Abstract

The propagation of few-cycle THz pulses are measured by the improved CCD based 2D THz imaging system. There exists strong spatio-temporal shaping effect, leading to dramatically time dependent beam diameter and wave front. Theoretical simulation is given.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. You and P.H. Bucksbaum, "Propagation of half-cycle far infrared pulses," J. Opt. Soc. Am. B. 14, 1651- 1655 (1997).
    [CrossRef]
  2. A.E. Kaplan, "Diffraction-induced transformation of near-cycle and subcycle pulses," J. Opt. Soc. Am. B. 15, 951-956 (1999).
    [CrossRef]
  3. S. Feng, H.G. Winful, and R.W. Hellwarth, "Gouy shift and temporal reshaping of focused single-cycle electromagnetic pulses," Opt. Lett. 23, 385-387 (1998); Opt. Lett. 23, 1141 (1998).
    [CrossRef]
  4. S. Hunsche, S. Feng, H.G. Winful, A. Leitenstorfer, M.C. Nuss, and E.P. Ippen, "Spatiotemporal focusing of single-cycle light pulses," J. Opt. Soc. Am. A 16, 2025-2028 (1999).
    [CrossRef]
  5. K. Wynne and D.A. Jaroszynski, "Superluminal terahertz pulses," Opt. Lett. 24, 25-27 (1999).
    [CrossRef]
  6. E. Budiarto, P. Nen-Wen, J. Seongtae and J. Bokor, "Near-field propagation of terahertz pulses from a large-aperture antenna," Opt. Lett. 23, 213-215 (1998).
    [CrossRef]
  7. J. Bromage, S. Radic, G.P. Agrawal, C.R. Stroud, Jr., P.M. Fauchet, and R. Sobolewski, "Spatiotemporal shaping of terahertz pulses," Opt. Lett. 22, 627-629 (1997).
    [CrossRef] [PubMed]
  8. J. Bromage, S. Radic, G.P. Agrawal, C.R. Stroud, Jr., P.M. Fauchet, and R. Sobolewski, "Spatiotemporal shaping of half-cycle terahertz pulses by diffraction through conductive apertures of finite thickness," J. Opt. Soc. Am. B 15, 1953-1959 (1998).
    [CrossRef]
  9. Q. Wu, T.D. Hewitt, and X.-C. Zhang, "Two-dimensional electro-optic imaging of THz beams," Appl. Phys. Lett. 69, 1026-1028 (1996).
    [CrossRef]
  10. Z.G. Lu, P. Campbell, and X.-C. Zhang, "Free-space electro-optic sampling with a high-repetition- rate regenerative amplified laser," Appl. Phys. Lett. 71, 593-595 (1997).
    [CrossRef]
  11. A.M. Weiner, "Femtosecond optical pulse shaping and processing," Progress in Quantum Electronics, 19. 161- 237 (1995).
    [CrossRef]

Other (11)

D. You and P.H. Bucksbaum, "Propagation of half-cycle far infrared pulses," J. Opt. Soc. Am. B. 14, 1651- 1655 (1997).
[CrossRef]

A.E. Kaplan, "Diffraction-induced transformation of near-cycle and subcycle pulses," J. Opt. Soc. Am. B. 15, 951-956 (1999).
[CrossRef]

S. Feng, H.G. Winful, and R.W. Hellwarth, "Gouy shift and temporal reshaping of focused single-cycle electromagnetic pulses," Opt. Lett. 23, 385-387 (1998); Opt. Lett. 23, 1141 (1998).
[CrossRef]

S. Hunsche, S. Feng, H.G. Winful, A. Leitenstorfer, M.C. Nuss, and E.P. Ippen, "Spatiotemporal focusing of single-cycle light pulses," J. Opt. Soc. Am. A 16, 2025-2028 (1999).
[CrossRef]

K. Wynne and D.A. Jaroszynski, "Superluminal terahertz pulses," Opt. Lett. 24, 25-27 (1999).
[CrossRef]

E. Budiarto, P. Nen-Wen, J. Seongtae and J. Bokor, "Near-field propagation of terahertz pulses from a large-aperture antenna," Opt. Lett. 23, 213-215 (1998).
[CrossRef]

J. Bromage, S. Radic, G.P. Agrawal, C.R. Stroud, Jr., P.M. Fauchet, and R. Sobolewski, "Spatiotemporal shaping of terahertz pulses," Opt. Lett. 22, 627-629 (1997).
[CrossRef] [PubMed]

J. Bromage, S. Radic, G.P. Agrawal, C.R. Stroud, Jr., P.M. Fauchet, and R. Sobolewski, "Spatiotemporal shaping of half-cycle terahertz pulses by diffraction through conductive apertures of finite thickness," J. Opt. Soc. Am. B 15, 1953-1959 (1998).
[CrossRef]

Q. Wu, T.D. Hewitt, and X.-C. Zhang, "Two-dimensional electro-optic imaging of THz beams," Appl. Phys. Lett. 69, 1026-1028 (1996).
[CrossRef]

Z.G. Lu, P. Campbell, and X.-C. Zhang, "Free-space electro-optic sampling with a high-repetition- rate regenerative amplified laser," Appl. Phys. Lett. 71, 593-595 (1997).
[CrossRef]

A.M. Weiner, "Femtosecond optical pulse shaping and processing," Progress in Quantum Electronics, 19. 161- 237 (1995).
[CrossRef]

Supplementary Material (2)

» Media 1: MOV (344 KB)     
» Media 2: MOV (398 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup of THz imaging with dynamic subtraction.

Fig. 2.
Fig. 2.

Two configurations used in this proposal. (a) Point scanning system. THz is focused by 4 parabolic mirrors; (b) Single lens system.

Fig. 3.
Fig. 3.

Spatio-temporal distribution at (a) the focal plane; (b) 1.5 cm away from the focal plane.

Fig. 4.
Fig. 4.

2D spatial distribution at (a) t=0 and (b) t≠0. Click (b) to see the dynamic evolution of the 2D spatial distribution, the number in the figure is time delay. (345 kB QuickTime movie)

Fig. 5.
Fig. 5.

The X-shape spatio-temporal distribution obtained with the 2f-2f imaging system, showing strong space-time coupling in the propagation of few-cycle pulses.

Fig. 6.
Fig. 6.

Dynamic evolution of the measured 2D distribution when the emitter-to-lens distance d 1 is scanned from 31.5 cm to 7.5 cm with step size of 0.5 cm. (399 kB QuickTime movie)

Fig. 7.
Fig. 7.

Simulated spatio-temporal distribution. (Refer to Fig. 5 for experimental result)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E 1 ( x 1 , y 1 , z ) = 1 A exp [ ikz + ikC 2 A ( x 1 2 + y 1 2 ) ] E 0 ( x 1 A , y 1 A , 0 )

Metrics