Abstract

We present video footage demonstrating real-time visualization of domain formation in periodically-poled lithium niobate (PPLN). This in-situ, non-destructive technique provides important visual information concerning the global quality and dynamics of domain patterning during the fabrication of PPLN.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. Yamada, N. Nada, M. Saitoh and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435 (1993).
    [CrossRef]
  2. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg and J. W. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102 (1995).
    [CrossRef]
  3. V. Pruneri, J. Webjoorn, P. St. J. Russell, J. R. M. Barr and D. C. Hanna, "Intracavity second harmonic generation of 0.532 �m in bulk periodically poled lithium niobate," Opt. Commun. 116, 159 (1995).
    [CrossRef]
  4. M. Reich, F. Korte, C. Gallnich, H. Welling and A. T�nnermann, "Electrode geometries for periodic polling of ferroelectric materials," Opt. Lett. 23, 1817 (1998).
    [CrossRef]
  5. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer and R. L. Byer, "42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate," Opt. Lett. 22, 1834 (1997).
    [CrossRef]
  6. R. G. Batchko, V. Y. Shur, M. M. Fejer and R. L. Byer, "Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation," Appl. Phys. Lett. 75, 1673 (1999).
    [CrossRef]
  7. P. T. Brown, G. W. Ross, R. W. Eason and A. R. Pogosyan, "Control of domain structures in lithium tantalate using interferometric optical patterning," Opt. Commun. 163, 310 (1990).
    [CrossRef]
  8. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers and R. L. Byer, "93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator," Opt. Lett. 21, 1336 (1996).
    [CrossRef] [PubMed]
  9. G. W. Ross, M. Pollnau, P. G. R. Smith, W. A. Clarkson, P. E. Britton and D. C. Hanna, "Generation of high-power blue light in periodically poled LiNbO3," Opt. Lett. 23, 171 (1998).
    [CrossRef]
  10. M. E. Dearborn, K. Koch, G. T. Moore and J. C. Diels, "Greater than 100% photon-conversion efficiency from an optical parametric oscillator with intracavity difference-frequency mixing," Opt. Lett. 23, 759 (1998).
    [CrossRef]
  11. M. H. Chou, K. R. Parameswaran, M. M. Fejer and I. Brener, "Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides," Opt. Lett. 24, 1157 (1999).
    [CrossRef]
  12. M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou and M. M. Fejer, "Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate," Opt. Lett. 22, 1341 (1997).
    [CrossRef]
  13. G. Imeshev, M. Proctor and M. M. Fejer, "Lateral patterning of nonlinear frequency conversion with transversely varying quasi-phase-matching gratings," Opt. Lett. 23 673 (1998).
    [CrossRef]
  14. M. J. Missey, V. Dominic, P. E. Powers and K. L. Schepler, "Periodically poled lithium niobate monolithic nanosecond optical parametric oscillators and generators," Opt. Lett. 24, 1227 (1999).
    [CrossRef]
  15. P. E. Powers, T. J. Kulp and S. E. Bisson, "Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design," Opt. Lett. 23, 159 (1998).
    [CrossRef]
  16. W. P. Risk and G. M. Loiacono, "Periodic poling and waveguide frequency doubling in RbTiOAsO4," Appl. Phys. Lett. 69, 331 (1996).
    [CrossRef]
  17. R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur and L. Erman, "Continuous-wave quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate," Opt. Lett. 24, 1293 (1999).
    [CrossRef]

Other (17)

M. Yamada, N. Nada, M. Saitoh and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl. Phys. Lett. 62, 435 (1993).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg and J. W. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102 (1995).
[CrossRef]

V. Pruneri, J. Webjoorn, P. St. J. Russell, J. R. M. Barr and D. C. Hanna, "Intracavity second harmonic generation of 0.532 �m in bulk periodically poled lithium niobate," Opt. Commun. 116, 159 (1995).
[CrossRef]

M. Reich, F. Korte, C. Gallnich, H. Welling and A. T�nnermann, "Electrode geometries for periodic polling of ferroelectric materials," Opt. Lett. 23, 1817 (1998).
[CrossRef]

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer and R. L. Byer, "42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate," Opt. Lett. 22, 1834 (1997).
[CrossRef]

R. G. Batchko, V. Y. Shur, M. M. Fejer and R. L. Byer, "Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation," Appl. Phys. Lett. 75, 1673 (1999).
[CrossRef]

P. T. Brown, G. W. Ross, R. W. Eason and A. R. Pogosyan, "Control of domain structures in lithium tantalate using interferometric optical patterning," Opt. Commun. 163, 310 (1990).
[CrossRef]

W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers and R. L. Byer, "93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator," Opt. Lett. 21, 1336 (1996).
[CrossRef] [PubMed]

G. W. Ross, M. Pollnau, P. G. R. Smith, W. A. Clarkson, P. E. Britton and D. C. Hanna, "Generation of high-power blue light in periodically poled LiNbO3," Opt. Lett. 23, 171 (1998).
[CrossRef]

M. E. Dearborn, K. Koch, G. T. Moore and J. C. Diels, "Greater than 100% photon-conversion efficiency from an optical parametric oscillator with intracavity difference-frequency mixing," Opt. Lett. 23, 759 (1998).
[CrossRef]

M. H. Chou, K. R. Parameswaran, M. M. Fejer and I. Brener, "Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides," Opt. Lett. 24, 1157 (1999).
[CrossRef]

M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou and M. M. Fejer, "Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate," Opt. Lett. 22, 1341 (1997).
[CrossRef]

G. Imeshev, M. Proctor and M. M. Fejer, "Lateral patterning of nonlinear frequency conversion with transversely varying quasi-phase-matching gratings," Opt. Lett. 23 673 (1998).
[CrossRef]

M. J. Missey, V. Dominic, P. E. Powers and K. L. Schepler, "Periodically poled lithium niobate monolithic nanosecond optical parametric oscillators and generators," Opt. Lett. 24, 1227 (1999).
[CrossRef]

P. E. Powers, T. J. Kulp and S. E. Bisson, "Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design," Opt. Lett. 23, 159 (1998).
[CrossRef]

W. P. Risk and G. M. Loiacono, "Periodic poling and waveguide frequency doubling in RbTiOAsO4," Appl. Phys. Lett. 69, 331 (1996).
[CrossRef]

R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur and L. Erman, "Continuous-wave quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate," Opt. Lett. 24, 1293 (1999).
[CrossRef]

Supplementary Material (6)

» Media 1: MOV (2449 KB)     
» Media 2: MOV (2453 KB)     
» Media 3: MOV (2611 KB)     
» Media 4: MOV (1686 KB)     
» Media 5: MOV (1176 KB)     
» Media 6: MOV (2019 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Microscopic view of a sample of periodically poled lithium niobate (top left) through crossed polarizers before being etched in HF acid and (top right) without polarizers after being etched with HF acid. (Bottom) Expanded view of the sample after being etched in HF acid.

Fig. 2.
Fig. 2.

Diagram of the electric-field poling setup. Series resistor Rs=100 MΩ, voltage monitor resistors R1=1000 MΩ R2=333 kΩ.

Fig. 3.
Fig. 3.

Electric-field poling setup and domain formation visualization equipment.

Fig. 4.
Fig. 4.

(2.45 MB) Movie of domain formation in a PPLN single-grating full-wafer.

Fig. 5.
Fig. 5.

(2.45 MB) Movie of domain formation in a multi-grating PPLN sample.

Fig. 6.
Fig. 6.

(Left, 2.61 MB) Movie of domain formation in a PPLN full-wafer with unpoled triangular and trapezoidal sections. (Right, 1.69 MB) Movie of domain formation in a PPLN full-wafer with three fan gratings.

Fig. 7.
Fig. 7.

(1.17 Mb) Movie of domain formation in a PPLN full-wafer with multi-gratings sections.

Fig. 8.
Fig. 8.

(2.0 Mb) Movie of domain formation in an overpoled multi-grating PPLN sample.

Fig. 9.
Fig. 9.

Microscopic view of the overpoled sample of periodically poled lithium niobate of Fig. 8 (top left) through crossed polarizers before being etched in HF acid and (top right) without polarizers after being etched with HF acid. (Bottom) Expanded view of the sample after being etched in HF acid.

Metrics