Abstract

An interferometric quantum cryptographic system at 1550nm wavelength using gated InGaAs Avalanche Photo Diodes as single-photon receivers is demonstrated for a transmission distance up to 40 km.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. H. Bennett, F. Bessete, G. Brassard, L. Salvail and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5, 3-23 (1992).
    [CrossRef]
  2. R. Hughes, G. L. Morgan, C. G. Peterson, "Practical quantum key distribution over a 48-km optical fiber network," Los Alamos e-print archive quant-ph/9904038, submitted to J. of Mod. Opt.
  3. P. D. Townsend, "Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fiber using wavelength division multiplexing," Electron. Lett. 33, 188-189 (1997).
    [CrossRef]
  4. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden and N. Gisin, "Plug and play" systems for quantum cryptography," Appl. Phys. Lett. 70, 793-795 (1997).
    [CrossRef]
  5. G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard and H. Zbinden, "Automated plug & play quantum key distribution," Elec. Lett. 34, 2116-2117 (1998).
    [CrossRef]
  6. J.-M. Merolla, Y. Mazurenko, J.-P. Goedgebuer and W. M. Rhodes, "Single-photon interference in sidebands of phase-modulated light for quantum cryptography," Phys. Rev. Lett. 82, 1656-1659 (1999).
    [CrossRef]
  7. G. Ribordy, J. T. Gautier, H. Zbinden and N. Gisin. "Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters," Appl. Opt. 37, 2272-2277 (1998).
    [CrossRef]
  8. C. H. Bennett, "Quantum cryptography using any two non-orthogonal states," Phys. Rev. Lett. 68 3121-3124 (1992).
    [CrossRef] [PubMed]
  9. H. Zbinden, H. Bechman-Pasquinucci, N. Gisin and G. Ribordy, "Quantum cryptography," Appl. Phys.B 67, 743-748 (1998).
    [CrossRef]

Other

C. H. Bennett, F. Bessete, G. Brassard, L. Salvail and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5, 3-23 (1992).
[CrossRef]

R. Hughes, G. L. Morgan, C. G. Peterson, "Practical quantum key distribution over a 48-km optical fiber network," Los Alamos e-print archive quant-ph/9904038, submitted to J. of Mod. Opt.

P. D. Townsend, "Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fiber using wavelength division multiplexing," Electron. Lett. 33, 188-189 (1997).
[CrossRef]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden and N. Gisin, "Plug and play" systems for quantum cryptography," Appl. Phys. Lett. 70, 793-795 (1997).
[CrossRef]

G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard and H. Zbinden, "Automated plug & play quantum key distribution," Elec. Lett. 34, 2116-2117 (1998).
[CrossRef]

J.-M. Merolla, Y. Mazurenko, J.-P. Goedgebuer and W. M. Rhodes, "Single-photon interference in sidebands of phase-modulated light for quantum cryptography," Phys. Rev. Lett. 82, 1656-1659 (1999).
[CrossRef]

G. Ribordy, J. T. Gautier, H. Zbinden and N. Gisin. "Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters," Appl. Opt. 37, 2272-2277 (1998).
[CrossRef]

C. H. Bennett, "Quantum cryptography using any two non-orthogonal states," Phys. Rev. Lett. 68 3121-3124 (1992).
[CrossRef] [PubMed]

H. Zbinden, H. Bechman-Pasquinucci, N. Gisin and G. Ribordy, "Quantum cryptography," Appl. Phys.B 67, 743-748 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Noise-Equivalent-Power (NEP), as a function of temperature for the InGaAs APD.

Fig. 2.
Fig. 2.

Schematics of the experimentally implemented “Plug and Play” quantum cryptography interferometric system. The symbols are explained in the text.

Fig. 3.
Fig. 3.

In (a) QBER as a function of transmission distance L. The marks are the experimentally obtained results for 10, 20, 40 km transmission distance. Dark counts probability per gate pulse Pd =2*10-4, photon number average μ=0.1, quantum efficiency η=18%, fiber loss α=0.2 dB/km and visibility of 98%. In (b), QBER for a dark counts probability Pd =2*10-5 and a visibility of 99.5%.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

QBER = ( 1 V c ) 10 αL / 10 ημ / 2 + P d 2 P d + 10 αL / 10 ημ

Metrics