Abstract

We study the plasmon resonances of 10–100(nm) two-dimensional metal particles with a non-regular shape. Movies illustrate the spectral response of such particles in the optical range. Contrary to particles with a simple shape (cylinder, ellipse) non-regular particles exhibit many distinct resonances over a large spectral range. At resonance frequencies, extremely large enhancements of the electromagnetic fields occur near the surface of the particle, with amplitudes several hundred-fold that of the incident field. Implications of these strong and localized fields for nano-optics and surface enhanced Raman scattering (SERS) are also discussed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Olivier J.F. Martin’s group home page: http://www.ifh.ee.ethz.ch/~martin
  2. H. Metiu, “Surface enhanced spectroscopy,” Prog. Surf. Sci. 17,153–320 (1984).
    [CrossRef]
  3. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57,783–826 (1985).
    [CrossRef]
  4. K. Kneippet at., “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78,1667–1670 (1997).
    [CrossRef]
  5. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275,1102–1106 (1997).
    [CrossRef] [PubMed]
  6. F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77,1163–1166 (1996).
    [CrossRef] [PubMed]
  7. F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Silver-filled carbon nanotubes used as spectroscopic enhancers,” Phys. Rev. B 58,6783–6786 (1998).
    [CrossRef]
  8. O.J.F. Martin and C. Girard, “Controlling and tuning strong optical field gradients at a local probe microscope tip apex,” Appl. Phys. Lett. 70,705–707 (1997).
    [CrossRef]
  9. W.-H. Yang, G. C. Schatz, and R. P. van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shape,” J. Chem. Phys. 103, 1–20 (1995).
    [CrossRef]
  10. T. R. Jensen, G. C. Schatz, and R. P. van Duyne, “Nanosphere lithography: surface plasmon resonance spectrum …,” J. Phys. Chem. B 103,2394–2401 (1999).
    [CrossRef]
  11. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles,Chapter 12 (John Wiley and Sons,New York,1983).
  12. K. Bromannet al., “Controlled deposition of size-selected solver nanoclusters,” Science 274,956–958 (1996).
    [CrossRef] [PubMed]
  13. D. M. Kolb, R. Ullmann, and T. Will, “Nanofabrication of small copper clusters on gold(111) electrodes by a scanning tunneling microscope,” Science 275,1097–1099 (1996).
    [CrossRef]
  14. J. Bosbachet al., “Laser-based method for fabricating monodispersive metallic nanoparticles,” Appl. Phys. Lett. 74,2605–2607 (1999).
    [CrossRef]
  15. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  16. U. Kreibig and C. v. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224,307–323 (1969).
    [CrossRef]
  17. J. P. Kottmann and O. J. F. Martin, “Accurate solution of the volume integral equation for high permittivity scatterers,” IEEE Trans. Antennas Propag., in press (2000).
    [CrossRef]
  18. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanoparticles,” submitted to Phys. Rev. Lett. (2000).

1999 (2)

T. R. Jensen, G. C. Schatz, and R. P. van Duyne, “Nanosphere lithography: surface plasmon resonance spectrum …,” J. Phys. Chem. B 103,2394–2401 (1999).
[CrossRef]

J. Bosbachet al., “Laser-based method for fabricating monodispersive metallic nanoparticles,” Appl. Phys. Lett. 74,2605–2607 (1999).
[CrossRef]

1998 (1)

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Silver-filled carbon nanotubes used as spectroscopic enhancers,” Phys. Rev. B 58,6783–6786 (1998).
[CrossRef]

1997 (3)

O.J.F. Martin and C. Girard, “Controlling and tuning strong optical field gradients at a local probe microscope tip apex,” Appl. Phys. Lett. 70,705–707 (1997).
[CrossRef]

K. Kneippet at., “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78,1667–1670 (1997).
[CrossRef]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275,1102–1106 (1997).
[CrossRef] [PubMed]

1996 (3)

F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77,1163–1166 (1996).
[CrossRef] [PubMed]

K. Bromannet al., “Controlled deposition of size-selected solver nanoclusters,” Science 274,956–958 (1996).
[CrossRef] [PubMed]

D. M. Kolb, R. Ullmann, and T. Will, “Nanofabrication of small copper clusters on gold(111) electrodes by a scanning tunneling microscope,” Science 275,1097–1099 (1996).
[CrossRef]

1995 (1)

W.-H. Yang, G. C. Schatz, and R. P. van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shape,” J. Chem. Phys. 103, 1–20 (1995).
[CrossRef]

1985 (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57,783–826 (1985).
[CrossRef]

1984 (1)

H. Metiu, “Surface enhanced spectroscopy,” Prog. Surf. Sci. 17,153–320 (1984).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1969 (1)

U. Kreibig and C. v. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224,307–323 (1969).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles,Chapter 12 (John Wiley and Sons,New York,1983).

Bosbach, J.

J. Bosbachet al., “Laser-based method for fabricating monodispersive metallic nanoparticles,” Appl. Phys. Lett. 74,2605–2607 (1999).
[CrossRef]

Bromann, K.

K. Bromannet al., “Controlled deposition of size-selected solver nanoclusters,” Science 274,956–958 (1996).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275,1102–1106 (1997).
[CrossRef] [PubMed]

Fragstein, C. v.

U. Kreibig and C. v. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224,307–323 (1969).
[CrossRef]

García-Vidal, F. J.

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Silver-filled carbon nanotubes used as spectroscopic enhancers,” Phys. Rev. B 58,6783–6786 (1998).
[CrossRef]

F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77,1163–1166 (1996).
[CrossRef] [PubMed]

Girard, C.

O.J.F. Martin and C. Girard, “Controlling and tuning strong optical field gradients at a local probe microscope tip apex,” Appl. Phys. Lett. 70,705–707 (1997).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles,Chapter 12 (John Wiley and Sons,New York,1983).

Jensen, T. R.

T. R. Jensen, G. C. Schatz, and R. P. van Duyne, “Nanosphere lithography: surface plasmon resonance spectrum …,” J. Phys. Chem. B 103,2394–2401 (1999).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kneipp, K.

K. Kneippet at., “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78,1667–1670 (1997).
[CrossRef]

Kolb, D. M.

D. M. Kolb, R. Ullmann, and T. Will, “Nanofabrication of small copper clusters on gold(111) electrodes by a scanning tunneling microscope,” Science 275,1097–1099 (1996).
[CrossRef]

Kottmann, J. P.

J. P. Kottmann and O. J. F. Martin, “Accurate solution of the volume integral equation for high permittivity scatterers,” IEEE Trans. Antennas Propag., in press (2000).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanoparticles,” submitted to Phys. Rev. Lett. (2000).

Kreibig, U.

U. Kreibig and C. v. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224,307–323 (1969).
[CrossRef]

Martin, O. J. F.

J. P. Kottmann and O. J. F. Martin, “Accurate solution of the volume integral equation for high permittivity scatterers,” IEEE Trans. Antennas Propag., in press (2000).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanoparticles,” submitted to Phys. Rev. Lett. (2000).

Martin, O.J.F.

O.J.F. Martin and C. Girard, “Controlling and tuning strong optical field gradients at a local probe microscope tip apex,” Appl. Phys. Lett. 70,705–707 (1997).
[CrossRef]

Martin’s, Olivier J.F.

Olivier J.F. Martin’s group home page: http://www.ifh.ee.ethz.ch/~martin

Metiu, H.

H. Metiu, “Surface enhanced spectroscopy,” Prog. Surf. Sci. 17,153–320 (1984).
[CrossRef]

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57,783–826 (1985).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275,1102–1106 (1997).
[CrossRef] [PubMed]

Pendry, J. B.

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Silver-filled carbon nanotubes used as spectroscopic enhancers,” Phys. Rev. B 58,6783–6786 (1998).
[CrossRef]

F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77,1163–1166 (1996).
[CrossRef] [PubMed]

Pitarke, J. M.

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Silver-filled carbon nanotubes used as spectroscopic enhancers,” Phys. Rev. B 58,6783–6786 (1998).
[CrossRef]

Schatz, G. C.

T. R. Jensen, G. C. Schatz, and R. P. van Duyne, “Nanosphere lithography: surface plasmon resonance spectrum …,” J. Phys. Chem. B 103,2394–2401 (1999).
[CrossRef]

W.-H. Yang, G. C. Schatz, and R. P. van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shape,” J. Chem. Phys. 103, 1–20 (1995).
[CrossRef]

Schultz, S.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanoparticles,” submitted to Phys. Rev. Lett. (2000).

Smith, D. R.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanoparticles,” submitted to Phys. Rev. Lett. (2000).

Ullmann, R.

D. M. Kolb, R. Ullmann, and T. Will, “Nanofabrication of small copper clusters on gold(111) electrodes by a scanning tunneling microscope,” Science 275,1097–1099 (1996).
[CrossRef]

van Duyne, R. P.

T. R. Jensen, G. C. Schatz, and R. P. van Duyne, “Nanosphere lithography: surface plasmon resonance spectrum …,” J. Phys. Chem. B 103,2394–2401 (1999).
[CrossRef]

W.-H. Yang, G. C. Schatz, and R. P. van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shape,” J. Chem. Phys. 103, 1–20 (1995).
[CrossRef]

Will, T.

D. M. Kolb, R. Ullmann, and T. Will, “Nanofabrication of small copper clusters on gold(111) electrodes by a scanning tunneling microscope,” Science 275,1097–1099 (1996).
[CrossRef]

Yang, W.-H.

W.-H. Yang, G. C. Schatz, and R. P. van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shape,” J. Chem. Phys. 103, 1–20 (1995).
[CrossRef]

Appl. Phys. Lett. (2)

O.J.F. Martin and C. Girard, “Controlling and tuning strong optical field gradients at a local probe microscope tip apex,” Appl. Phys. Lett. 70,705–707 (1997).
[CrossRef]

J. Bosbachet al., “Laser-based method for fabricating monodispersive metallic nanoparticles,” Appl. Phys. Lett. 74,2605–2607 (1999).
[CrossRef]

J. Chem. Phys. (1)

W.-H. Yang, G. C. Schatz, and R. P. van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shape,” J. Chem. Phys. 103, 1–20 (1995).
[CrossRef]

J. Phys. Chem. B (1)

T. R. Jensen, G. C. Schatz, and R. P. van Duyne, “Nanosphere lithography: surface plasmon resonance spectrum …,” J. Phys. Chem. B 103,2394–2401 (1999).
[CrossRef]

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Silver-filled carbon nanotubes used as spectroscopic enhancers,” Phys. Rev. B 58,6783–6786 (1998).
[CrossRef]

Phys. Rev. Lett. (2)

F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77,1163–1166 (1996).
[CrossRef] [PubMed]

K. Kneippet at., “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78,1667–1670 (1997).
[CrossRef]

Prog. Surf. Sci. (1)

H. Metiu, “Surface enhanced spectroscopy,” Prog. Surf. Sci. 17,153–320 (1984).
[CrossRef]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57,783–826 (1985).
[CrossRef]

Science (3)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275,1102–1106 (1997).
[CrossRef] [PubMed]

K. Bromannet al., “Controlled deposition of size-selected solver nanoclusters,” Science 274,956–958 (1996).
[CrossRef] [PubMed]

D. M. Kolb, R. Ullmann, and T. Will, “Nanofabrication of small copper clusters on gold(111) electrodes by a scanning tunneling microscope,” Science 275,1097–1099 (1996).
[CrossRef]

Z. Phys. (1)

U. Kreibig and C. v. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224,307–323 (1969).
[CrossRef]

Other (4)

J. P. Kottmann and O. J. F. Martin, “Accurate solution of the volume integral equation for high permittivity scatterers,” IEEE Trans. Antennas Propag., in press (2000).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanoparticles,” submitted to Phys. Rev. Lett. (2000).

Olivier J.F. Martin’s group home page: http://www.ifh.ee.ethz.ch/~martin

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles,Chapter 12 (John Wiley and Sons,New York,1983).

Supplementary Material (12)

» Media 1: MOV (594 KB)     
» Media 2: MOV (574 KB)     
» Media 3: MOV (592 KB)     
» Media 4: MOV (756 KB)     
» Media 5: MOV (754 KB)     
» Media 6: MOV (740 KB)     
» Media 7: MOV (695 KB)     
» Media 8: MOV (756 KB)     
» Media 9: MOV (832 KB)     
» Media 10: MOV (943 KB)     
» Media 11: MOV (944 KB)     
» Media 12: MOV (924 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

SCS for an ellipse [overall size 20 (nm)×10 (nm)]. Influence of the propagation direction.

Fig. 2.
Fig. 2.

Movies of the field amplitude distribution for a 20 (nm)×10 (nm) ellipse illuminated along the (a) (01)-direction (609 KB),(b) (10)-direction (589 KB),(c) (11)-direction (606 KB) in the λ=300 (nm) … 600 (nm) wavelength range. Front pictures: (a) λ=357 (nm),(b) λ=331 (nm),(c) λ=357 (nm).

Fig. 3.
Fig. 3.

SCS for a 20 (nm) base right angled isosceles triangular particle for three different incident direction.

Fig. 4.
Fig. 4.

Movies of the field amplitude distribution of the 20 (nm) triangular particle illuminated along the (a) (11)-direction (775 KB),(b) (10)-direction (772 KB),(c) (11̄)-direction (758 KB) in the 300–600 (nm) wavelength range. Front pictures: (a) λ=412 (nm),(b) λ=365 (nm),(c) λ=363 (nm).

Fig. 5.
Fig. 5.

SCS for right angled isosceles triangular particles illuminated along the (11)-direction. Four different particle sizes are investigated: 10,20,50 and 100 (nm) base.

Fig. 6.
Fig. 6.

Movies of the field amplitude distribution for right angled isosceles triangular particles illuminated along the (11)-direction with (a) 10 (nm) base (712 KB),(b) 20 (nm) base (775 KB),(c) 50 (nm) base (758 KB) in the 300–600 (nm) wavelength range. The front pictures represent the corresponding main resonance: (a) λ=401 (nm),(b) λ=412 (nm),(c) λ=427 (nm).

Fig. 7.
Fig. 7.

SCS for a 10 (nm) base,20 (nm) perpendicular right angled triangle for three different incident directions.

Fig. 8.
Fig. 8.

Movies of the field amplitude distribution of the 10 (nm) base,20 (nm) perpendicular right angled triangular particle illuminated along the (a) (11)-direction (966 KB),(b) (10)-direction (967 KB),(c) (11̄)direction (947 KB). Front pictures: (a) λ=458 (nm),(b) λ=392 (nm),(c) λ=364 (nm),movies: (a)–(c): λ=300 (nm)…600 (nm).

Metrics