Abstract

The use of liquid crystal devices for wavefront control has been suggested and implemented by several authors. In this paper we report some preliminary results on the use of Nematic based liquid crystal devices. Several experimental efforts have been carried out in the past few months. One of the main aims was to characterize a new device that uses dual frequency nematic material in a closed loop arrangement.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S.R. Restaino et al., "Use of electro-optical devices for path-length compensation", Proc. Soc. Phot. Opt. Instrum. Eng. 2200,46-48 (1994).
  2. P.V. Mitchell et al. , "Innovative adaptive optics using liquid crystal light valve", Optical Society of America, Washington, D.C. (1992).
  3. G.D. Love, J.S. Fender, S.R. Restaino, "Adaptive wavefront shaping using liquid crystals", Opt. And Phot. News 6, 16-20 (1995).
    [CrossRef]
  4. G.D. Love, "Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator", App. Opt. 36, 1517-1524 (1997)
    [CrossRef]
  5. A.V. Kudryashov, J. Gonglewski, S. Browne, R. Highland, "Liquid crystal phase modulator for adaptive optics. Temporal performance characteristics", Opt. Comm. 141, 247-253 (1997)
    [CrossRef]
  6. D.C. Dayton, S.L. Browne, S.P. Sandven et. al., "Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics", App. Opt. 37, 5579-5589 (1998).
    [CrossRef]
  7. R.S. Dou, M.K. Giles, "Closed loop adaptive optics system with a liquid-crystal television as a phase retarder", Opt. Lett. 20, 1583-1585 (1995).
    [CrossRef] [PubMed]
  8. T.L. Kelly, G.D. Love, "White light performance of a polarization-independent liquid crystal phase modulator", App. Opt. 38, 1986-1989 (1999).
    [CrossRef]
  9. J. Gourlay, G.D. Love, P.M. Birch, et al. " A real time closed loop liquid crystal adaptive optics system: first results", Opt. Comm. 137, 17-21 (1997).
    [CrossRef]
  10. D. Bonaccini et al., "Adaptive optics wavefront corrector using addressable liquid crystal retarders", Proc. Soc. Phot. Opt. Instrum. Eng. 1334, 89-97 (1990)
  11. A. Purvis et al., "Optical design, simulation, and testing of an addressable 64X64 liquid crystal phase plate", Proc. Soc. Phot. Opt. Instrum. Eng. 2000, 96-98 (1993).
  12. V.A. Dorezyuk, A.F. Naumov, V.I. Shmalgauzen, "Control of liquid crystal correctors in adaptive optical systems", Sov. Phys. Tech. Phys. 34, 1384 (1989).
  13. W. Klaus et al., "Adaptive LC lens array and its applications", Proc. Soc. Phot. Opt. Instrum. Eng. 3635, 66-73 (1999).
  14. S.R. Restaino et al., "Progress report on the USAF Research Laboratory liquid crystal AO program", Proc. Soc. Phot. Opt. Instrum. Eng., 3353, 776-781 (1998)
  15. G. Labrunie, J. Robert, "Fluctuation and scattering of light in nematic liquid crystals", Journal App. Phys. 44, 48-69-4874 (1973).
  16. G.D. Love, "Liquid crystal phase modulator for unpolarized light", Appl. Opt. 32, 2222-2223 (1993).
    [CrossRef] [PubMed]

Other

S.R. Restaino et al., "Use of electro-optical devices for path-length compensation", Proc. Soc. Phot. Opt. Instrum. Eng. 2200,46-48 (1994).

P.V. Mitchell et al. , "Innovative adaptive optics using liquid crystal light valve", Optical Society of America, Washington, D.C. (1992).

G.D. Love, J.S. Fender, S.R. Restaino, "Adaptive wavefront shaping using liquid crystals", Opt. And Phot. News 6, 16-20 (1995).
[CrossRef]

G.D. Love, "Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator", App. Opt. 36, 1517-1524 (1997)
[CrossRef]

A.V. Kudryashov, J. Gonglewski, S. Browne, R. Highland, "Liquid crystal phase modulator for adaptive optics. Temporal performance characteristics", Opt. Comm. 141, 247-253 (1997)
[CrossRef]

D.C. Dayton, S.L. Browne, S.P. Sandven et. al., "Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics", App. Opt. 37, 5579-5589 (1998).
[CrossRef]

R.S. Dou, M.K. Giles, "Closed loop adaptive optics system with a liquid-crystal television as a phase retarder", Opt. Lett. 20, 1583-1585 (1995).
[CrossRef] [PubMed]

T.L. Kelly, G.D. Love, "White light performance of a polarization-independent liquid crystal phase modulator", App. Opt. 38, 1986-1989 (1999).
[CrossRef]

J. Gourlay, G.D. Love, P.M. Birch, et al. " A real time closed loop liquid crystal adaptive optics system: first results", Opt. Comm. 137, 17-21 (1997).
[CrossRef]

D. Bonaccini et al., "Adaptive optics wavefront corrector using addressable liquid crystal retarders", Proc. Soc. Phot. Opt. Instrum. Eng. 1334, 89-97 (1990)

A. Purvis et al., "Optical design, simulation, and testing of an addressable 64X64 liquid crystal phase plate", Proc. Soc. Phot. Opt. Instrum. Eng. 2000, 96-98 (1993).

V.A. Dorezyuk, A.F. Naumov, V.I. Shmalgauzen, "Control of liquid crystal correctors in adaptive optical systems", Sov. Phys. Tech. Phys. 34, 1384 (1989).

W. Klaus et al., "Adaptive LC lens array and its applications", Proc. Soc. Phot. Opt. Instrum. Eng. 3635, 66-73 (1999).

S.R. Restaino et al., "Progress report on the USAF Research Laboratory liquid crystal AO program", Proc. Soc. Phot. Opt. Instrum. Eng., 3353, 776-781 (1998)

G. Labrunie, J. Robert, "Fluctuation and scattering of light in nematic liquid crystals", Journal App. Phys. 44, 48-69-4874 (1973).

G.D. Love, "Liquid crystal phase modulator for unpolarized light", Appl. Opt. 32, 2222-2223 (1993).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: MOV (108 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Figure 1.
Figure 1.

Measured performances of dual frequency material vs. frequency

Figure 2.
Figure 2.

Schematic lay-out of the experiment

Figure 3.
Figure 3.

Average uncompensated and compensated images.

Figure 4.
Figure 4.

Video of the closed-loop experiment.(942 KB movie size)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

OP = Δ z · n .
Δ ϕ = 2 π λ d 2 d 2 [ n ( z ) n ] dz + Δ Φ .

Metrics