Abstract

We experimentally demonstrate an all-optical binary counter composed of four semiconductor optical amplifier based all-optical switching gates. The time-of-flight optical circuit operates with bit-differential delays between the exclusive-OR gate used for modulo-2 binary addition and the AND gate used for binary carry detection. A movie of the counter operating in real time is presented.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Cotter, J. K. Lucek, P. Gunning, D. G. Moodie, A. J. Poustie, K. J. Blow, R. J. Manning, "Ultrafast networks using high-speed RZ optical pulses for transmission, routing and processing" in New Trends in Optical Soliton Communications, A. Hasegawa, ed. (Kluwer Academic, Dordrecht, 1998).
  2. D. Cotter and A. D. Ellis, "Asynchronous digital optical regeneration and networks," IEEE J. Lightwave Technol. 16, 2068-2080 (1998).
    [CrossRef]
  3. A. J. Poustie, K. J. Blow, A. E. Kelly and R. J. Manning, "All-optical parity checker with bit-differential delay," Opt. Commun. 162, 37-43 (1999).
    [CrossRef]
  4. A. J. Poustie, K. J. Blow and R. J. Manning, "All-optical regenerative memory for long term data storage," Opt. Commun. 140, 184-186 (1997).
    [CrossRef]
  5. A. J. Poustie, K. J. Blow, A. E. Kelly and R. J. Manning, "All-optical full adder with bit-differential delay," Opt. Commun. 168, 89-93 (1999).
    [CrossRef]
  6. J. P. Sokoloff, P. R. Prucnal, I. Glesk and M. Kane, "A Terahertz optical asymmetric demultiplexer (TOAD)," IEEE Phot. Tech. Lett. 5, 787-790 (1993).
    [CrossRef]
  7. K. L. Hall, J. P. Donnelly, S. H. Groves, C. I. Fennelly, R. A. Bailey and A. Napoleone, "40Gbit/s all-optical circulating shift register with an inverter," Opt. Lett. 22, 1479-1481 (1997).
    [CrossRef]
  8. A. J. Poustie, R. J. Manning and K. J. Blow, "All-optical circulating shift register using a semiconductor optical amplifier in a fibre loop mirror," Electron. Lett. 32, 1215-1216 (1996).
    [CrossRef]
  9. A. J. Poustie, K. J. Blow, R. J. Manning and A. E. Kelly, "All-optical pseudorandom number generator," Opt. Commun. 159, 208-214 (1999).
    [CrossRef]
  10. H. F. Jordan, V. P. Heuringand R. Feuerstein, "Optoelectronic time-of-flight design and the demonstration of an all-optical, stored program, digital computer," Proc. IEEE 82, 1678-1689 (1994).
    [CrossRef]
  11. K. L. Hall and K. A. Rauschenbach, "100Gbit/s bitwise logic," Opt. Lett. 23, 1271-1273 (1998).
    [CrossRef]
  12. A.E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie and R. Kashyap, "80Gbit/s all-optical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999).
    [CrossRef]
  13. A. J. Poustie, K. J. Blow, A. E. Kelly and R. J. Manning, "All-optical binary half-adder," Opt. Commun. 156, 22-26 (1998).
    [CrossRef]
  14. E. Jahn, N. Agrawal, W. Peiper, H. J. Ehrke, D. Franke, W. Furst and C. M. Weinert, "Monolithically integrated nonlinear Sagnac interferometer and its application as a 20 Gbit/s all-optical demultiplexer," Electron. Lett. 32, 782-784 (1996).
    [CrossRef]
  15. E. Jahn, N. Agrawal, M. Arbert, H. J. Ehrke, D. Franke, R. Ludwig, W. Peiper, H. G. Weber and C. M. Weinert, "40 Gbit/s all-optical demultiplexing using a monolithically integrated Mach-Zehnder interferometer with semiconductor laser amplifiers," Electron. Lett. 31, 1857-1858 (1995).
    [CrossRef]
  16. B. Mikkelsen, T. Durhuus, C. Joergensen, R. J. S. Pedersen, S. L. Danielsen, K. E. Stubkjaer, M. Gustavsson, W. Van Berlo and M. Janson, "10Gbit/s wavelength convertoer realised by monolithic integration of semiconductor optical amplifiers and Michelson interferometer," Postdeadline paper, Proceedings ECOC '94 Florence, 1994.
  17. J. Leuthold, P. A. Besse, J. Eckner, E. Gamper, M. Dulk and H. Melchior, "All-optical space switches with gain and principally ideal extinction ratios," IEEE J. Quantum Electron. 34, 622-633 (1998).
    [CrossRef]
  18. J. Sasaki, H. Hatakeyama, T. Tamanuki, S. Kitamura, M. Yamaguchi, N. Kitamura, T. Shimoda, M. Kitamura, T. Kato and M. Itoh, , "Hybrid integrated 4x4 optical matrix switch using self-aligned semiconductor optical amplifier gate arrays and silica planar lightwave circuit," Electron. Lett. 34, 986-987 (1998).
    [CrossRef]
  19. A. F. Benner, J. Bowman, T. Erkkila, R. J. Feuerstein, V. P. Heuring, H. F. Jordan, J. Sauer and T. Soukup, "Digital optical counter using directional coupler switches," Appl. Opt. 30, 4179-4189 (1991).
    [CrossRef] [PubMed]

Other (19)

D. Cotter, J. K. Lucek, P. Gunning, D. G. Moodie, A. J. Poustie, K. J. Blow, R. J. Manning, "Ultrafast networks using high-speed RZ optical pulses for transmission, routing and processing" in New Trends in Optical Soliton Communications, A. Hasegawa, ed. (Kluwer Academic, Dordrecht, 1998).

D. Cotter and A. D. Ellis, "Asynchronous digital optical regeneration and networks," IEEE J. Lightwave Technol. 16, 2068-2080 (1998).
[CrossRef]

A. J. Poustie, K. J. Blow, A. E. Kelly and R. J. Manning, "All-optical parity checker with bit-differential delay," Opt. Commun. 162, 37-43 (1999).
[CrossRef]

A. J. Poustie, K. J. Blow and R. J. Manning, "All-optical regenerative memory for long term data storage," Opt. Commun. 140, 184-186 (1997).
[CrossRef]

A. J. Poustie, K. J. Blow, A. E. Kelly and R. J. Manning, "All-optical full adder with bit-differential delay," Opt. Commun. 168, 89-93 (1999).
[CrossRef]

J. P. Sokoloff, P. R. Prucnal, I. Glesk and M. Kane, "A Terahertz optical asymmetric demultiplexer (TOAD)," IEEE Phot. Tech. Lett. 5, 787-790 (1993).
[CrossRef]

K. L. Hall, J. P. Donnelly, S. H. Groves, C. I. Fennelly, R. A. Bailey and A. Napoleone, "40Gbit/s all-optical circulating shift register with an inverter," Opt. Lett. 22, 1479-1481 (1997).
[CrossRef]

A. J. Poustie, R. J. Manning and K. J. Blow, "All-optical circulating shift register using a semiconductor optical amplifier in a fibre loop mirror," Electron. Lett. 32, 1215-1216 (1996).
[CrossRef]

A. J. Poustie, K. J. Blow, R. J. Manning and A. E. Kelly, "All-optical pseudorandom number generator," Opt. Commun. 159, 208-214 (1999).
[CrossRef]

H. F. Jordan, V. P. Heuringand R. Feuerstein, "Optoelectronic time-of-flight design and the demonstration of an all-optical, stored program, digital computer," Proc. IEEE 82, 1678-1689 (1994).
[CrossRef]

K. L. Hall and K. A. Rauschenbach, "100Gbit/s bitwise logic," Opt. Lett. 23, 1271-1273 (1998).
[CrossRef]

A.E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie and R. Kashyap, "80Gbit/s all-optical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999).
[CrossRef]

A. J. Poustie, K. J. Blow, A. E. Kelly and R. J. Manning, "All-optical binary half-adder," Opt. Commun. 156, 22-26 (1998).
[CrossRef]

E. Jahn, N. Agrawal, W. Peiper, H. J. Ehrke, D. Franke, W. Furst and C. M. Weinert, "Monolithically integrated nonlinear Sagnac interferometer and its application as a 20 Gbit/s all-optical demultiplexer," Electron. Lett. 32, 782-784 (1996).
[CrossRef]

E. Jahn, N. Agrawal, M. Arbert, H. J. Ehrke, D. Franke, R. Ludwig, W. Peiper, H. G. Weber and C. M. Weinert, "40 Gbit/s all-optical demultiplexing using a monolithically integrated Mach-Zehnder interferometer with semiconductor laser amplifiers," Electron. Lett. 31, 1857-1858 (1995).
[CrossRef]

B. Mikkelsen, T. Durhuus, C. Joergensen, R. J. S. Pedersen, S. L. Danielsen, K. E. Stubkjaer, M. Gustavsson, W. Van Berlo and M. Janson, "10Gbit/s wavelength convertoer realised by monolithic integration of semiconductor optical amplifiers and Michelson interferometer," Postdeadline paper, Proceedings ECOC '94 Florence, 1994.

J. Leuthold, P. A. Besse, J. Eckner, E. Gamper, M. Dulk and H. Melchior, "All-optical space switches with gain and principally ideal extinction ratios," IEEE J. Quantum Electron. 34, 622-633 (1998).
[CrossRef]

J. Sasaki, H. Hatakeyama, T. Tamanuki, S. Kitamura, M. Yamaguchi, N. Kitamura, T. Shimoda, M. Kitamura, T. Kato and M. Itoh, , "Hybrid integrated 4x4 optical matrix switch using self-aligned semiconductor optical amplifier gate arrays and silica planar lightwave circuit," Electron. Lett. 34, 986-987 (1998).
[CrossRef]

A. F. Benner, J. Bowman, T. Erkkila, R. J. Feuerstein, V. P. Heuring, H. F. Jordan, J. Sauer and T. Soukup, "Digital optical counter using directional coupler switches," Appl. Opt. 30, 4179-4189 (1991).
[CrossRef] [PubMed]

Supplementary Material (5)

» Media 1: MOV (902 KB)     
» Media 2: MOV (8564 KB)     
» Media 3: MOV (938 KB)     
» Media 4: MOV (3664 KB)     
» Media 5: MOV (15100 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Logic diagram of the binary counter with bit-differential delay. The COUNT memory has a capacity of m bits and the CARRY memory has a capacity of m-1 bits. The delay for the link between the COUNT memory and the AND gate input is m bits. The delay for the link between the CARRY memory and the XOR gate input is m-1 bits. The optical pulses to be counted are input singly with a period of m bits.

Fig. 2.
Fig. 2.

Schematic diagram of the experimental all-optical counter architecture. The capacities of the COUNT and CARRY memory loops are 297 bits and 296 bits respectively (1ns per bit). Each TOAD contains an SOA, fibre couplers and fibre polarisation controllers as described in the text. DFB=gain-switched distributed feedback laser, I/P=input, O/P=output, EDFA=erbium doped fibre amplifier, EAM=electroabsorption modulator.

Fig. 3.
Fig. 3.

Full optical count field with the LSB on the RHS and the MSB on the LHS. The time separation between pulses is 1ns corresponding to the switching rate of 1GHz and the count rate is ~3.4MHz. The movie (902kb version, 8.57Mb version) shows the real time evolution of the binary count.

Fig. 4.
Fig. 4.

Optical count field from 221 (RHS) to 225 (LHS). The movie (938kb version, 3.67Mb version) shows the real time evolution of the binary count.

Fig. 5.
Fig. 5.

Optical count field from 212 (RHS) to 228 (LHS). The movie (15Mb) shows the real time evolution of the count from <228 to >229 that takes ~160s.

Metrics