, K.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998), http://www.opticsexpress.org/opticsexpress/framestocv2n10.htm.
[CrossRef] [PubMed]

Yodh, A.G.

M.A. O’Leary, D.A. Boas, B. Chance, and A.G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett.,  69, 2658–2661 (1992).
[CrossRef]

Yong, K.Y.

S.P. Morgan, M.C. Pitter, M.G. Somekh, and K.Y. Yong, “Conventional optics approach to diffraction of diffuse photon density waves,” Proc. SPIE 3597, 5–14 (1999).
[CrossRef]

Zhou, S.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998), http://www.opticsexpress.org/opticsexpress/framestocv2n10.htm.
[CrossRef] [PubMed]

B. Chance, K.A. Kang, L. He, H. Liu, and S. Zhou, “Precision localization of hidden absorbers in body tissues with phased-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
[CrossRef]

Zinth, W.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

C. Lindquist, A. Pifferi, R. Berg, S. Andersson-Engels, and S. Svanberg, “Reconstruction of diffuse photon-density wave interference in turbid media from time-resolved transmittance measurements,” Appl. Phys. Lett. 69, 1674–1676 (1996).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

S.P. Morgan, M.G. Somekh, and K.I. Hopcraft, “Probabilistic method for phased array detection in scattering media,” Opt. Eng. 37, 1618–1626 (1998).
[CrossRef]

Opt. Express. (2)

M.A. Franchescini, V. Toronov, M.E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express. 6, 49–57 (2000), http://www.opticsexpress.org/opticsexpress/framestocv6n3.htm.
[CrossRef]

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express. 2, 411–423 (1998), http://www.opticsexpress.org/opticsexpress/framestocv2n10.htm.
[CrossRef] [PubMed]

P.N.A.S. (2)

M.A. Franchescini, K.T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W.W. Matulin, M. Seeber, P.M. Schlag, and M. Kaschke, “Frequency domain techniques enhance optical mammography: initial clinical results,” P.N.A.S. 94, 6468–6473 (1997).
[CrossRef]

B. Chance, K. Kang, L. He, J. Weng, and E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” P.N.A.S. 90, 3423–3427 (1993).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

M.A. O’Leary, D.A. Boas, B. Chance, and A.G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett.,  69, 2658–2661 (1992).
[CrossRef]

Proc. SPIE (1)

S.P. Morgan, M.C. Pitter, M.G. Somekh, and K.Y. Yong, “Conventional optics approach to diffraction of diffuse photon density waves,” Proc. SPIE 3597, 5–14 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

B. Chance, K.A. Kang, L. He, H. Liu, and S. Zhou, “Precision localization of hidden absorbers in body tissues with phased-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Typical phased array system. Two sources modulated in anti-phase destructively interfere at the null plane. The system is highly sensitive to any imbalance in the medium.

Fig. 2.
Fig. 2.

Typical amplitude and phase response to an object scanned through the phased array system. Relative phase difference between the sources=180°.

Fig. 3.
Fig. 3.

Two sources are modulated with a relative phase difference set by varying the length of the coaxial drive cable. The detected signal is amplified and fed to a lock-in amplifier.

Fig. 4.
Fig. 4.

Two-stage propagation model. The object plane distribution due to the two sources is calculated using Green’s function G1. The object plane distribution is perturbed by the object and then propagates to the detector plane using Green’s function G2.

Fig. 5.
Fig. 5.

Typical phase responses to a scanned object. Object size=30mm, relative phase between sources=a) 178°, b) 153°, c) 130° d) 80° e) 50° f) single source.

Fig. 6.
Fig. 6.

Phase shift of linescans for a range of object sizes and relative phases between sources (a) modelled (b) experiment.

Fig. 7.
Fig. 7.

Phase distribution at the detector plane for relative phase=178°, 153°, 130°, 80°, 50° and single source. The distribution becomes shallower and wider as the relative phase between the sources decreases. The two curves shown are with (red) and without (black) the presence of a 10mm wide object situated at the mid- plane of the medium, 10mm off axis.

Metrics