Abstract

The use of light for probing and imaging of biomedical media offers the promise for development of safe, noninvasive, and inexpensive clinical imaging modalities with diagnostic ability. Various properties of light together with the ways it interacts with biological tissues may provide ‘multiple windows’ to peer inside body organs. Principles and methods for extraction of information about body functions and lesions that capitalize on temporal, spectral, polarization, and spatial characteristics of transmitted light are briefly outlined. As illustrations of the potential and efficacy of light-based techniques, time-sliced and spectroscopic images of normal and cancerous human breast tissues recorded with a femtosecond Ti:sapphire laser and a broadly tunable Cr:forsterite laser, respectively, are presented.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Gayen and R. R. Alfano, For a brief review of different optical imaging techniques see, “Emerging optical biomedical imaging techniques,” Opt. Photon. News 7(3), 17–22 (1996).
  2. S. Webb, The Physics of Medical Imaging, (Institute of Physics Publishing, Bristol, 1988).
    [CrossRef]
  3. M. Cutler, “Transillumination as an aid in the diagnosis of breast lesion,” Surg. Gynecol. Obstet. 48, 721–730 (1929).
  4. G. J. Muller, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, and P. van der Zeect (editors), Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS 11, SPIE Institute Series, (SPIE, Bellingham, Washington, 1993).
  5. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
    [CrossRef] [PubMed]
  6. M. R. Hee, J. Izzat, J. Jacobson, J. G. Fujimoto, and E. A. Swanson, “Femtosecond transillumination optical coherence tomography, ” Opt. Lett. 18, 950–952 (1993).
    [CrossRef] [PubMed]
  7. M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995.
    [CrossRef] [PubMed]
  8. K. P. Chan, M. Yamada, and H. Inaba, “Optical imaging through highly scattering media by use of heterodyne detection in the 1.3-μm wavelength region,” Opt. Lett. 20, 492–494 (1995).
    [CrossRef] [PubMed]
  9. K. M. Yoo and R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15, 320–322 (1990).
    [CrossRef] [PubMed]
  10. A. D. Sappey, “Optical Imaging through turbid media with a degenerate four wave mixing correlation time gate,” Appl. Opt. 33, 8346–8353 (1994).
    [CrossRef] [PubMed]
  11. S. G. Demos and R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161–163 (1996).
    [CrossRef] [PubMed]
  12. D. S. Dilworth, E. N. Leith, and J. L. Lopez, “Three-dimensional confocal imaging of objects embedded within thick diffusing media,” Appl. Opt. 30, 1796–1803 (1991).
    [CrossRef] [PubMed]
  13. J. J. Dolne, K. M. Yoo, F. Liu, and R. R. Alfano, “IR Fourier space gate and absorption imaging through random media,” Lasers in Life Sciences 6, 131–141 (1994).
  14. J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, and J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which use multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
    [CrossRef]
  15. W. Denk, “Two-photon excitation in functional biological imaging,” J. Biomed. Opt. 1, 296–304 (1996).
    [CrossRef] [PubMed]
  16. Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, “Second-harmonic tomography of tissues,” Opt. Lett. 22, 1323–1326 (1997).
    [CrossRef]
  17. S. R. Arridge and J. C. Hebden For a recent review of the inverse reconstruction methods, see, “Optical imaging in medicine: II. modeling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
    [CrossRef] [PubMed]
  18. R. R. Alfano, A. Pradhan, G. C. Tang, and S. J. Wahl, “Optical spectroscopic diagnosis of cancer and normal breast tissues,” J. Opt. Soc. Am. B 6, 1015–1023 (1989).
    [CrossRef]
  19. R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente, and E. Celmer, “Human breast tissue studied by IR Fourier transform Raman spectroscopy,” Laser Life Sci. 4, 23–28 (1991).
  20. R. R. Alfano, S. G. Demos, and S. K. Gayen, “Advances in optical imaging of biomedical media,” in Annals of the New York Academy of Sciences  820, 248–271 (1997).
  21. S. K. Gayen, M. E. Zevallos, M. Alrubaiee, J. M. Evans, and R. R. Alfano, “Two-dimensional near-infrared transillumination imaging of biomedical media with a chromium-doped forsterite laser,” Appl. Opt. 37, 5327–5336 (1998).
    [CrossRef]
  22. V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 9, 1317–1334 (1990).
    [CrossRef]
  23. F. A. Marks, “Optical determination of the hemoglobin oxygenation state of breast biopsies and human breast cancer xenografts in nude mice,” in Proceedings of Physical Monitoring and Early Detection Diagnosis Methods, Thomas S. Mang and Abraham Katzir, eds., Proc. SPIE 1641, 227–237 (1992).
    [CrossRef]
  24. W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38 (to be published).
    [PubMed]

1998 (1)

1997 (3)

Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, “Second-harmonic tomography of tissues,” Opt. Lett. 22, 1323–1326 (1997).
[CrossRef]

S. R. Arridge and J. C. Hebden For a recent review of the inverse reconstruction methods, see, “Optical imaging in medicine: II. modeling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef] [PubMed]

R. R. Alfano, S. G. Demos, and S. K. Gayen, “Advances in optical imaging of biomedical media,” in Annals of the New York Academy of Sciences  820, 248–271 (1997).

1996 (4)

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, and J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which use multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
[CrossRef]

W. Denk, “Two-photon excitation in functional biological imaging,” J. Biomed. Opt. 1, 296–304 (1996).
[CrossRef] [PubMed]

S. K. Gayen and R. R. Alfano, For a brief review of different optical imaging techniques see, “Emerging optical biomedical imaging techniques,” Opt. Photon. News 7(3), 17–22 (1996).

S. G. Demos and R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161–163 (1996).
[CrossRef] [PubMed]

1995 (2)

1994 (2)

A. D. Sappey, “Optical Imaging through turbid media with a degenerate four wave mixing correlation time gate,” Appl. Opt. 33, 8346–8353 (1994).
[CrossRef] [PubMed]

J. J. Dolne, K. M. Yoo, F. Liu, and R. R. Alfano, “IR Fourier space gate and absorption imaging through random media,” Lasers in Life Sciences 6, 131–141 (1994).

1993 (1)

1992 (1)

F. A. Marks, “Optical determination of the hemoglobin oxygenation state of breast biopsies and human breast cancer xenografts in nude mice,” in Proceedings of Physical Monitoring and Early Detection Diagnosis Methods, Thomas S. Mang and Abraham Katzir, eds., Proc. SPIE 1641, 227–237 (1992).
[CrossRef]

1991 (3)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

D. S. Dilworth, E. N. Leith, and J. L. Lopez, “Three-dimensional confocal imaging of objects embedded within thick diffusing media,” Appl. Opt. 30, 1796–1803 (1991).
[CrossRef] [PubMed]

R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente, and E. Celmer, “Human breast tissue studied by IR Fourier transform Raman spectroscopy,” Laser Life Sci. 4, 23–28 (1991).

1990 (2)

K. M. Yoo and R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15, 320–322 (1990).
[CrossRef] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 9, 1317–1334 (1990).
[CrossRef]

1989 (1)

1929 (1)

M. Cutler, “Transillumination as an aid in the diagnosis of breast lesion,” Surg. Gynecol. Obstet. 48, 721–730 (1929).

Akins, D. L.

R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente, and E. Celmer, “Human breast tissue studied by IR Fourier transform Raman spectroscopy,” Laser Life Sci. 4, 23–28 (1991).

Alfano, R. R.

S. K. Gayen, M. E. Zevallos, M. Alrubaiee, J. M. Evans, and R. R. Alfano, “Two-dimensional near-infrared transillumination imaging of biomedical media with a chromium-doped forsterite laser,” Appl. Opt. 37, 5327–5336 (1998).
[CrossRef]

R. R. Alfano, S. G. Demos, and S. K. Gayen, “Advances in optical imaging of biomedical media,” in Annals of the New York Academy of Sciences  820, 248–271 (1997).

Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, “Second-harmonic tomography of tissues,” Opt. Lett. 22, 1323–1326 (1997).
[CrossRef]

S. K. Gayen and R. R. Alfano, For a brief review of different optical imaging techniques see, “Emerging optical biomedical imaging techniques,” Opt. Photon. News 7(3), 17–22 (1996).

S. G. Demos and R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161–163 (1996).
[CrossRef] [PubMed]

J. J. Dolne, K. M. Yoo, F. Liu, and R. R. Alfano, “IR Fourier space gate and absorption imaging through random media,” Lasers in Life Sciences 6, 131–141 (1994).

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente, and E. Celmer, “Human breast tissue studied by IR Fourier transform Raman spectroscopy,” Laser Life Sci. 4, 23–28 (1991).

K. M. Yoo and R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15, 320–322 (1990).
[CrossRef] [PubMed]

R. R. Alfano, A. Pradhan, G. C. Tang, and S. J. Wahl, “Optical spectroscopic diagnosis of cancer and normal breast tissues,” J. Opt. Soc. Am. B 6, 1015–1023 (1989).
[CrossRef]

W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38 (to be published).
[PubMed]

Alrubaiee, M.

S. K. Gayen, M. E. Zevallos, M. Alrubaiee, J. M. Evans, and R. R. Alfano, “Two-dimensional near-infrared transillumination imaging of biomedical media with a chromium-doped forsterite laser,” Appl. Opt. 37, 5327–5336 (1998).
[CrossRef]

W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38 (to be published).
[PubMed]

Arridge, S. R.

S. R. Arridge and J. C. Hebden For a recent review of the inverse reconstruction methods, see, “Optical imaging in medicine: II. modeling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef] [PubMed]

Bashkansky, M.

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, and J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which use multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
[CrossRef]

Battle, P. R.

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, and J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which use multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
[CrossRef]

Boas, D. A.

Cai, W.

W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38 (to be published).
[PubMed]

Celmer, E.

R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente, and E. Celmer, “Human breast tissue studied by IR Fourier transform Raman spectroscopy,” Laser Life Sci. 4, 23–28 (1991).

Chan, K. P.

Chance, B.

Cleary, J.

R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente, and E. Celmer, “Human breast tissue studied by IR Fourier transform Raman spectroscopy,” Laser Life Sci. 4, 23–28 (1991).

Cutler, M.

M. Cutler, “Transillumination as an aid in the diagnosis of breast lesion,” Surg. Gynecol. Obstet. 48, 721–730 (1929).

Demos, S. G.

R. R. Alfano, S. G. Demos, and S. K. Gayen, “Advances in optical imaging of biomedical media,” in Annals of the New York Academy of Sciences  820, 248–271 (1997).

S. G. Demos and R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161–163 (1996).
[CrossRef] [PubMed]

Denk, W.

W. Denk, “Two-photon excitation in functional biological imaging,” J. Biomed. Opt. 1, 296–304 (1996).
[CrossRef] [PubMed]

Dilworth, D. S.

Dolne, J. J.

J. J. Dolne, K. M. Yoo, F. Liu, and R. R. Alfano, “IR Fourier space gate and absorption imaging through random media,” Lasers in Life Sciences 6, 131–141 (1994).

Duncan, M. D.

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, and J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which use multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
[CrossRef]

Evans, J. M.

Frank, G. L.

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 9, 1317–1334 (1990).
[CrossRef]

Fujimoto, J. G.

Gayen, S. K.

S. K. Gayen, M. E. Zevallos, M. Alrubaiee, J. M. Evans, and R. R. Alfano, “Two-dimensional near-infrared transillumination imaging of biomedical media with a chromium-doped forsterite laser,” Appl. Opt. 37, 5327–5336 (1998).
[CrossRef]

R. R. Alfano, S. G. Demos, and S. K. Gayen, “Advances in optical imaging of biomedical media,” in Annals of the New York Academy of Sciences  820, 248–271 (1997).

S. K. Gayen and R. R. Alfano, For a brief review of different optical imaging techniques see, “Emerging optical biomedical imaging techniques,” Opt. Photon. News 7(3), 17–22 (1996).

W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38 (to be published).
[PubMed]

Guo, Y.

Harris, D.

Hebden, J. C.

S. R. Arridge and J. C. Hebden For a recent review of the inverse reconstruction methods, see, “Optical imaging in medicine: II. modeling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef] [PubMed]

Hee, M. R.

Ho, P. P.

Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, “Second-harmonic tomography of tissues,” Opt. Lett. 22, 1323–1326 (1997).
[CrossRef]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Inaba, H.

Izzat, J.

Jacobson, J.

Lax, M.

W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38 (to be published).
[PubMed]

Leith, E. N.

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Liu, C. H.

R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente, and E. Celmer, “Human breast tissue studied by IR Fourier transform Raman spectroscopy,” Laser Life Sci. 4, 23–28 (1991).

Liu, F.

Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, “Second-harmonic tomography of tissues,” Opt. Lett. 22, 1323–1326 (1997).
[CrossRef]

J. J. Dolne, K. M. Yoo, F. Liu, and R. R. Alfano, “IR Fourier space gate and absorption imaging through random media,” Lasers in Life Sciences 6, 131–141 (1994).

Lopez, J. L.

Mahon, R.

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, and J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which use multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
[CrossRef]

Marks, F. A.

F. A. Marks, “Optical determination of the hemoglobin oxygenation state of breast biopsies and human breast cancer xenografts in nude mice,” in Proceedings of Physical Monitoring and Early Detection Diagnosis Methods, Thomas S. Mang and Abraham Katzir, eds., Proc. SPIE 1641, 227–237 (1992).
[CrossRef]

Moon, J. A.

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, and J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which use multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
[CrossRef]

O'Leary, M. A.

Patterson, M. S.

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 9, 1317–1334 (1990).
[CrossRef]

Peters, V. G.

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 9, 1317–1334 (1990).
[CrossRef]

Pradhan, A.

Prudente, R.

R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente, and E. Celmer, “Human breast tissue studied by IR Fourier transform Raman spectroscopy,” Laser Life Sci. 4, 23–28 (1991).

Reintjes, J.

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, and J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which use multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
[CrossRef]

Sacks, P.

Sappey, A. D.

Savage, H.

Schantz, S.

Sha, W. L.

R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente, and E. Celmer, “Human breast tissue studied by IR Fourier transform Raman spectroscopy,” Laser Life Sci. 4, 23–28 (1991).

Swanson, E. A.

Tang, G. C.

Wahl, S. J.

Wang, L.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Webb, S.

S. Webb, The Physics of Medical Imaging, (Institute of Physics Publishing, Bristol, 1988).
[CrossRef]

Wyman, D. R.

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 9, 1317–1334 (1990).
[CrossRef]

Xu, M.

W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38 (to be published).
[PubMed]

Yamada, M.

Yodh, A. G.

Yoo, K. M.

J. J. Dolne, K. M. Yoo, F. Liu, and R. R. Alfano, “IR Fourier space gate and absorption imaging through random media,” Lasers in Life Sciences 6, 131–141 (1994).

K. M. Yoo and R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15, 320–322 (1990).
[CrossRef] [PubMed]

Zevallos, M.

W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38 (to be published).
[PubMed]

Zevallos, M. E.

Zhadin, N.

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Zhu, H. R.

R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente, and E. Celmer, “Human breast tissue studied by IR Fourier transform Raman spectroscopy,” Laser Life Sci. 4, 23–28 (1991).

Appl. Opt. (4)

J. Biomed. Opt. (1)

W. Denk, “Two-photon excitation in functional biological imaging,” J. Biomed. Opt. 1, 296–304 (1996).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Laser Life Sci. (1)

R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente, and E. Celmer, “Human breast tissue studied by IR Fourier transform Raman spectroscopy,” Laser Life Sci. 4, 23–28 (1991).

Lasers in Life Sciences (1)

J. J. Dolne, K. M. Yoo, F. Liu, and R. R. Alfano, “IR Fourier space gate and absorption imaging through random media,” Lasers in Life Sciences 6, 131–141 (1994).

Opt. Lett. (6)

Opt. Photon. News (1)

S. K. Gayen and R. R. Alfano, For a brief review of different optical imaging techniques see, “Emerging optical biomedical imaging techniques,” Opt. Photon. News 7(3), 17–22 (1996).

Phys. Med. Biol. (2)

S. R. Arridge and J. C. Hebden For a recent review of the inverse reconstruction methods, see, “Optical imaging in medicine: II. modeling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997).
[CrossRef] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 9, 1317–1334 (1990).
[CrossRef]

Phys. Rev. E (1)

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, and J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which use multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
[CrossRef]

Proc. SPIE (1)

F. A. Marks, “Optical determination of the hemoglobin oxygenation state of breast biopsies and human breast cancer xenografts in nude mice,” in Proceedings of Physical Monitoring and Early Detection Diagnosis Methods, Thomas S. Mang and Abraham Katzir, eds., Proc. SPIE 1641, 227–237 (1992).
[CrossRef]

Science (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Surg. Gynecol. Obstet. (1)

M. Cutler, “Transillumination as an aid in the diagnosis of breast lesion,” Surg. Gynecol. Obstet. 48, 721–730 (1929).

Other (3)

G. J. Muller, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, and P. van der Zeect (editors), Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS 11, SPIE Institute Series, (SPIE, Bellingham, Washington, 1993).

S. Webb, The Physics of Medical Imaging, (Institute of Physics Publishing, Bristol, 1988).
[CrossRef]

R. R. Alfano, S. G. Demos, and S. K. Gayen, “Advances in optical imaging of biomedical media,” in Annals of the New York Academy of Sciences  820, 248–271 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Time-sliced 2D images (left) of a 25mmx9mmx5mm breast tissue sample with normal and cancerous components for gate positions of 25 ps and 275 ps. Spatial intensity profiles integrated along the same horizontal area are shown in the respective frames to the right. A schematic diagram of the sample is shown in the top left frame. The zero position was taken to be the time of arrival of the light pulse through a 5-mm thick glass cell filled with water.

Fig. 2.
Fig. 2.

Spectroscopic 2D images (left frames) of a 28mmx12mmx10mm normal human breast tissue comprising fibrous (F) and adipose (A) components recorded with (a) 1225 nm and (b) 1285 nm light. Spatial intensity profiles of the images integrated over the same vertical area are shown in the respective frames to the right.

Metrics