Abstract

Residual reflections of the idler wave in nominally singly resonant optical parametric oscillators can lead to fluctuations in the output because the parametric conversion process is sensitive to the phases of the reflected waves. The energy fluctuations in a pulsed optical parametric oscillator are studied experimentally and numerically for single- or multi-longitudinal mode pump beams. We find that the fluctuations are reduced by a multi-mode pump so this may be preferable when unwanted reflections are present. We also observe that the parametric conversion process leads to serious self-focusing of the pump beam, and this limits the maximum safe pump energy.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Falk, “Instabilities in the doubly resonant parametric oscillator: A theoretical analysis,” IEEE J. Quantum Electron. QE-7, 230–235 (1971).
    [CrossRef]
  2. R. G. Smith, “A study of factors affecting the performance of a continuously pumped doubly resonant optical parametric oscillator,” IEEE J. Quantum Electron. QE-9, 530–541 (1973).
    [CrossRef]
  3. R. C. Eckardt, C. D. Nabors, W. J. Kozlovsky, and R. L. Byer, “Optical parametric oscillator frequency tuning and control,” J. Opt. Soc. Am. B 8, 646–667 (1991).
    [CrossRef]
  4. M. Scheidt, B. Beier, R. Knappe, K. J. Boller, and R. Wallenstein, “Diode-laser-pumped continuous-wave KTP optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2087–2094 (1995).
    [CrossRef]
  5. S. T. Yang, R. C. Eckardt, and R. L. Byer, “Power and spectral characteristics of continuous-wave parametric oscillators: The doubly to singly resonant transition,” J. Opt. Soc. Am. B 10, 1684–1695 (1993).
    [CrossRef]
  6. G. Arisholm, “Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators,” J. Opt. Soc. Am. B 16, 117–127 (1999).
    [CrossRef]
  7. G. Arisholm, “Advanced numerical simulation models for second-order nonlinear interactions,” in “Laser Optics ’98: Fundamental Problems of Laser Optics,” N. N. Rozanov, ed., Proc. SPIE 3685, 86–97 (1999).
    [CrossRef]
  8. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
    [CrossRef]
  9. D. C. Hovde, J. H. Timmermans, G. Scoles, and K. K. Lehmann, “High power injection seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
    [CrossRef]
  10. J. G. Haub, R. M. Hentschel, M. J. Johnson, and B. J. Orr, “Controlling the performance of a pulsed optical parametric oscillator: A survey of techniques and spectroscopic applications,” J. Opt. Soc. Am. B 12, 2128–2141 (1995).
    [CrossRef]
  11. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992).
    [CrossRef] [PubMed]
  12. J. B. Khurgin, A. Obeidat, S. J. Lee, and Y. J. Ding, “Cascaded optical nonlinearities: Microscopic understanding as a collective effect,” J. Opt. Soc. Am. B 14, 1977–1983 (1997).
    [CrossRef]
  13. A. V. Smith and M. S. Bowers, “Phase distortions in sum- and difference-frequency mixing in crystals,” J. Opt. Soc. Am. B 12, 49–57 (1995).
    [CrossRef]
  14. M. Vaidyanathan, R. C. Eckardt, V. Dominic, L. E. Myers, and T. P. Grayson, “Cascaded optical parametric oscillations,” Opt. Express 1, 49–53 (1997).
    [CrossRef] [PubMed]

1999 (2)

G. Arisholm, “Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators,” J. Opt. Soc. Am. B 16, 117–127 (1999).
[CrossRef]

G. Arisholm, “Advanced numerical simulation models for second-order nonlinear interactions,” in “Laser Optics ’98: Fundamental Problems of Laser Optics,” N. N. Rozanov, ed., Proc. SPIE 3685, 86–97 (1999).
[CrossRef]

1997 (3)

1995 (3)

1993 (1)

1992 (1)

1991 (2)

R. C. Eckardt, C. D. Nabors, W. J. Kozlovsky, and R. L. Byer, “Optical parametric oscillator frequency tuning and control,” J. Opt. Soc. Am. B 8, 646–667 (1991).
[CrossRef]

D. C. Hovde, J. H. Timmermans, G. Scoles, and K. K. Lehmann, “High power injection seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
[CrossRef]

1973 (1)

R. G. Smith, “A study of factors affecting the performance of a continuously pumped doubly resonant optical parametric oscillator,” IEEE J. Quantum Electron. QE-9, 530–541 (1973).
[CrossRef]

1971 (1)

J. Falk, “Instabilities in the doubly resonant parametric oscillator: A theoretical analysis,” IEEE J. Quantum Electron. QE-7, 230–235 (1971).
[CrossRef]

Arisholm, G.

G. Arisholm, “Advanced numerical simulation models for second-order nonlinear interactions,” in “Laser Optics ’98: Fundamental Problems of Laser Optics,” N. N. Rozanov, ed., Proc. SPIE 3685, 86–97 (1999).
[CrossRef]

G. Arisholm, “Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators,” J. Opt. Soc. Am. B 16, 117–127 (1999).
[CrossRef]

Beier, B.

Boller, K. J.

Bowers, M. S.

Byer, R. L.

DeSalvo, R.

Ding, Y. J.

Dominic, V.

Eckardt, R. C.

Falk, J.

J. Falk, “Instabilities in the doubly resonant parametric oscillator: A theoretical analysis,” IEEE J. Quantum Electron. QE-7, 230–235 (1971).
[CrossRef]

Grayson, T. P.

Hagan, D. J.

Haub, J. G.

Hentschel, R. M.

Hovde, D. C.

D. C. Hovde, J. H. Timmermans, G. Scoles, and K. K. Lehmann, “High power injection seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
[CrossRef]

Ito, R.

Johnson, M. J.

Khurgin, J. B.

Kitamoto, A.

Knappe, R.

Kondo, T.

Kozlovsky, W. J.

Lee, S. J.

Lehmann, K. K.

D. C. Hovde, J. H. Timmermans, G. Scoles, and K. K. Lehmann, “High power injection seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
[CrossRef]

Myers, L. E.

Nabors, C. D.

Obeidat, A.

Orr, B. J.

Scheidt, M.

Scoles, G.

D. C. Hovde, J. H. Timmermans, G. Scoles, and K. K. Lehmann, “High power injection seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
[CrossRef]

Sheik-Bahae, M.

Shirane, M.

Shoji, I.

Smith, A. V.

Smith, R. G.

R. G. Smith, “A study of factors affecting the performance of a continuously pumped doubly resonant optical parametric oscillator,” IEEE J. Quantum Electron. QE-9, 530–541 (1973).
[CrossRef]

Stegeman, G.

Timmermans, J. H.

D. C. Hovde, J. H. Timmermans, G. Scoles, and K. K. Lehmann, “High power injection seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
[CrossRef]

Vaidyanathan, M.

van Stryland, E. W.

Vanherzeele, H.

Wallenstein, R.

Yang, S. T.

IEEE J. Quantum Electron. (2)

J. Falk, “Instabilities in the doubly resonant parametric oscillator: A theoretical analysis,” IEEE J. Quantum Electron. QE-7, 230–235 (1971).
[CrossRef]

R. G. Smith, “A study of factors affecting the performance of a continuously pumped doubly resonant optical parametric oscillator,” IEEE J. Quantum Electron. QE-9, 530–541 (1973).
[CrossRef]

J. Opt. Soc. Am. B (8)

R. C. Eckardt, C. D. Nabors, W. J. Kozlovsky, and R. L. Byer, “Optical parametric oscillator frequency tuning and control,” J. Opt. Soc. Am. B 8, 646–667 (1991).
[CrossRef]

M. Scheidt, B. Beier, R. Knappe, K. J. Boller, and R. Wallenstein, “Diode-laser-pumped continuous-wave KTP optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2087–2094 (1995).
[CrossRef]

S. T. Yang, R. C. Eckardt, and R. L. Byer, “Power and spectral characteristics of continuous-wave parametric oscillators: The doubly to singly resonant transition,” J. Opt. Soc. Am. B 10, 1684–1695 (1993).
[CrossRef]

G. Arisholm, “Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators,” J. Opt. Soc. Am. B 16, 117–127 (1999).
[CrossRef]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
[CrossRef]

J. G. Haub, R. M. Hentschel, M. J. Johnson, and B. J. Orr, “Controlling the performance of a pulsed optical parametric oscillator: A survey of techniques and spectroscopic applications,” J. Opt. Soc. Am. B 12, 2128–2141 (1995).
[CrossRef]

J. B. Khurgin, A. Obeidat, S. J. Lee, and Y. J. Ding, “Cascaded optical nonlinearities: Microscopic understanding as a collective effect,” J. Opt. Soc. Am. B 14, 1977–1983 (1997).
[CrossRef]

A. V. Smith and M. S. Bowers, “Phase distortions in sum- and difference-frequency mixing in crystals,” J. Opt. Soc. Am. B 12, 49–57 (1995).
[CrossRef]

Opt. Commun. (1)

D. C. Hovde, J. H. Timmermans, G. Scoles, and K. K. Lehmann, “High power injection seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

G. Arisholm, “Advanced numerical simulation models for second-order nonlinear interactions,” in “Laser Optics ’98: Fundamental Problems of Laser Optics,” N. N. Rozanov, ed., Proc. SPIE 3685, 86–97 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Figure 1.
Figure 1.

Model OPO. ω 1, ω 2, and ω 3 denote the angular frequencies of the idler, signal, and pump, respectively, where ω 3 = ω 1 + ω 2.

Figure 2.
Figure 2.

(a) Simulated pump fluence incident on the OPO. (b) Actual pump fluence measured by imaging the beam at mirror M1 into a CCD camera. The energy contents in (a) and (b) are equal.

Figure 3.
Figure 3.

Signal energy vs pump energy. The solid lines represent minimum and maximum energy observed in the experiments, and the dashed lines represent the simulations. (a) Single-mode pump. (b) Multi-mode pump.

Figure 4.
Figure 4.

Range of variation of the simulated signal energy for an OPO with fixed phase conditions Δϕ M1 = Δϕ M2 = Δϕp = 0 and a multi-mode pump.

Figure 5.
Figure 5.

Pump and signal powers vs time. In each graph the pump is the upper trace and the signal is the lower trace. (a) Experimental, multi-mode pump. (b) Experimental, single-mode pump. (c) Simulation, multi-mode pump. (d) Simulation, single-mode pump. The pump energy was 190 μJ.

Figure 6.
Figure 6.

Simulated (a-e) and measured (f-j) output pump beams for different pump energies: (a,f) 110 μJ, (b,g) 230 μJ, (c,h) 320 μJ, (d,i) 410 μJ, (e,j) 640 μJ. The pump was multi-mode. The pump was measured by imaging the beam at mirror M2 into a CCD camera.

Tables (1)

Tables Icon

Table 1. Design reflectances and actual reflectances of the mirrors. M1 is the pump input mirror, and M2 is the signal output mirror.

Metrics