Abstract

We describe an image processing system which we have developed to align autofluorescence and high-magnification images taken with a laser scanning ophthalmoscope. The low signal to noise ratio of these images makes pattern recognition a non-trivial task. However, once n images are aligned and averaged, the noise levels drop by a factor of √n and the image quality is improved. We include examples of autofluorescence images and images of the cone photoreceptor mosaic obtained using this system.

© 1998 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear registration for scanned retinal images: application to ocular polarimetry

Vincent Nourrit, Juan M. Bueno, Brian Vohnsen, and Pablo Artal
Appl. Opt. 47(29) 5341-5347 (2008)

Gaze-contingent display for retinal function testing by scanning laser ophthalmoscope

Manfred MacKeben and Alexander Gofen
J. Opt. Soc. Am. A 24(5) 1402-1410 (2007)

Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics

Omer P. Kocaoglu, Sangyeol Lee, Ravi S. Jonnal, Qiang Wang, Ashley E. Herde, Jack C. Derby, Weihua Gao, and Donald T. Miller
Biomed. Opt. Express 2(4) 748-763 (2011)

References

  • View by:
  • |
  • |
  • |

  1. F. C. Delori, “Spectrophotometer for noninvasive measurement of intrinsic fluorescence and reflectance of the ocular fundus,” Appl. Opt. 33, 7439–7452 (1994).
    [Crossref] [PubMed]
  2. A. von Ruckman, F. W. Fitzke, and A. C. Bird, “Distribution of fundus autofluorescence with a scanning laser ophthalmoscope,” Br. J. Ophthal. 79, 407–412 (1995).
    [Crossref]
  3. A. R. Wade and F. W. Fitzke, “In-vivo imaging of the human cone photoreceptor mosaic using a confocal LSO,” Lasers and Light in Ophthalmology 1998. (In Press).
  4. L. G. Brown, “A survey of image registration techniques,” Computing Surveys 24, 325–376 (1992).
    [Crossref]

1995 (1)

A. von Ruckman, F. W. Fitzke, and A. C. Bird, “Distribution of fundus autofluorescence with a scanning laser ophthalmoscope,” Br. J. Ophthal. 79, 407–412 (1995).
[Crossref]

1994 (1)

1992 (1)

L. G. Brown, “A survey of image registration techniques,” Computing Surveys 24, 325–376 (1992).
[Crossref]

Bird, A. C.

A. von Ruckman, F. W. Fitzke, and A. C. Bird, “Distribution of fundus autofluorescence with a scanning laser ophthalmoscope,” Br. J. Ophthal. 79, 407–412 (1995).
[Crossref]

Brown, L. G.

L. G. Brown, “A survey of image registration techniques,” Computing Surveys 24, 325–376 (1992).
[Crossref]

Delori, F. C.

Fitzke, F. W.

A. von Ruckman, F. W. Fitzke, and A. C. Bird, “Distribution of fundus autofluorescence with a scanning laser ophthalmoscope,” Br. J. Ophthal. 79, 407–412 (1995).
[Crossref]

A. R. Wade and F. W. Fitzke, “In-vivo imaging of the human cone photoreceptor mosaic using a confocal LSO,” Lasers and Light in Ophthalmology 1998. (In Press).

von Ruckman, A.

A. von Ruckman, F. W. Fitzke, and A. C. Bird, “Distribution of fundus autofluorescence with a scanning laser ophthalmoscope,” Br. J. Ophthal. 79, 407–412 (1995).
[Crossref]

Wade, A. R.

A. R. Wade and F. W. Fitzke, “In-vivo imaging of the human cone photoreceptor mosaic using a confocal LSO,” Lasers and Light in Ophthalmology 1998. (In Press).

Appl. Opt. (1)

Br. J. Ophthal. (1)

A. von Ruckman, F. W. Fitzke, and A. C. Bird, “Distribution of fundus autofluorescence with a scanning laser ophthalmoscope,” Br. J. Ophthal. 79, 407–412 (1995).
[Crossref]

Computing Surveys (1)

L. G. Brown, “A survey of image registration techniques,” Computing Surveys 24, 325–376 (1992).
[Crossref]

Other (1)

A. R. Wade and F. W. Fitzke, “In-vivo imaging of the human cone photoreceptor mosaic using a confocal LSO,” Lasers and Light in Ophthalmology 1998. (In Press).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Stages in image averaging procedure

Fig. 2.
Fig. 2.

Raw SLO video frame

Fig. 3.
Fig. 3.

Effects of increasing blurring kernel size and noise levels on image alignment accuracy. An image set with SNR of -14dB was used to test the effect of blurring kernel size.

Fig. 4.
Fig. 4.

Examples of processed images. Top - High-magnification cone photoreceptor imaging. Bottom - IFA imaging

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r = x = 0 X y = 0 Y M ( x , y ) I ( p x , q y )
r = X Y I M I M [ XY I 2 ( I ) 2 ] [ XY M 2 ( M ) 2 ]
SNR = 10 log 10 ( σ 2 ( signal ) σ 2 ( noise ) )

Metrics