Abstract

Wavelength-dependent, polarized, elastic-scatter spectra of tissue phantoms and in vitro tissue are presented. These measurements are shown to be sensitive to very small changes in composition of the scattering medium. A simple physical explanation of the wavelength-dependent polarization phenomena observed for media consisting only of spherical particles is given and the relevance of wavelength-dependent, polarized, elastic-scatter spectra to in vivo applications is discussed.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. J. Farrell, M. S. Patterson and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992).
    [CrossRef] [PubMed]
  2. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams and B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A 11, 2727-2741 (1994).
    [CrossRef]
  3. S. Fantini, M. A. Franceschini and E. Gratton, "Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation," J. Opt. Soc. Am. B 11, 2128-2138 (1994).
    [CrossRef]
  4. J. R. Mourant, J. Boyer, A. H. Hielscher and I. J. Bigio, "Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separations," Opt. Lett. 21, 546-548 (1996).
    [CrossRef] [PubMed]
  5. M. Mehr?beoglu, N. Kehtarnavaz, S. Rastegar and L. V. Wong, "Effect of molecular concentrations in tissue-simulating phantoms on images obtained using diffuse reflectance polarimetry," Opt. Express 3, 286-297(1998). http://www.opticsexpress/oearchive/source/5758.htm
    [CrossRef] [PubMed]
  6. B. F. Hochheimer, "Polarized retinal photography of a monkey eye," Vision Research 18, 19-23 (1978).
    [CrossRef] [PubMed]
  7. M. R. Ostermeyer, D. V. Stephens, L. Wang and S. L. Jacques , "Nearfield Polarization Effects on Light Propagation in Random Media", Trends in Optics and Photonics: Biomedical Optical Spectroscopy and Diagnostics, Vol. 3, pp. 20-26, 1996.
  8. A. H. Hielscher, J. R. Mourant and I. J. Bigio, "Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions," Appl. Opt. 36, 125-135 (1997).
    [CrossRef] [PubMed]
  9. A. I. Carswell and S. R. Pal, "Polarization anisotropy in lidar multiple scattering from clouds," Appl. Opt. 19, 4123-4126 (1980).
    [CrossRef] [PubMed]
  10. B. F. Hochheimer and H. A. Kues, "Retinal polarization effects," Appl. Opt. 21, 3811-3818 (1982).
    [CrossRef] [PubMed]
  11. L. V. Wang, G. Marquez and S. L. Thomsen, "Anisotropic absorption and reduced scattering spectra of chicken breast tissue measured using oblique incidence reflectometry," SPIE vol. 3250, 33-41 (1998).
    [CrossRef]
  12. M. Dogariu and T. Asakura, "Polarization-dependent backscattering patterns from weakly scattering media," J. Opt. (Paris) 24, 271-278 (1993).
    [CrossRef]
  13. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen and T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Appl Opt. 37, 3586- 3593 (1998).
    [CrossRef]
  14. J. M. Schmitt and G. Kumar, "Turbulent nature of refractive-index variations in biologicl tissue," Opt. Lett. 21,1310-132 (1996).
    [CrossRef] [PubMed]
  15. J. R. Mourant, A. H. Hielscher, A. A. Eick, T. M. Johnson and J. P. Freyer, "Evidence of intrinsic differences in the light scattering properties of tumorigenic and nontumorigenic cells," Cancer Cytopath. 84, 366-374 (1998).
  16. S. R. Pal and A. I. Carswell, "Polarization anisotropy in lidar multiple scattering from atmospheric clouds," Appl. Opt. 24, 3464-3471 (1985).
    [CrossRef] [PubMed]
  17. A. Dogariu, M. Dogariu, K. Richardson, S. D. Jacobs and G. D. Boreman, "Polarization asymmetry in waves backscattering from highly absorbance random media," Appl. Opt. 36, 8159-8167 (1997).
    [CrossRef]
  18. M. J. Rakovic and G. W. Kattawar, "Theoretical analysis of polarization patterns from incoherent backscattering of light," Appl. Opt. 37, 3333-3338 (1998).
    [CrossRef]
  19. B. D. Cameron, M. J. Rakovic, M. Mehr?beoglu, G. W. Kattawar, S. Rastegar, L. V. Wang and G. L. Cote, "Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium," Opt. Lett. 23, 485-787 (1998) and 23, 1630 (1998).
    [CrossRef]
  20. B. Beauvoit, T. Kitai and B. Chance, "Contribution of the mitochondrial compartment to the optical properties of the rat liver: A theoretical and practical approach," Biophys. J. 67, 2501-2510 (1994).
    [CrossRef] [PubMed]
  21. S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, "Polarization filter for biomedical tissue optical imaging," Photochem. Photobiol,. 66, 821-825 (1997).
    [CrossRef]
  22. S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, "Time resolved degree of polarization for human breast tissue," Opt. Comm. 124:439-442 (1996).
    [CrossRef]
  23. S. Asano and M. Sato, "Light scattering by randomly oriented spheroidal particles," Appl. Opt. 19, 962-972 (1980).
    [CrossRef] [PubMed]
  24. J. M. Schmitt and S. H. Xiang, "Cross-polarized backscatter in optical coherence tomography of biological tissue," Opt. Lett. 23, 1060-1062 (1998).
    [CrossRef]

Other

T. J. Farrell, M. S. Patterson and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992).
[CrossRef] [PubMed]

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams and B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A 11, 2727-2741 (1994).
[CrossRef]

S. Fantini, M. A. Franceschini and E. Gratton, "Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation," J. Opt. Soc. Am. B 11, 2128-2138 (1994).
[CrossRef]

J. R. Mourant, J. Boyer, A. H. Hielscher and I. J. Bigio, "Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separations," Opt. Lett. 21, 546-548 (1996).
[CrossRef] [PubMed]

M. Mehr?beoglu, N. Kehtarnavaz, S. Rastegar and L. V. Wong, "Effect of molecular concentrations in tissue-simulating phantoms on images obtained using diffuse reflectance polarimetry," Opt. Express 3, 286-297(1998). http://www.opticsexpress/oearchive/source/5758.htm
[CrossRef] [PubMed]

B. F. Hochheimer, "Polarized retinal photography of a monkey eye," Vision Research 18, 19-23 (1978).
[CrossRef] [PubMed]

M. R. Ostermeyer, D. V. Stephens, L. Wang and S. L. Jacques , "Nearfield Polarization Effects on Light Propagation in Random Media", Trends in Optics and Photonics: Biomedical Optical Spectroscopy and Diagnostics, Vol. 3, pp. 20-26, 1996.

A. H. Hielscher, J. R. Mourant and I. J. Bigio, "Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions," Appl. Opt. 36, 125-135 (1997).
[CrossRef] [PubMed]

A. I. Carswell and S. R. Pal, "Polarization anisotropy in lidar multiple scattering from clouds," Appl. Opt. 19, 4123-4126 (1980).
[CrossRef] [PubMed]

B. F. Hochheimer and H. A. Kues, "Retinal polarization effects," Appl. Opt. 21, 3811-3818 (1982).
[CrossRef] [PubMed]

L. V. Wang, G. Marquez and S. L. Thomsen, "Anisotropic absorption and reduced scattering spectra of chicken breast tissue measured using oblique incidence reflectometry," SPIE vol. 3250, 33-41 (1998).
[CrossRef]

M. Dogariu and T. Asakura, "Polarization-dependent backscattering patterns from weakly scattering media," J. Opt. (Paris) 24, 271-278 (1993).
[CrossRef]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen and T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Appl Opt. 37, 3586- 3593 (1998).
[CrossRef]

J. M. Schmitt and G. Kumar, "Turbulent nature of refractive-index variations in biologicl tissue," Opt. Lett. 21,1310-132 (1996).
[CrossRef] [PubMed]

J. R. Mourant, A. H. Hielscher, A. A. Eick, T. M. Johnson and J. P. Freyer, "Evidence of intrinsic differences in the light scattering properties of tumorigenic and nontumorigenic cells," Cancer Cytopath. 84, 366-374 (1998).

S. R. Pal and A. I. Carswell, "Polarization anisotropy in lidar multiple scattering from atmospheric clouds," Appl. Opt. 24, 3464-3471 (1985).
[CrossRef] [PubMed]

A. Dogariu, M. Dogariu, K. Richardson, S. D. Jacobs and G. D. Boreman, "Polarization asymmetry in waves backscattering from highly absorbance random media," Appl. Opt. 36, 8159-8167 (1997).
[CrossRef]

M. J. Rakovic and G. W. Kattawar, "Theoretical analysis of polarization patterns from incoherent backscattering of light," Appl. Opt. 37, 3333-3338 (1998).
[CrossRef]

B. D. Cameron, M. J. Rakovic, M. Mehr?beoglu, G. W. Kattawar, S. Rastegar, L. V. Wang and G. L. Cote, "Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium," Opt. Lett. 23, 485-787 (1998) and 23, 1630 (1998).
[CrossRef]

B. Beauvoit, T. Kitai and B. Chance, "Contribution of the mitochondrial compartment to the optical properties of the rat liver: A theoretical and practical approach," Biophys. J. 67, 2501-2510 (1994).
[CrossRef] [PubMed]

S. G. Demos, A. J. Papadopoulos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, "Polarization filter for biomedical tissue optical imaging," Photochem. Photobiol,. 66, 821-825 (1997).
[CrossRef]

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, "Time resolved degree of polarization for human breast tissue," Opt. Comm. 124:439-442 (1996).
[CrossRef]

S. Asano and M. Sato, "Light scattering by randomly oriented spheroidal particles," Appl. Opt. 19, 962-972 (1980).
[CrossRef] [PubMed]

J. M. Schmitt and S. H. Xiang, "Cross-polarized backscatter in optical coherence tomography of biological tissue," Opt. Lett. 23, 1060-1062 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

End view of the fibers in the measurement probe showing the orientation of the collection fibers (labeled 1-4) with respect to the light polarization passed by the polarizer placed on the end of the probe.

Fig. 2.
Fig. 2.

Polarization ratios for several suspensions of polystyrene spheres. The area under the curve between 500 and 750 nm was made equal for all traces on the graph.

Fig. 3
Fig. 3

Polarization ratios for several suspensions of polystyrene spheres. The area under the curve between 965 and 1000 nm was set equal to 1 for all curves.

Fig. 4.
Fig. 4.

Unpolarized measurements of similar polystyrene sphere suspensions. The data has been normalized from 500 to 700 nm.

Fig. 5.
Fig. 5.

Demonstration that R(λ) is only weakly affected by absorption.

Fig. 6.
Fig. 6.

Polarization images of chicken liver obtained with a) parallel polarizers and b) perpendicular polarizers in the delivery and light collection beam paths. The diameter of the imaged tissue is 0.93 cm. 3.2 Measurements of in vitro tissue

Fig. 7.
Fig. 7.

Polarization ratio, R(λ), for chicken liver and chicken breast.

Fig. 8
Fig. 8

Polarization phase functions for a) a 1.0 μm radius sphere and b) a 0.01 μm radius sphere.

Fig. 9.
Fig. 9.

Phase functions for 0.505 μm diameter spheres at 650 nm.

Fig. 10.
Fig. 10.

Comparison of model and data for the polarization ratio.

Tables (1)

Tables Icon

Table 1. Percent change in signal over a specified wavelength range upon addition of small quantities of 8.1 μm diameter spheres to a suspension of 0.505 μm diameter spheres.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R ( λ ) = I 1 ( λ ) + I 3 ( λ ) I 2 ( λ ) + I 4 ( λ )
C 1 + C 2 μ s θ 1 θ 2 P ( λ , θ )
R ( λ ) = C + θ 1 θ 2 P ( λ , θ ) C + θ 1 θ 2 P ( λ , θ )

Metrics