Abstract

We have demonstrated the transfer of 39K and 40K atoms from a magneto-optical funnel (a hollow pyramidal mirror) through a low (0.05 l/s) conductance hole and into a conventional magneto-optical trap (MOT) 35 cm away, with an efficiency of approximately six percent. This simple scheme should be useful for experiments requiring high loading rates with minimal contamination from hot untrapped atoms.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. S. Jin, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 78, 764-7 (1997).
    [CrossRef]
  2. C. C. Bradley, C. A. Sackett, and R. G. Hulet, Phys. Rev. Lett. 78, 985-9 (1997).
    [CrossRef]
  3. M. R. Andrews, C. G. Townsend, H.J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, Science 275, 637-41 (1997).
    [CrossRef] [PubMed]
  4. Z-T. Lu, C. J. Bowers, S. J. Freedman, B. K. Fujikawa, J. L. Mortara, S-Q. Shang, K. P. Coulter, L. Young, Phys. Rev. Lett. 72, 3791-4 (1994).
    [CrossRef] [PubMed]
  5. J. E. Simsarian, A. Ghosh, G. Gwinner, L. A. Orozco, G. D. Sprouse, and P. A. Voytas, Phys. Rev. Lett. 76, 3522-5 (1996).
    [CrossRef] [PubMed]
  6. C. Monroe, W. Swann, H. Robinson, and C. Wieman, Phys. Rev. Lett. 65, 1571-4 (1990).
    [CrossRef] [PubMed]
  7. T. E. Barrett, S. W. Dapore-Schwartz, M. D. Ray, and G. P. Lafaytis, Phys. Rev. Lett. 67, 3483-6 (1991).
    [CrossRef] [PubMed]
  8. K. Gibble, S. Chang, R. Legere, Phys. Rev. Lett. 75, 2666-9 (1995).
    [CrossRef] [PubMed]
  9. C. J. Myatt, N. R. Newbury, R. W. Ghrist, S. Loutzenhiser, and C. E. Wieman, Opt. Lett. 21, 290-2 (1996).
    [CrossRef] [PubMed]
  10. E. Riis, D. S. Weiss, K. A. Moler, S. Chu, Phys. Rev. Lett. 64, 1658-61 (1990).
    [CrossRef] [PubMed]
  11. J. Nellessen, J. Werner, and W. Ertmer, Opt. Comm. 78, 300-8 (1990).
    [CrossRef]
  12. J. Yu, J. Djemaa, P. Nosbaum, P. Pillet, Opt. Comm. 112, 136-40 (1994).
    [CrossRef]
  13. T. B. Swanson, N. J. Silva, S. K. Mayer, J. J. Maki, and D. H. McIntyre, J. Opt. Soc. Am. B 13, 1833-6 (1996).
    [CrossRef]
  14. Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331-4 (1996).
    [CrossRef] [PubMed]
  15. K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, Opt. Lett. 21, 1177-9 (1996).
    [CrossRef] [PubMed]
  16. T. Walker, Laser Phys. 4, 965{8 (1994).
  17. SAES Getters/U.S.A., Inc, 1122 E. Cheyenne Mountain Blvd. Colorado Springs, CO 80906. Catalog item K/NF/2.9/12/FT 10 +10.
  18. R. S. Williamson III and T. Walker, J. Opt. Soc. B 12, 1393-7 (1995).
    [CrossRef]
  19. J. A. Kim, K. I. Lee, H. R. Noh, and W. Jhe, Opt. Lett. 22, 117-9 (1997).
    [CrossRef] [PubMed]

Other

D. S. Jin, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 78, 764-7 (1997).
[CrossRef]

C. C. Bradley, C. A. Sackett, and R. G. Hulet, Phys. Rev. Lett. 78, 985-9 (1997).
[CrossRef]

M. R. Andrews, C. G. Townsend, H.J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, Science 275, 637-41 (1997).
[CrossRef] [PubMed]

Z-T. Lu, C. J. Bowers, S. J. Freedman, B. K. Fujikawa, J. L. Mortara, S-Q. Shang, K. P. Coulter, L. Young, Phys. Rev. Lett. 72, 3791-4 (1994).
[CrossRef] [PubMed]

J. E. Simsarian, A. Ghosh, G. Gwinner, L. A. Orozco, G. D. Sprouse, and P. A. Voytas, Phys. Rev. Lett. 76, 3522-5 (1996).
[CrossRef] [PubMed]

C. Monroe, W. Swann, H. Robinson, and C. Wieman, Phys. Rev. Lett. 65, 1571-4 (1990).
[CrossRef] [PubMed]

T. E. Barrett, S. W. Dapore-Schwartz, M. D. Ray, and G. P. Lafaytis, Phys. Rev. Lett. 67, 3483-6 (1991).
[CrossRef] [PubMed]

K. Gibble, S. Chang, R. Legere, Phys. Rev. Lett. 75, 2666-9 (1995).
[CrossRef] [PubMed]

C. J. Myatt, N. R. Newbury, R. W. Ghrist, S. Loutzenhiser, and C. E. Wieman, Opt. Lett. 21, 290-2 (1996).
[CrossRef] [PubMed]

E. Riis, D. S. Weiss, K. A. Moler, S. Chu, Phys. Rev. Lett. 64, 1658-61 (1990).
[CrossRef] [PubMed]

J. Nellessen, J. Werner, and W. Ertmer, Opt. Comm. 78, 300-8 (1990).
[CrossRef]

J. Yu, J. Djemaa, P. Nosbaum, P. Pillet, Opt. Comm. 112, 136-40 (1994).
[CrossRef]

T. B. Swanson, N. J. Silva, S. K. Mayer, J. J. Maki, and D. H. McIntyre, J. Opt. Soc. Am. B 13, 1833-6 (1996).
[CrossRef]

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331-4 (1996).
[CrossRef] [PubMed]

K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, Opt. Lett. 21, 1177-9 (1996).
[CrossRef] [PubMed]

T. Walker, Laser Phys. 4, 965{8 (1994).

SAES Getters/U.S.A., Inc, 1122 E. Cheyenne Mountain Blvd. Colorado Springs, CO 80906. Catalog item K/NF/2.9/12/FT 10 +10.

R. S. Williamson III and T. Walker, J. Opt. Soc. B 12, 1393-7 (1995).
[CrossRef]

J. A. Kim, K. I. Lee, H. R. Noh, and W. Jhe, Opt. Lett. 22, 117-9 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Figure 1.
Figure 1.

Pyramidal mirror used in the magneto-optical funnel. White lines indicate incident circularly polarized laser beam and its reflections. The helicities are indicated by small black arrows on the white arrowheads. The inset shows the configuration of the magnetic field in the funnel.

Figure 2.
Figure 2.

Schematic diagram of combined UHV MOT and funnel system. The arm of the UHV MOT which is perpendicular to the plane of the figure has been omitted for clarity.

Figure 3.
Figure 3.

Detuning curves for 39,40K. Shown in panel a) is the loading rate vs. detuning of 39K atoms into the UHV MOT from a collimated thermal beam (squares) and from the magneto-optical-funnel produced beam (circles). Panel b) shows similar curves for 40K. All curves are normalized to their maximum values in order to compare shape differences. The maximum value of the 40K curve corresponds to a funnel-loaded trap with about 7000 atoms.

Metrics