Abstract

Optical magnetic resonance tomography uses optical pumping and the paramagnetic Faraday effect to image spin density distributions in optically thin media. In this paper we present an apparatus that allows to measure the distribution of spin-polarized Cs atoms, which we applied to study the diffusion of Cs in Ne buffer gas by time-resolved 2D-mapping of the evolution of an initial inhomogeneous spin distribution. The diffusion constant D 0 for Cs in a Ne buffer gas of 1013 mbar is determined as 0.20(1) cm2/s.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Nettels, "Optische Magnetresonanztomographie an spinpolarisiertem Casiumdampf," Dipl. thesis Univ. Bonn (unpublished)(1998).
  2. D. Giel, "Darstellung der Diffusion atomarer Spinpolarisation mit optischer Magnetresonanztomographie," Dipl. thesis Univ. Bonn (unpublished)(2000).
  3. J. Skalla, G.Wackerle, M. Mehring and A. Pines, "Optical magnetic resonance imaging of vapor in low magnetic fields," Phys. Lett. A 226, 69-74 (1997).
    [CrossRef]
  4. K. Ishikawa et al., "Optical magnetic resonance imaging of laser-polarized Cs atoms," J. Opt. Soc. Am. B 16, 31-37 (1999).
    [CrossRef]
  5. K. L. Corwin, Z. T. Lu, C. F. Hand, R. J. Epstein and C. E. Wieman, "Frequency-stabilized diode laser with Zeeman shift in an atomic vapor," Appl. Opt. 37, 3295 (1998).
    [CrossRef]
  6. P. T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy (Oxford University Press, Oxford, 1991).
  7. A. Corney, Atomic and Laser Spectroscopy (Oxford University Press, Oxford, 1977).
  8. N. Beverini, F. Strumia and G. Rovera, "Buffer gas pressure shift in the mF =0->mF =0 ground state hyperfine line in Cs," Opt. Commun. 37,6, 394 (1981).
    [CrossRef]
  9. J. Vanier, C. Audoin, The Quantum Physics of Atomic Frequency Standards (Bristol, Hilger, 1989).
    [CrossRef]
  10. S. I. Karnorsky and A. Weis, "Optical and magneto-optical spectroscopy of point defects in condensed helium," Advances in Atomic, Molecular and Optical Physics, 38, 87 (1998).
    [CrossRef]

Other (10)

D. Nettels, "Optische Magnetresonanztomographie an spinpolarisiertem Casiumdampf," Dipl. thesis Univ. Bonn (unpublished)(1998).

D. Giel, "Darstellung der Diffusion atomarer Spinpolarisation mit optischer Magnetresonanztomographie," Dipl. thesis Univ. Bonn (unpublished)(2000).

J. Skalla, G.Wackerle, M. Mehring and A. Pines, "Optical magnetic resonance imaging of vapor in low magnetic fields," Phys. Lett. A 226, 69-74 (1997).
[CrossRef]

K. Ishikawa et al., "Optical magnetic resonance imaging of laser-polarized Cs atoms," J. Opt. Soc. Am. B 16, 31-37 (1999).
[CrossRef]

K. L. Corwin, Z. T. Lu, C. F. Hand, R. J. Epstein and C. E. Wieman, "Frequency-stabilized diode laser with Zeeman shift in an atomic vapor," Appl. Opt. 37, 3295 (1998).
[CrossRef]

P. T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy (Oxford University Press, Oxford, 1991).

A. Corney, Atomic and Laser Spectroscopy (Oxford University Press, Oxford, 1977).

N. Beverini, F. Strumia and G. Rovera, "Buffer gas pressure shift in the mF =0->mF =0 ground state hyperfine line in Cs," Opt. Commun. 37,6, 394 (1981).
[CrossRef]

J. Vanier, C. Audoin, The Quantum Physics of Atomic Frequency Standards (Bristol, Hilger, 1989).
[CrossRef]

S. I. Karnorsky and A. Weis, "Optical and magneto-optical spectroscopy of point defects in condensed helium," Advances in Atomic, Molecular and Optical Physics, 38, 87 (1998).
[CrossRef]

Supplementary Material (2)

» Media 1: MOV (1026 KB)     
» Media 2: MOV (1364 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Timing sequence of the experiment.

Fig. 3.
Fig. 3.

Tomographic picture (a) of an inhomogeneous polarization produced by a mask (b) inside the pump beam. (c) is a cut through distribution showing the Gaussian shapes (blue line) resulting from the diffusion of an initial cylindrical distribution (rectangles).

Fig. 4.
Fig. 4.

Experimental (left) and simulated (right) evolutions of a given initial experimental magnetization distribution (Animation, 1.1 MB). The frames are separated by Δtdelay=0.5 ms.

Fig. 5.
Fig. 5.

The same as Fig. 4 but with the distributions at each step of tdelay normalized to the same peak height to demonstrate the change of shape due to diffusion. (Animation, 1.4 MB)

Fig. 6.
Fig. 6.

Time Evolution of cuts through the spin density distribution

Fig. 7.
Fig. 7.

Time evolution of the widths Δx FWHM of the magnetization distributions (dots). Solid line: Solution Eq. (1) with D=1.73 cm2/s. Straight line: Theoretical evolution without boundaries (’open’ cell), ΔxFWHM2=2Dt.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

M z t = D 2 M z K · M z
M z = l , m , n = 1 c l , m , n cos ( l π x a ) cos ( m π y a ) cos ( n π z a ) e ( γ l , m , n + K ) t
T l , m , n = 1 γ l , m , n = a 2 π D ( l 2 + m 2 + n 2 ) .
Δ x FWHM 2 = 2 Dt .
D = D 0 p 0 p ( T T 0 ) 3 2 .
D 0 = 0.20 ( 1 ) cm 2 s .

Metrics