Abstract

We present a 3D implementation of the UCL imaging package for absorption and scatter reconstruction from time-resolved data (TOAST), embedded in the SCIRun interactive simulation and visualization package developed at the University of Utah. SCIRun is a scientific programming environment that allows the interactive construction, debugging, and steering of large-scale scientific computations. While the capabilities of SCIRun’s interactive approach are not yet fully exploited in the current TOAST implementation, an immediate benefit of the combined TOAST/SCIRun package is the availability of optimized parallel finite element forward solvers, and the use of SCIRun’s existing 3D visualisation tools. A reconstruction of a segmented 3D head model is used as an example for demonstrating the capability of TOAST/SCIRun of simulating anatomically shaped meshes.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Arridge, M. Schweiger, and D. T. Delpy, “Iterative reconstruction of near-infrared absorption images,” In Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE 1767, 372–383 (1992).
    [Crossref]
  2. M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).
    [Crossref]
  3. K. D. Paulsen and H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
    [Crossref] [PubMed]
  4. B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
    [Crossref] [PubMed]
  5. R. Model, M. Orlt, M. Walzel, and R. Hünlich, “Reconstruction algorithm for near-infrared imaging in turbid media by means of time-domain data,” Appl. Opt. 14, 313–324 (1997).
  6. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R1–R53 (1999).
    [Crossref]
  7. J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
    [Crossref] [PubMed]
  8. S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
    [Crossref] [PubMed]
  9. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Simultaneous reconstruction of absorption and scattering profiles in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).
    [Crossref] [PubMed]
  10. S. R. Arridge and M. Schweiger, “Sensitivity to prior knowledge in optical tomographic reconstruction,” In Optical Tomography, Photon Migration, and Spectroscopy of Tissue and ModelMedia: Theory, Human Studies, and Instrumentation, B. Chance and R. R. Alfano, eds., Proc SPIE 2389, 378–388 (1995).
    [Crossref]
  11. J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. C. Hillman, D. T. Delpy, and S. R. Arridge, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett.24 (1999).
  12. M. Schweiger and S. R. Arridge, “The UCL optical tomography software system (TOAST)” http://www.medphys.ucl.ac.uk/toast/index.htm
  13. M. Schweiger and S. R. Arridge, “Comparison of 2D and 3D reconstruction algorithms in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
    [Crossref]
  14. S. G. Parker, D. M. Weinstein, and C. R. Johnson, “The SCIRun computational steering software system,” In Modern Software Tools in Scientific Computing, edited by E. Arge, A. M. Bruaset, and H. P. Langtangen, 1–40 (Birkhauser Press, 1997).
  15. S. G. Parker and C. R. Johnson, “SCIRun: A scientific programming environment for computational steering,” Supercomputing ’95 (1995) http://www.supercomp.org/sc95/proceedings/499_SPAR/SC95.HTM
  16. J. Vetter and K. Schwan, “Models for computational steering,” in: Proceedings of the Third International Conference on Configurable Distributed Systems (1996)
  17. S. G. Parker, M. Miller, C. D. Hansen, and C. R. Johnson, “An integrated problem solving environment: The SCIRun computational steering system,” In Proceedings of the 31st Hawaii International Conference on System Sciences (HICSS-31) (IEEE Computer Society Press, 1998).
  18. T. A. McCormick, T. A. DeFanti, and M. D. Brown, “Visualisation in scientific computing,” Computer Graphics 21, v–ix, 1–14, A1-E8 (1987)
  19. S. R. Arridge and M. Schweiger. “Photon measurement density functions. Part 2: Finite element calculations.” Appl. Opt. 34, 8026–8037, (1995).
    [Crossref] [PubMed]
  20. M. Schweiger and S. R. Arridge, “Optimal data types in Optical Tomography”, In Information Processing in Medical Imaging, edited by J. Duncan and G. Gindi, 71–84 (Springer, New York, 1997)
    [Crossref]

1999 (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R1–R53 (1999).
[Crossref]

1998 (1)

1997 (3)

R. Model, M. Orlt, M. Walzel, and R. Hünlich, “Reconstruction algorithm for near-infrared imaging in turbid media by means of time-domain data,” Appl. Opt. 14, 313–324 (1997).

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[Crossref] [PubMed]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[Crossref] [PubMed]

1995 (5)

S. R. Arridge and M. Schweiger, “Sensitivity to prior knowledge in optical tomographic reconstruction,” In Optical Tomography, Photon Migration, and Spectroscopy of Tissue and ModelMedia: Theory, Human Studies, and Instrumentation, B. Chance and R. R. Alfano, eds., Proc SPIE 2389, 378–388 (1995).
[Crossref]

K. D. Paulsen and H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[Crossref] [PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[Crossref] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Simultaneous reconstruction of absorption and scattering profiles in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).
[Crossref] [PubMed]

S. R. Arridge and M. Schweiger. “Photon measurement density functions. Part 2: Finite element calculations.” Appl. Opt. 34, 8026–8037, (1995).
[Crossref] [PubMed]

1993 (1)

M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).
[Crossref]

1992 (1)

S. R. Arridge, M. Schweiger, and D. T. Delpy, “Iterative reconstruction of near-infrared absorption images,” In Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE 1767, 372–383 (1992).
[Crossref]

1987 (1)

T. A. McCormick, T. A. DeFanti, and M. D. Brown, “Visualisation in scientific computing,” Computer Graphics 21, v–ix, 1–14, A1-E8 (1987)

Arridge, S. R.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R1–R53 (1999).
[Crossref]

M. Schweiger and S. R. Arridge, “Comparison of 2D and 3D reconstruction algorithms in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
[Crossref]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[Crossref] [PubMed]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[Crossref] [PubMed]

S. R. Arridge and M. Schweiger, “Sensitivity to prior knowledge in optical tomographic reconstruction,” In Optical Tomography, Photon Migration, and Spectroscopy of Tissue and ModelMedia: Theory, Human Studies, and Instrumentation, B. Chance and R. R. Alfano, eds., Proc SPIE 2389, 378–388 (1995).
[Crossref]

S. R. Arridge and M. Schweiger. “Photon measurement density functions. Part 2: Finite element calculations.” Appl. Opt. 34, 8026–8037, (1995).
[Crossref] [PubMed]

M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).
[Crossref]

S. R. Arridge, M. Schweiger, and D. T. Delpy, “Iterative reconstruction of near-infrared absorption images,” In Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE 1767, 372–383 (1992).
[Crossref]

M. Schweiger and S. R. Arridge, “Optimal data types in Optical Tomography”, In Information Processing in Medical Imaging, edited by J. Duncan and G. Gindi, 71–84 (Springer, New York, 1997)
[Crossref]

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. C. Hillman, D. T. Delpy, and S. R. Arridge, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett.24 (1999).

M. Schweiger and S. R. Arridge, “The UCL optical tomography software system (TOAST)” http://www.medphys.ucl.ac.uk/toast/index.htm

Brown, M. D.

T. A. McCormick, T. A. DeFanti, and M. D. Brown, “Visualisation in scientific computing,” Computer Graphics 21, v–ix, 1–14, A1-E8 (1987)

DeFanti, T. A.

T. A. McCormick, T. A. DeFanti, and M. D. Brown, “Visualisation in scientific computing,” Computer Graphics 21, v–ix, 1–14, A1-E8 (1987)

Delpy, D. T.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[Crossref] [PubMed]

M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).
[Crossref]

S. R. Arridge, M. Schweiger, and D. T. Delpy, “Iterative reconstruction of near-infrared absorption images,” In Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE 1767, 372–383 (1992).
[Crossref]

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. C. Hillman, D. T. Delpy, and S. R. Arridge, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett.24 (1999).

Fry, M. E.

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. C. Hillman, D. T. Delpy, and S. R. Arridge, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett.24 (1999).

Hansen, C. D.

S. G. Parker, M. Miller, C. D. Hansen, and C. R. Johnson, “An integrated problem solving environment: The SCIRun computational steering system,” In Proceedings of the 31st Hawaii International Conference on System Sciences (HICSS-31) (IEEE Computer Society Press, 1998).

Hebden, J. C.

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[Crossref] [PubMed]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[Crossref] [PubMed]

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. C. Hillman, D. T. Delpy, and S. R. Arridge, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett.24 (1999).

Hillman, E. C.

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. C. Hillman, D. T. Delpy, and S. R. Arridge, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett.24 (1999).

Hünlich, R.

R. Model, M. Orlt, M. Walzel, and R. Hünlich, “Reconstruction algorithm for near-infrared imaging in turbid media by means of time-domain data,” Appl. Opt. 14, 313–324 (1997).

Jiang, H.

B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[Crossref] [PubMed]

K. D. Paulsen and H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[Crossref] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Simultaneous reconstruction of absorption and scattering profiles in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).
[Crossref] [PubMed]

Johnson, C. R.

S. G. Parker, M. Miller, C. D. Hansen, and C. R. Johnson, “An integrated problem solving environment: The SCIRun computational steering system,” In Proceedings of the 31st Hawaii International Conference on System Sciences (HICSS-31) (IEEE Computer Society Press, 1998).

S. G. Parker and C. R. Johnson, “SCIRun: A scientific programming environment for computational steering,” Supercomputing ’95 (1995) http://www.supercomp.org/sc95/proceedings/499_SPAR/SC95.HTM

S. G. Parker, D. M. Weinstein, and C. R. Johnson, “The SCIRun computational steering software system,” In Modern Software Tools in Scientific Computing, edited by E. Arge, A. M. Bruaset, and H. P. Langtangen, 1–40 (Birkhauser Press, 1997).

McCormick, T. A.

T. A. McCormick, T. A. DeFanti, and M. D. Brown, “Visualisation in scientific computing,” Computer Graphics 21, v–ix, 1–14, A1-E8 (1987)

Miller, M.

S. G. Parker, M. Miller, C. D. Hansen, and C. R. Johnson, “An integrated problem solving environment: The SCIRun computational steering system,” In Proceedings of the 31st Hawaii International Conference on System Sciences (HICSS-31) (IEEE Computer Society Press, 1998).

Model, R.

R. Model, M. Orlt, M. Walzel, and R. Hünlich, “Reconstruction algorithm for near-infrared imaging in turbid media by means of time-domain data,” Appl. Opt. 14, 313–324 (1997).

Orlt, M.

R. Model, M. Orlt, M. Walzel, and R. Hünlich, “Reconstruction algorithm for near-infrared imaging in turbid media by means of time-domain data,” Appl. Opt. 14, 313–324 (1997).

Osterberg, U. L.

Parker, S. G.

S. G. Parker, M. Miller, C. D. Hansen, and C. R. Johnson, “An integrated problem solving environment: The SCIRun computational steering system,” In Proceedings of the 31st Hawaii International Conference on System Sciences (HICSS-31) (IEEE Computer Society Press, 1998).

S. G. Parker and C. R. Johnson, “SCIRun: A scientific programming environment for computational steering,” Supercomputing ’95 (1995) http://www.supercomp.org/sc95/proceedings/499_SPAR/SC95.HTM

S. G. Parker, D. M. Weinstein, and C. R. Johnson, “The SCIRun computational steering software system,” In Modern Software Tools in Scientific Computing, edited by E. Arge, A. M. Bruaset, and H. P. Langtangen, 1–40 (Birkhauser Press, 1997).

Patterson, M. S.

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Simultaneous reconstruction of absorption and scattering profiles in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).
[Crossref] [PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[Crossref] [PubMed]

Paulsen, K. D.

B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[Crossref] [PubMed]

K. D. Paulsen and H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[Crossref] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Simultaneous reconstruction of absorption and scattering profiles in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).
[Crossref] [PubMed]

Pogue, B. W.

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Simultaneous reconstruction of absorption and scattering profiles in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).
[Crossref] [PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[Crossref] [PubMed]

Schmidt, F. E. W.

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. C. Hillman, D. T. Delpy, and S. R. Arridge, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett.24 (1999).

Schwan, K.

J. Vetter and K. Schwan, “Models for computational steering,” in: Proceedings of the Third International Conference on Configurable Distributed Systems (1996)

Schweiger, M.

M. Schweiger and S. R. Arridge, “Comparison of 2D and 3D reconstruction algorithms in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
[Crossref]

S. R. Arridge and M. Schweiger. “Photon measurement density functions. Part 2: Finite element calculations.” Appl. Opt. 34, 8026–8037, (1995).
[Crossref] [PubMed]

S. R. Arridge and M. Schweiger, “Sensitivity to prior knowledge in optical tomographic reconstruction,” In Optical Tomography, Photon Migration, and Spectroscopy of Tissue and ModelMedia: Theory, Human Studies, and Instrumentation, B. Chance and R. R. Alfano, eds., Proc SPIE 2389, 378–388 (1995).
[Crossref]

M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).
[Crossref]

S. R. Arridge, M. Schweiger, and D. T. Delpy, “Iterative reconstruction of near-infrared absorption images,” In Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE 1767, 372–383 (1992).
[Crossref]

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. C. Hillman, D. T. Delpy, and S. R. Arridge, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett.24 (1999).

M. Schweiger and S. R. Arridge, “Optimal data types in Optical Tomography”, In Information Processing in Medical Imaging, edited by J. Duncan and G. Gindi, 71–84 (Springer, New York, 1997)
[Crossref]

M. Schweiger and S. R. Arridge, “The UCL optical tomography software system (TOAST)” http://www.medphys.ucl.ac.uk/toast/index.htm

Vetter, J.

J. Vetter and K. Schwan, “Models for computational steering,” in: Proceedings of the Third International Conference on Configurable Distributed Systems (1996)

Walzel, M.

R. Model, M. Orlt, M. Walzel, and R. Hünlich, “Reconstruction algorithm for near-infrared imaging in turbid media by means of time-domain data,” Appl. Opt. 14, 313–324 (1997).

Weinstein, D. M.

S. G. Parker, D. M. Weinstein, and C. R. Johnson, “The SCIRun computational steering software system,” In Modern Software Tools in Scientific Computing, edited by E. Arge, A. M. Bruaset, and H. P. Langtangen, 1–40 (Birkhauser Press, 1997).

Appl. Opt. (3)

Computer Graphics (1)

T. A. McCormick, T. A. DeFanti, and M. D. Brown, “Visualisation in scientific computing,” Computer Graphics 21, v–ix, 1–14, A1-E8 (1987)

Inverse Problems (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R1–R53 (1999).
[Crossref]

J. Math. Imag. Vision (1)

M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).
[Crossref]

Med. Phys. (1)

K. D. Paulsen and H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (3)

B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[Crossref] [PubMed]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[Crossref] [PubMed]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[Crossref] [PubMed]

Proc SPIE (1)

S. R. Arridge and M. Schweiger, “Sensitivity to prior knowledge in optical tomographic reconstruction,” In Optical Tomography, Photon Migration, and Spectroscopy of Tissue and ModelMedia: Theory, Human Studies, and Instrumentation, B. Chance and R. R. Alfano, eds., Proc SPIE 2389, 378–388 (1995).
[Crossref]

Proc. SPIE (1)

S. R. Arridge, M. Schweiger, and D. T. Delpy, “Iterative reconstruction of near-infrared absorption images,” In Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE 1767, 372–383 (1992).
[Crossref]

Other (7)

M. Schweiger and S. R. Arridge, “Optimal data types in Optical Tomography”, In Information Processing in Medical Imaging, edited by J. Duncan and G. Gindi, 71–84 (Springer, New York, 1997)
[Crossref]

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. C. Hillman, D. T. Delpy, and S. R. Arridge, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett.24 (1999).

M. Schweiger and S. R. Arridge, “The UCL optical tomography software system (TOAST)” http://www.medphys.ucl.ac.uk/toast/index.htm

S. G. Parker, D. M. Weinstein, and C. R. Johnson, “The SCIRun computational steering software system,” In Modern Software Tools in Scientific Computing, edited by E. Arge, A. M. Bruaset, and H. P. Langtangen, 1–40 (Birkhauser Press, 1997).

S. G. Parker and C. R. Johnson, “SCIRun: A scientific programming environment for computational steering,” Supercomputing ’95 (1995) http://www.supercomp.org/sc95/proceedings/499_SPAR/SC95.HTM

J. Vetter and K. Schwan, “Models for computational steering,” in: Proceedings of the Third International Conference on Configurable Distributed Systems (1996)

S. G. Parker, M. Miller, C. D. Hansen, and C. R. Johnson, “An integrated problem solving environment: The SCIRun computational steering system,” In Proceedings of the 31st Hawaii International Conference on System Sciences (HICSS-31) (IEEE Computer Society Press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Figure 1.
Figure 1.

SCIRun data flow example for loading and visualization of reconstruction results as scalar fields

Figure 2.
Figure 2.

User interface for the TOAST module.

Figure 3.
Figure 3.

Left: high-resolution head mesh (98142 nodes, 452243 elements) used for forward data calculation; right: cross section of a low-resolution mesh showing the 4 regions opex-4-8-263-i001, opex-4-8-263-i002, opex-4-8-263-i003 and opex-4-8-263-i004.

Figure 4.
Figure 4.

Timings for forward data generation of intensity (left) and skew data (right). Tested platforms are: SGI Onyx VTX (1-8 processors) and dual Pentium-II 450 (1 and 2 processors). Each bar is divided into setup and system matrix assembly time (bottom) and conjugate gradient solver time (top).

Figure 5.
Figure 5.

Isosurfaces of PMDF for skew data. Green: absorption PMDF (isosurface value -2), blue: diffusion PMDF (isosurface value -0.23).

Figure 6.
Figure 6.

Simultaneous (μa ,μs ) reconstruction of inhomogeneities from known background parameters using skew and Laplace(s=0.005) data. Isosurfaces denote: opex-4-8-263-i005 (value 0.025),opex-4-8-263-i006(value 1.5), opex-4-8-263-i007 (left image, value 0.0126) and opex-4-8-263-i008 (right image, value 1.5).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( μ ̂ a , μ ̂ s ) = arg min μ a , μ s [ y M F M ( μ a , μ s ) + G ( μ a , μ s ) ]

Metrics