Abstract

The use of light for probing and imaging of biomedical media offers the promise for development of safe, noninvasive, and inexpensive clinical imaging modalities with diagnostic ability. Various properties of light together with the ways it interacts with biological tissues may provide multiple windows to peer inside body organs. Principles and methods for extraction of information about body functions and lesions that capitalize on temporal, spectral, polarization, and spatial characteristics of transmitted light are briefly outlined. As illustrations of the potential and efficacy of light-based techniques, time-sliced and spectroscopic images of normal and cancerous human breast tissues recorded with a femtosecond Ti:sapphire laser and a broadly tunable Cr:forsterite laser, respectively, are presented.

© Optical Society of America

PDF Article

References

  • View by:
  • |

  1. For a brief review of different optical imaging techniques see, S. K. Gayen and R. R. Alfano, "Emerging optical biomedical imaging techniques," Opt. Photon. News 7(3), 17-22 (1996).
  2. S. Webb, The Physics of Medical Imaging, (Institute of Physics Publishing, Bristol, 1988).
  3. M. Cutler, "Transillumination as an aid in the diagnosis of breast lesion," Surg. Gynecol. Obstet. 48, 721-730 (1929).
  4. G. J. Muller, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg and P. van der Zeect (editors), Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS 11, SPIE Institute Series, (SPIE, Bellingham, Washington, 1993).
  5. L. Wang, P. P. Ho, C. Liu, G. Zhang and R. R. Alfano, "Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate," Science 253, 769-771 (1991).
  6. M. R. Hee, J. Izzat, J. Jacobson, J. G. Fujimoto and E. A. Swanson, "Femtosecond transillumination optical coherence tomography," Opt. Lett. 18, 950-952 (1993).
  7. M. A. OLeary, D. A. Boas, B. Chance and A. G. Yodh, "Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography," Opt. Lett. 20, 426-428 (1995).
  8. K. P. Chan, M. Yamada and H. Inaba, "Optical imaging through highly scattering media by use of heterodyne detection in the 1.3-mm wavelength region," Opt. Lett. 20, 492-494 (1995).
  9. K. M. Yoo and R. R. Alfano, "Time-resolved coherent and incoherent components of forward light scattering in random media," Opt. Lett. 15, 320-322 (1990).
  10. A. D. Sappey, "Optical Imaging through turbid media with a degenerate four wave mixing correlation time gate," Appl. Opt. 33, 8346-8353 (1994).
  11. S. G. Demos and R. R. Alfano, "Temporal gating in highly scattering media by the degree of optical polarization," Opt. Lett. 21, 161-163 (1996).
  12. D. S. Dilworth, E. N. Leith and J. L. Lopez, "Three-dimensional confocal imaging of objects embedded within thick diffusing media," Appl. Opt. 30, 1796-1803 (1991).
  13. J. J. Dolne, K. M. Yoo, F. Liu and R. R. Alfano, "IR Fourier space gate and absorption imaging through random media," Lasers in Life Sciences 6, 131-141 (1994).
  14. J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan and J. Reintjes, "Achievable spatial resolution of time-resolved transillumination imaging systems which use multiply scattered light," Phys. Rev. E 53, 1142-1155 (1996).
  15. W. Denk, "Two-photon excitation in functional biological imaging," J. Biomed. Opt. 1, 296-304 (1996).
  16. Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin and R. R. Alfano, "Second-harmonic tomography of tissues," Opt. Lett. 22, 1323-1326 (1997).
  17. For a recent review of the inverse reconstruction methods, see S. R. Arridge and J. C. Hebden, "Optical imaging in medicine: II. modeling and reconstruction," Phys. Med. Biol. 42, 841-853 (1997).
  18. R. R. Alfano, A. Pradhan, G. C. Tang and S. J. Wahl, "Optical spectroscopic diagnosis of cancer and normal breast tissues," J. Opt. Soc. Am. B 6, 1015-1023 (1989).
  19. R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente and E. Celmer, "Human breast tissue studied by IR Fourier transform Raman spectroscopy," Laser Life Sci. 4, 23-28 (1991).
  20. R. R. Alfano, S. G. Demos and S. K. Gayen, "Advances in optical imaging of biomedical media," in Annals of the New York Academy of Sciences 820, 248-271 (1997).
  21. S. K. Gayen, M. E. Zevallos, M. Alrubaiee, J. M. Evans and R. R. Alfano, "Two-dimensional near-infrared transillumination imaging of biomedical media with a chromium-doped forsterite laser," Appl. Opt. 37, 5327-5336 (1998).
  22. V. G. Peters, D. R. Wyman, M. S. Patterson and G. L. Frank, "Optical properties of normal and diseased human breast tissues in the visible and near infrared," Phys. Med. Biol. 9, 1317-1334 (1990).
  23. F. A. Marks, "Optical determination of the hemoglobin oxygenation state of breast biopsies and human breast cancer xenografts in nude mice," in Proceedings of Physical Monitoring and Early Detection Diagnosis Methods, Thomas S. Mang and Abraham Katzir, eds., Proc. SPIE 1641, 227-237 (1992).
  24. W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax and R. R. Alfano, "Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements," Appl. Opt. 38 (to be published).

Other (24)

For a brief review of different optical imaging techniques see, S. K. Gayen and R. R. Alfano, "Emerging optical biomedical imaging techniques," Opt. Photon. News 7(3), 17-22 (1996).

S. Webb, The Physics of Medical Imaging, (Institute of Physics Publishing, Bristol, 1988).

M. Cutler, "Transillumination as an aid in the diagnosis of breast lesion," Surg. Gynecol. Obstet. 48, 721-730 (1929).

G. J. Muller, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg and P. van der Zeect (editors), Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS 11, SPIE Institute Series, (SPIE, Bellingham, Washington, 1993).

L. Wang, P. P. Ho, C. Liu, G. Zhang and R. R. Alfano, "Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate," Science 253, 769-771 (1991).

M. R. Hee, J. Izzat, J. Jacobson, J. G. Fujimoto and E. A. Swanson, "Femtosecond transillumination optical coherence tomography," Opt. Lett. 18, 950-952 (1993).

M. A. OLeary, D. A. Boas, B. Chance and A. G. Yodh, "Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography," Opt. Lett. 20, 426-428 (1995).

K. P. Chan, M. Yamada and H. Inaba, "Optical imaging through highly scattering media by use of heterodyne detection in the 1.3-mm wavelength region," Opt. Lett. 20, 492-494 (1995).

K. M. Yoo and R. R. Alfano, "Time-resolved coherent and incoherent components of forward light scattering in random media," Opt. Lett. 15, 320-322 (1990).

A. D. Sappey, "Optical Imaging through turbid media with a degenerate four wave mixing correlation time gate," Appl. Opt. 33, 8346-8353 (1994).

S. G. Demos and R. R. Alfano, "Temporal gating in highly scattering media by the degree of optical polarization," Opt. Lett. 21, 161-163 (1996).

D. S. Dilworth, E. N. Leith and J. L. Lopez, "Three-dimensional confocal imaging of objects embedded within thick diffusing media," Appl. Opt. 30, 1796-1803 (1991).

J. J. Dolne, K. M. Yoo, F. Liu and R. R. Alfano, "IR Fourier space gate and absorption imaging through random media," Lasers in Life Sciences 6, 131-141 (1994).

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan and J. Reintjes, "Achievable spatial resolution of time-resolved transillumination imaging systems which use multiply scattered light," Phys. Rev. E 53, 1142-1155 (1996).

W. Denk, "Two-photon excitation in functional biological imaging," J. Biomed. Opt. 1, 296-304 (1996).

Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin and R. R. Alfano, "Second-harmonic tomography of tissues," Opt. Lett. 22, 1323-1326 (1997).

For a recent review of the inverse reconstruction methods, see S. R. Arridge and J. C. Hebden, "Optical imaging in medicine: II. modeling and reconstruction," Phys. Med. Biol. 42, 841-853 (1997).

R. R. Alfano, A. Pradhan, G. C. Tang and S. J. Wahl, "Optical spectroscopic diagnosis of cancer and normal breast tissues," J. Opt. Soc. Am. B 6, 1015-1023 (1989).

R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente and E. Celmer, "Human breast tissue studied by IR Fourier transform Raman spectroscopy," Laser Life Sci. 4, 23-28 (1991).

R. R. Alfano, S. G. Demos and S. K. Gayen, "Advances in optical imaging of biomedical media," in Annals of the New York Academy of Sciences 820, 248-271 (1997).

S. K. Gayen, M. E. Zevallos, M. Alrubaiee, J. M. Evans and R. R. Alfano, "Two-dimensional near-infrared transillumination imaging of biomedical media with a chromium-doped forsterite laser," Appl. Opt. 37, 5327-5336 (1998).

V. G. Peters, D. R. Wyman, M. S. Patterson and G. L. Frank, "Optical properties of normal and diseased human breast tissues in the visible and near infrared," Phys. Med. Biol. 9, 1317-1334 (1990).

F. A. Marks, "Optical determination of the hemoglobin oxygenation state of breast biopsies and human breast cancer xenografts in nude mice," in Proceedings of Physical Monitoring and Early Detection Diagnosis Methods, Thomas S. Mang and Abraham Katzir, eds., Proc. SPIE 1641, 227-237 (1992).

W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax and R. R. Alfano, "Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements," Appl. Opt. 38 (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics