Abstract

Realizing tunable light-polaritons interaction, such as perfect absorption in a controllable and compact manner holds great promise in nanophotonic systems. In this work, we engineer the hyperbolic surface phonon polaritons and surface plasmons polaritons to dynamically tune the perfect absorption in mid-infrared by combing the two van der Waals materials: the natural hyperbolic material hBN and phase change material VO2. Two spectrally separated and physically distinct perfect absorption peaks are alternatively observed and can be tuned through changing the temperature. The absorption in the resonant wavelengths can reach around 100%. We also demonstrate the flexibility of the absorber by investigating the absorption dependence on the polarization state and angle of incidence. The structural parameters sweep also confirms the robustness of our design. Our findings may open new possibilities to many versatile minimized applications such as optical modulators, optical switching, and temperature control system.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable, omnidirectional, and nearly perfect resonant absorptions by a graphene-hBN-based hole array metamaterial

Hodjat Hajian, Amir Ghobadi, Bayram Butun, and Ekmel Ozbay
Opt. Express 26(13) 16940-16954 (2018)

Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region

Haiyu Meng, Lingling Wang, Guidong Liu, Xiongxiong Xue, Qi Lin, and Xiang Zhai
Appl. Opt. 56(21) 6022-6027 (2017)

Tunable multi-wavelength absorption in mid-IR region based on a hybrid patterned graphene-hBN structure

Guangsheng Deng, Xianglian Song, Sina Abedini Dereshgi, Haiqing Xu, and Koray Aydin
Opt. Express 27(16) 23576-23584 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
    [Crossref]
  2. G.V. Eleftheriades and K.G. Balmain, “Negative-refraction metamaterials: fundamental principles and applications”, pp. 313–315 (John Wiley and Sons Inc, 2005).
  3. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
    [Crossref]
  4. S. Haxha, F. AbdelMalek, F. Ouerghi, M. D. B. Charlton, A. Aggoun, and X. Fang, “Metamaterial Superlenses Operating at Visible Wavelength for Imaging Applications,” Sci. Rep. 8(1), 16119 (2018).
    [Crossref]
  5. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref]
  6. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
    [Crossref]
  7. L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagn. Res. 113, 103–110 (2011).
    [Crossref]
  8. Y. Qiu Xu, P. Heng Zhou, H. Bin Zhang, L. Chen, and L. Jiang Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
    [Crossref]
  9. J. Zhao, X. Yu, X. Yang, C. A. Th Tee, W. Yuan, and Y. Yu, “Polarization-independent and high-efficiency broadband optical absorber in visible light based on nanostructured germanium arrays,” Opt. Lett. 44(4), 963–966 (2019).
    [Crossref]
  10. Y. L. Liao and Y. Zhao, “Ultra-narrowband dielectric metamaterial absorber with ultra-sparse nanowire grids for sensing applications,” Sci. Rep. 10(1), 1480 (2020).
    [Crossref]
  11. G. Lu, F. Wu, M. Zheng, C. Chen, X. Zhou, C. Diao, F. Liu, G. Du, C. Xue, H. Jiang, and H. Chen, “Perfect optical absorbers in a wide range of incidence by photonic heterostructures containing layered hyperbolic metamaterials,” Opt. Express 27(4), 5326–5336 (2019).
    [Crossref]
  12. H. Gao, D. Zhou, W. Cui, Z. Liu, Y. Liu, Z. Jing, and W. Peng, “Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands,” J. Opt. Soc. Am. A 36(2), 264–269 (2019).
    [Crossref]
  13. D. M. Nguyen, D. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
    [Crossref]
  14. L. Xu, B. Peng, X. Luo, X. Zhai, and L. Wang, “A broadband and polarization-insensitive perfect absorber based on a van der Waals material in the mid-infrared regime,” Results Phys. 15, 102687 (2019).
    [Crossref]
  15. S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
    [Crossref]
  16. T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” ACS Photonics 1(3), 279–284 (2014).
    [Crossref]
  17. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
    [Crossref]
  18. N. Liu, M. Mesch, and T. M. Weiss, “Hentschel, H. Giessen, Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref]
  19. A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, and E. Ozbay, “Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity,” Opt. Express 25(22), 27624–27634 (2017).
    [Crossref]
  20. K. Chen, R. Adato, and H. Altug, “Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
    [Crossref]
  21. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Fang, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413 (2011).
    [Crossref]
  22. Y. Zhao, Q. Huang, H. Cai, X. Lin, H. He, T. Ma, and Y. Lu, “Dual band and tunable perfect absorber based on dual gratings-coupled graphene-dielectric multilayer structures,” Opt. Express 27(4), 5217–5229 (2019).
    [Crossref]
  23. Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
    [Crossref]
  24. H. Xiong, Y. B. Wu, J. Dong, M. C. Tang, Y. N. Jiang, and X. P. Zeng, “Ultra-thin and broadband tunable metamaterial graphene absorber,” Opt. Express 26(2), 1681–1688 (2018).
    [Crossref]
  25. Y. Chen, X. Li, X. Luo, S. A. Maier, and M. Hong, “Tunable near-infrared plasmonic perfect absorber based on phase-change materials,” Photonics Res. 3(3), 54 (2015).
    [Crossref]
  26. Y. Zhao, Q. Huang, H. Cai, X. Lin, and Y. Lu, “A broadband and switchable VO2-based perfect absorber at the THz frequency,” Opt. Commun. 426, 443–449 (2018).
    [Crossref]
  27. H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
    [Crossref]
  28. A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
    [Crossref]
  29. L. Yang, P. Zhou, T. Huang, G. Zhen, L. Zhang, L. Bi, X. Weng, J. Xie, and L. Deng, “Broadband thermal tunable infrared absorber based on the coupling between standing wave and magnetic resonance,” Opt. Mater. Express 7(8), 2767 (2017).
    [Crossref]
  30. J. D. Caldwell and K. S. Novoselov, “Van der Waals heterostructures: Mid-infrared nanophotonics,” Nat. Mater. 14(4), 364–366 (2015).
    [Crossref]
  31. P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6(1), 7507 (2015).
    [Crossref]
  32. J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by Nature: From Ultraviolet to Terahertz,” ACS Photonics 1(4), 293–303 (2014).
    [Crossref]
  33. S. Dai, W. Fang, N. Rivera, Y. Stehle, B. Y. Jiang, J. Shen, R. Y. Tay, C. J. Ciccarino, Q. Ma, D. Rodan-Legrain, P. Jarillo-Herrero, E. H. T. Teo, M. M. Fogler, P. Narang, J. Kong, and D. N. Basov, “Phonon Polaritons in Monolayers of Hexagonal Boron Nitride,” Adv. Mater. 31(37), 1806603 (2019).
    [Crossref]
  34. R. Geick, C. H. Perry, and G. Rupprecht, “Normal Modes in Hexagonal Boron Nitride,” Phys. Rev. 146(2), 543–547 (1966).
    [Crossref]
  35. X. Song, Z. Liu, J. Scheuer, Y. Xiang, and K. Aydin, “Tunable polaritonic metasurface absorbers in mid-IR based on hexagonal boron nitride and vanadium dioxide layers,” J. Phys. D: Appl. Phys. 52(16), 164002 (2019).
    [Crossref]
  36. S. Dai, J. Zhang, Q. Ma, S. Kittiwatanakul, A. McLeod, X. Chen, S. G. Corder, K. Watanabe, T. Taniguchi, J. Lu, Q. Dai, P. Jarillo-Herrero, M. Liu, and D. N. Basov, “Phase-Change Hyperbolic Heterostructures for Nanopolaritonics: A Case Study of hBN/VO2,” Adv. Mater. 31(18), 1900251 (2019).
    [Crossref]
  37. H. Hajian, A. Ghobadi, A. E. Serebryannikov, B. Butun, G. A. E. Vandenbosch, and E. Ozbay, “VO2-hBN-graphene-based bi-functional metamaterial for mid-infrared bi-tunable asymmetric transmission and nearly perfect resonant absorption,” J. Opt. Soc. Am. B 36(6), 1607 (2019).
    [Crossref]
  38. J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a Graphene-hBN Hyper Crystal,” Opt. Express 24(15), 17103–17114 (2016).
    [Crossref]
  39. G. C. R. Devarapu and S. Foteinopoulou, “Broadband Near-Unidirectional Absorption Enabled by Phonon-Polariton Resonances in SiC Micropyramid Arrays,” Phys. Rev. Appl. 7(3), 034001 (2017).
    [Crossref]
  40. P. Rodríguez-Ulibarri, M. Beruete, and A. E. Serebryannikov, “One-way quasiplanar terahertz absorbers using nonstructured polar dielectric layers,” Phys. Rev. B 96(15), 155148 (2017).
    [Crossref]
  41. S. Foteinopoulou, G. C. R. Devarapu, G. S. Subramania, S. Krishna, and D. Wasserman, “Phonon-polaritonics: enabling powerful capabilities for infrared photonics,” Nanophotonics 8(12), 2129–2175 (2019).
    [Crossref]
  42. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24(24), 4493–4499 (1985).
    [Crossref]
  43. T. Wang, V. H. Nguyen, A. Buchenauer, U. Schnakenberg, and T. Taubner, “Surface enhanced infrared spectroscopy with gold strip gratings,” Opt. Express 21(7), 9005–9010 (2013).
    [Crossref]
  44. G. Pirruccio, L. M. Moreno, G. Lozano, and J. G. Rivas, “Coherent and Broadband Enhanced Optical Absorption in Graphene,” ACS Nano 7(6), 4810–4817 (2013).
    [Crossref]
  45. V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband Reflectionless Metasheets: Frequency-Selective Transmission and Perfect Absorption,” Phys. Rev. X 5, 031005 (2015).
    [Crossref]
  46. H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, and K. Aydin, “Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films,” Sci. Rep. 5(1), 13384 (2015).
    [Crossref]
  47. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
    [Crossref]
  48. H. X. Xu, G. M. Wang, M. Q. Qi, G. Liang, J. Q. Gong, and Z. M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B 86(20), 205104 (2012).
    [Crossref]

2020 (1)

Y. L. Liao and Y. Zhao, “Ultra-narrowband dielectric metamaterial absorber with ultra-sparse nanowire grids for sensing applications,” Sci. Rep. 10(1), 1480 (2020).
[Crossref]

2019 (10)

G. Lu, F. Wu, M. Zheng, C. Chen, X. Zhou, C. Diao, F. Liu, G. Du, C. Xue, H. Jiang, and H. Chen, “Perfect optical absorbers in a wide range of incidence by photonic heterostructures containing layered hyperbolic metamaterials,” Opt. Express 27(4), 5326–5336 (2019).
[Crossref]

H. Gao, D. Zhou, W. Cui, Z. Liu, Y. Liu, Z. Jing, and W. Peng, “Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands,” J. Opt. Soc. Am. A 36(2), 264–269 (2019).
[Crossref]

L. Xu, B. Peng, X. Luo, X. Zhai, and L. Wang, “A broadband and polarization-insensitive perfect absorber based on a van der Waals material in the mid-infrared regime,” Results Phys. 15, 102687 (2019).
[Crossref]

Y. Zhao, Q. Huang, H. Cai, X. Lin, H. He, T. Ma, and Y. Lu, “Dual band and tunable perfect absorber based on dual gratings-coupled graphene-dielectric multilayer structures,” Opt. Express 27(4), 5217–5229 (2019).
[Crossref]

S. Dai, W. Fang, N. Rivera, Y. Stehle, B. Y. Jiang, J. Shen, R. Y. Tay, C. J. Ciccarino, Q. Ma, D. Rodan-Legrain, P. Jarillo-Herrero, E. H. T. Teo, M. M. Fogler, P. Narang, J. Kong, and D. N. Basov, “Phonon Polaritons in Monolayers of Hexagonal Boron Nitride,” Adv. Mater. 31(37), 1806603 (2019).
[Crossref]

X. Song, Z. Liu, J. Scheuer, Y. Xiang, and K. Aydin, “Tunable polaritonic metasurface absorbers in mid-IR based on hexagonal boron nitride and vanadium dioxide layers,” J. Phys. D: Appl. Phys. 52(16), 164002 (2019).
[Crossref]

S. Dai, J. Zhang, Q. Ma, S. Kittiwatanakul, A. McLeod, X. Chen, S. G. Corder, K. Watanabe, T. Taniguchi, J. Lu, Q. Dai, P. Jarillo-Herrero, M. Liu, and D. N. Basov, “Phase-Change Hyperbolic Heterostructures for Nanopolaritonics: A Case Study of hBN/VO2,” Adv. Mater. 31(18), 1900251 (2019).
[Crossref]

H. Hajian, A. Ghobadi, A. E. Serebryannikov, B. Butun, G. A. E. Vandenbosch, and E. Ozbay, “VO2-hBN-graphene-based bi-functional metamaterial for mid-infrared bi-tunable asymmetric transmission and nearly perfect resonant absorption,” J. Opt. Soc. Am. B 36(6), 1607 (2019).
[Crossref]

S. Foteinopoulou, G. C. R. Devarapu, G. S. Subramania, S. Krishna, and D. Wasserman, “Phonon-polaritonics: enabling powerful capabilities for infrared photonics,” Nanophotonics 8(12), 2129–2175 (2019).
[Crossref]

J. Zhao, X. Yu, X. Yang, C. A. Th Tee, W. Yuan, and Y. Yu, “Polarization-independent and high-efficiency broadband optical absorber in visible light based on nanostructured germanium arrays,” Opt. Lett. 44(4), 963–966 (2019).
[Crossref]

2018 (4)

Y. Zhao, Q. Huang, H. Cai, X. Lin, and Y. Lu, “A broadband and switchable VO2-based perfect absorber at the THz frequency,” Opt. Commun. 426, 443–449 (2018).
[Crossref]

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref]

H. Xiong, Y. B. Wu, J. Dong, M. C. Tang, Y. N. Jiang, and X. P. Zeng, “Ultra-thin and broadband tunable metamaterial graphene absorber,” Opt. Express 26(2), 1681–1688 (2018).
[Crossref]

S. Haxha, F. AbdelMalek, F. Ouerghi, M. D. B. Charlton, A. Aggoun, and X. Fang, “Metamaterial Superlenses Operating at Visible Wavelength for Imaging Applications,” Sci. Rep. 8(1), 16119 (2018).
[Crossref]

2017 (5)

D. M. Nguyen, D. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
[Crossref]

A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, and E. Ozbay, “Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity,” Opt. Express 25(22), 27624–27634 (2017).
[Crossref]

L. Yang, P. Zhou, T. Huang, G. Zhen, L. Zhang, L. Bi, X. Weng, J. Xie, and L. Deng, “Broadband thermal tunable infrared absorber based on the coupling between standing wave and magnetic resonance,” Opt. Mater. Express 7(8), 2767 (2017).
[Crossref]

G. C. R. Devarapu and S. Foteinopoulou, “Broadband Near-Unidirectional Absorption Enabled by Phonon-Polariton Resonances in SiC Micropyramid Arrays,” Phys. Rev. Appl. 7(3), 034001 (2017).
[Crossref]

P. Rodríguez-Ulibarri, M. Beruete, and A. E. Serebryannikov, “One-way quasiplanar terahertz absorbers using nonstructured polar dielectric layers,” Phys. Rev. B 96(15), 155148 (2017).
[Crossref]

2016 (2)

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a Graphene-hBN Hyper Crystal,” Opt. Express 24(15), 17103–17114 (2016).
[Crossref]

2015 (5)

Y. Chen, X. Li, X. Luo, S. A. Maier, and M. Hong, “Tunable near-infrared plasmonic perfect absorber based on phase-change materials,” Photonics Res. 3(3), 54 (2015).
[Crossref]

J. D. Caldwell and K. S. Novoselov, “Van der Waals heterostructures: Mid-infrared nanophotonics,” Nat. Mater. 14(4), 364–366 (2015).
[Crossref]

P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6(1), 7507 (2015).
[Crossref]

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband Reflectionless Metasheets: Frequency-Selective Transmission and Perfect Absorption,” Phys. Rev. X 5, 031005 (2015).
[Crossref]

H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, and K. Aydin, “Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films,” Sci. Rep. 5(1), 13384 (2015).
[Crossref]

2014 (4)

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by Nature: From Ultraviolet to Terahertz,” ACS Photonics 1(4), 293–303 (2014).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[Crossref]

2013 (3)

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref]

T. Wang, V. H. Nguyen, A. Buchenauer, U. Schnakenberg, and T. Taubner, “Surface enhanced infrared spectroscopy with gold strip gratings,” Opt. Express 21(7), 9005–9010 (2013).
[Crossref]

G. Pirruccio, L. M. Moreno, G. Lozano, and J. G. Rivas, “Coherent and Broadband Enhanced Optical Absorption in Graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref]

2012 (2)

H. X. Xu, G. M. Wang, M. Q. Qi, G. Liang, J. Q. Gong, and Z. M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B 86(20), 205104 (2012).
[Crossref]

K. Chen, R. Adato, and H. Altug, “Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref]

2011 (5)

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Fang, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413 (2011).
[Crossref]

J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
[Crossref]

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagn. Res. 113, 103–110 (2011).
[Crossref]

Y. Qiu Xu, P. Heng Zhou, H. Bin Zhang, L. Chen, and L. Jiang Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

2010 (2)

N. Liu, M. Mesch, and T. M. Weiss, “Hentschel, H. Giessen, Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

1985 (1)

1966 (2)

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

R. Geick, C. H. Perry, and G. Rupprecht, “Normal Modes in Hexagonal Boron Nitride,” Phys. Rev. 146(2), 543–547 (1966).
[Crossref]

Abashin, M.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref]

AbdelMalek, F.

S. Haxha, F. AbdelMalek, F. Ouerghi, M. D. B. Charlton, A. Aggoun, and X. Fang, “Metamaterial Superlenses Operating at Visible Wavelength for Imaging Applications,” Sci. Rep. 8(1), 16119 (2018).
[Crossref]

Abele, E.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Adato, R.

K. Chen, R. Adato, and H. Altug, “Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref]

Aggoun, A.

S. Haxha, F. AbdelMalek, F. Ouerghi, M. D. B. Charlton, A. Aggoun, and X. Fang, “Metamaterial Superlenses Operating at Visible Wavelength for Imaging Applications,” Sci. Rep. 8(1), 16119 (2018).
[Crossref]

Agrawal, A.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref]

Alexander, R. W.

Altug, H.

K. Chen, R. Adato, and H. Altug, “Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref]

Asadchy, V. S.

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband Reflectionless Metasheets: Frequency-Selective Transmission and Perfect Absorption,” Phys. Rev. X 5, 031005 (2015).
[Crossref]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

Aydin, K.

X. Song, Z. Liu, J. Scheuer, Y. Xiang, and K. Aydin, “Tunable polaritonic metasurface absorbers in mid-IR based on hexagonal boron nitride and vanadium dioxide layers,” J. Phys. D: Appl. Phys. 52(16), 164002 (2019).
[Crossref]

H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, and K. Aydin, “Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films,” Sci. Rep. 5(1), 13384 (2015).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

Azad, A. K.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Balmain, K.G.

G.V. Eleftheriades and K.G. Balmain, “Negative-refraction metamaterials: fundamental principles and applications”, pp. 313–315 (John Wiley and Sons Inc, 2005).

Barker, A. S.

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

Basov, D. N.

S. Dai, W. Fang, N. Rivera, Y. Stehle, B. Y. Jiang, J. Shen, R. Y. Tay, C. J. Ciccarino, Q. Ma, D. Rodan-Legrain, P. Jarillo-Herrero, E. H. T. Teo, M. M. Fogler, P. Narang, J. Kong, and D. N. Basov, “Phonon Polaritons in Monolayers of Hexagonal Boron Nitride,” Adv. Mater. 31(37), 1806603 (2019).
[Crossref]

S. Dai, J. Zhang, Q. Ma, S. Kittiwatanakul, A. McLeod, X. Chen, S. G. Corder, K. Watanabe, T. Taniguchi, J. Lu, Q. Dai, P. Jarillo-Herrero, M. Liu, and D. N. Basov, “Phase-Change Hyperbolic Heterostructures for Nanopolaritonics: A Case Study of hBN/VO2,” Adv. Mater. 31(18), 1900251 (2019).
[Crossref]

Bell, R. J.

Beruete, M.

P. Rodríguez-Ulibarri, M. Beruete, and A. E. Serebryannikov, “One-way quasiplanar terahertz absorbers using nonstructured polar dielectric layers,” Phys. Rev. B 96(15), 155148 (2017).
[Crossref]

Bi, L.

Bin Zhang, H.

Y. Qiu Xu, P. Heng Zhou, H. Bin Zhang, L. Chen, and L. Jiang Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

Buchenauer, A.

Butun, B.

Butun, S.

H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, and K. Aydin, “Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films,” Sci. Rep. 5(1), 13384 (2015).
[Crossref]

Cai, H.

Y. Zhao, Q. Huang, H. Cai, X. Lin, H. He, T. Ma, and Y. Lu, “Dual band and tunable perfect absorber based on dual gratings-coupled graphene-dielectric multilayer structures,” Opt. Express 27(4), 5217–5229 (2019).
[Crossref]

Y. Zhao, Q. Huang, H. Cai, X. Lin, and Y. Lu, “A broadband and switchable VO2-based perfect absorber at the THz frequency,” Opt. Commun. 426, 443–449 (2018).
[Crossref]

Caldwell, J. D.

J. D. Caldwell and K. S. Novoselov, “Van der Waals heterostructures: Mid-infrared nanophotonics,” Nat. Mater. 14(4), 364–366 (2015).
[Crossref]

P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6(1), 7507 (2015).
[Crossref]

Charlton, M. D. B.

S. Haxha, F. AbdelMalek, F. Ouerghi, M. D. B. Charlton, A. Aggoun, and X. Fang, “Metamaterial Superlenses Operating at Visible Wavelength for Imaging Applications,” Sci. Rep. 8(1), 16119 (2018).
[Crossref]

Chau, K. J.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref]

Chen, C.

Chen, H.

Chen, H. T.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Chen, K.

K. Chen, R. Adato, and H. Altug, “Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref]

Chen, L.

Y. Qiu Xu, P. Heng Zhou, H. Bin Zhang, L. Chen, and L. Jiang Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Chen, Q.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Chen, X.

S. Dai, J. Zhang, Q. Ma, S. Kittiwatanakul, A. McLeod, X. Chen, S. G. Corder, K. Watanabe, T. Taniguchi, J. Lu, Q. Dai, P. Jarillo-Herrero, M. Liu, and D. N. Basov, “Phase-Change Hyperbolic Heterostructures for Nanopolaritonics: A Case Study of hBN/VO2,” Adv. Mater. 31(18), 1900251 (2019).
[Crossref]

Chen, Y.

Y. Chen, X. Li, X. Luo, S. A. Maier, and M. Hong, “Tunable near-infrared plasmonic perfect absorber based on phase-change materials,” Photonics Res. 3(3), 54 (2015).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Ciccarino, C. J.

S. Dai, W. Fang, N. Rivera, Y. Stehle, B. Y. Jiang, J. Shen, R. Y. Tay, C. J. Ciccarino, Q. Ma, D. Rodan-Legrain, P. Jarillo-Herrero, E. H. T. Teo, M. M. Fogler, P. Narang, J. Kong, and D. N. Basov, “Phonon Polaritons in Monolayers of Hexagonal Boron Nitride,” Adv. Mater. 31(37), 1806603 (2019).
[Crossref]

Corder, S. G.

S. Dai, J. Zhang, Q. Ma, S. Kittiwatanakul, A. McLeod, X. Chen, S. G. Corder, K. Watanabe, T. Taniguchi, J. Lu, Q. Dai, P. Jarillo-Herrero, M. Liu, and D. N. Basov, “Phase-Change Hyperbolic Heterostructures for Nanopolaritonics: A Case Study of hBN/VO2,” Adv. Mater. 31(18), 1900251 (2019).
[Crossref]

Cui, W.

Cumming, D. R.

Dai, Q.

S. Dai, J. Zhang, Q. Ma, S. Kittiwatanakul, A. McLeod, X. Chen, S. G. Corder, K. Watanabe, T. Taniguchi, J. Lu, Q. Dai, P. Jarillo-Herrero, M. Liu, and D. N. Basov, “Phase-Change Hyperbolic Heterostructures for Nanopolaritonics: A Case Study of hBN/VO2,” Adv. Mater. 31(18), 1900251 (2019).
[Crossref]

Dai, S.

S. Dai, J. Zhang, Q. Ma, S. Kittiwatanakul, A. McLeod, X. Chen, S. G. Corder, K. Watanabe, T. Taniguchi, J. Lu, Q. Dai, P. Jarillo-Herrero, M. Liu, and D. N. Basov, “Phase-Change Hyperbolic Heterostructures for Nanopolaritonics: A Case Study of hBN/VO2,” Adv. Mater. 31(18), 1900251 (2019).
[Crossref]

S. Dai, W. Fang, N. Rivera, Y. Stehle, B. Y. Jiang, J. Shen, R. Y. Tay, C. J. Ciccarino, Q. Ma, D. Rodan-Legrain, P. Jarillo-Herrero, E. H. T. Teo, M. M. Fogler, P. Narang, J. Kong, and D. N. Basov, “Phonon Polaritons in Monolayers of Hexagonal Boron Nitride,” Adv. Mater. 31(37), 1806603 (2019).
[Crossref]

Dai, X.

Deng, L.

Dereshgi, S. A.

Devarapu, G. C. R.

S. Foteinopoulou, G. C. R. Devarapu, G. S. Subramania, S. Krishna, and D. Wasserman, “Phonon-polaritonics: enabling powerful capabilities for infrared photonics,” Nanophotonics 8(12), 2129–2175 (2019).
[Crossref]

G. C. R. Devarapu and S. Foteinopoulou, “Broadband Near-Unidirectional Absorption Enabled by Phonon-Polariton Resonances in SiC Micropyramid Arrays,” Phys. Rev. Appl. 7(3), 034001 (2017).
[Crossref]

Diao, C.

Dong, J.

Du, G.

Eleftheriades, G.V.

G.V. Eleftheriades and K.G. Balmain, “Negative-refraction metamaterials: fundamental principles and applications”, pp. 313–315 (John Wiley and Sons Inc, 2005).

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref]

Fang, Q.

Fang, W.

S. Dai, W. Fang, N. Rivera, Y. Stehle, B. Y. Jiang, J. Shen, R. Y. Tay, C. J. Ciccarino, Q. Ma, D. Rodan-Legrain, P. Jarillo-Herrero, E. H. T. Teo, M. M. Fogler, P. Narang, J. Kong, and D. N. Basov, “Phonon Polaritons in Monolayers of Hexagonal Boron Nitride,” Adv. Mater. 31(37), 1806603 (2019).
[Crossref]

Fang, X.

S. Haxha, F. AbdelMalek, F. Ouerghi, M. D. B. Charlton, A. Aggoun, and X. Fang, “Metamaterial Superlenses Operating at Visible Wavelength for Imaging Applications,” Sci. Rep. 8(1), 16119 (2018).
[Crossref]

Faniayeu, I. A.

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband Reflectionless Metasheets: Frequency-Selective Transmission and Perfect Absorption,” Phys. Rev. X 5, 031005 (2015).
[Crossref]

Feng, Y.

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

Fogler, M. M.

S. Dai, W. Fang, N. Rivera, Y. Stehle, B. Y. Jiang, J. Shen, R. Y. Tay, C. J. Ciccarino, Q. Ma, D. Rodan-Legrain, P. Jarillo-Herrero, E. H. T. Teo, M. M. Fogler, P. Narang, J. Kong, and D. N. Basov, “Phonon Polaritons in Monolayers of Hexagonal Boron Nitride,” Adv. Mater. 31(37), 1806603 (2019).
[Crossref]

Foteinopoulou, S.

S. Foteinopoulou, G. C. R. Devarapu, G. S. Subramania, S. Krishna, and D. Wasserman, “Phonon-polaritonics: enabling powerful capabilities for infrared photonics,” Nanophotonics 8(12), 2129–2175 (2019).
[Crossref]

G. C. R. Devarapu and S. Foteinopoulou, “Broadband Near-Unidirectional Absorption Enabled by Phonon-Polariton Resonances in SiC Micropyramid Arrays,” Phys. Rev. Appl. 7(3), 034001 (2017).
[Crossref]

Fu, D.

H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, and K. Aydin, “Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films,” Sci. Rep. 5(1), 13384 (2015).
[Crossref]

Gao, H.

Gaussmann, F.

P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6(1), 7507 (2015).
[Crossref]

Geick, R.

R. Geick, C. H. Perry, and G. Rupprecht, “Normal Modes in Hexagonal Boron Nitride,” Phys. Rev. 146(2), 543–547 (1966).
[Crossref]

Ghobadi, A.

Gokbayrak, M.

Gong, J. Q.

H. X. Xu, G. M. Wang, M. Q. Qi, G. Liang, J. Q. Gong, and Z. M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B 86(20), 205104 (2012).
[Crossref]

Grant, J.

Guggenheim, H. J.

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

Guo, J.

Guo, L. J.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Hajian, H.

Haxha, S.

S. Haxha, F. AbdelMalek, F. Ouerghi, M. D. B. Charlton, A. Aggoun, and X. Fang, “Metamaterial Superlenses Operating at Visible Wavelength for Imaging Applications,” Sci. Rep. 8(1), 16119 (2018).
[Crossref]

He, H.

Heng Zhou, P.

Y. Qiu Xu, P. Heng Zhou, H. Bin Zhang, L. Chen, and L. Jiang Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Hong, M.

Y. Chen, X. Li, X. Luo, S. A. Maier, and M. Hong, “Tunable near-infrared plasmonic perfect absorber based on phase-change materials,” Photonics Res. 3(3), 54 (2015).
[Crossref]

Hu, C.

Huang, C.

Huang, L.

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagn. Res. 113, 103–110 (2011).
[Crossref]

Huang, Q.

Y. Zhao, Q. Huang, H. Cai, X. Lin, H. He, T. Ma, and Y. Lu, “Dual band and tunable perfect absorber based on dual gratings-coupled graphene-dielectric multilayer structures,” Opt. Express 27(4), 5217–5229 (2019).
[Crossref]

Y. Zhao, Q. Huang, H. Cai, X. Lin, and Y. Lu, “A broadband and switchable VO2-based perfect absorber at the THz frequency,” Opt. Commun. 426, 443–449 (2018).
[Crossref]

Huang, T.

Jang, T.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Jarillo-Herrero, P.

S. Dai, J. Zhang, Q. Ma, S. Kittiwatanakul, A. McLeod, X. Chen, S. G. Corder, K. Watanabe, T. Taniguchi, J. Lu, Q. Dai, P. Jarillo-Herrero, M. Liu, and D. N. Basov, “Phase-Change Hyperbolic Heterostructures for Nanopolaritonics: A Case Study of hBN/VO2,” Adv. Mater. 31(18), 1900251 (2019).
[Crossref]

S. Dai, W. Fang, N. Rivera, Y. Stehle, B. Y. Jiang, J. Shen, R. Y. Tay, C. J. Ciccarino, Q. Ma, D. Rodan-Legrain, P. Jarillo-Herrero, E. H. T. Teo, M. M. Fogler, P. Narang, J. Kong, and D. N. Basov, “Phonon Polaritons in Monolayers of Hexagonal Boron Nitride,” Adv. Mater. 31(37), 1806603 (2019).
[Crossref]

Jiang, B. Y.

S. Dai, W. Fang, N. Rivera, Y. Stehle, B. Y. Jiang, J. Shen, R. Y. Tay, C. J. Ciccarino, Q. Ma, D. Rodan-Legrain, P. Jarillo-Herrero, E. H. T. Teo, M. M. Fogler, P. Narang, J. Kong, and D. N. Basov, “Phonon Polaritons in Monolayers of Hexagonal Boron Nitride,” Adv. Mater. 31(37), 1806603 (2019).
[Crossref]

Jiang, H.

Jiang, L.

Jiang, T.

Jiang, Y. N.

Jiang Deng, L.

Y. Qiu Xu, P. Heng Zhou, H. Bin Zhang, L. Chen, and L. Jiang Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Jing, Z.

Khakhomov, S. A.

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband Reflectionless Metasheets: Frequency-Selective Transmission and Perfect Absorption,” Phys. Rev. X 5, 031005 (2015).
[Crossref]

Khalid, A.

Kittiwatanakul, S.

S. Dai, J. Zhang, Q. Ma, S. Kittiwatanakul, A. McLeod, X. Chen, S. G. Corder, K. Watanabe, T. Taniguchi, J. Lu, Q. Dai, P. Jarillo-Herrero, M. Liu, and D. N. Basov, “Phase-Change Hyperbolic Heterostructures for Nanopolaritonics: A Case Study of hBN/VO2,” Adv. Mater. 31(18), 1900251 (2019).
[Crossref]

Kocer, H.

H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, and K. Aydin, “Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films,” Sci. Rep. 5(1), 13384 (2015).
[Crossref]

Kong, J.

S. Dai, W. Fang, N. Rivera, Y. Stehle, B. Y. Jiang, J. Shen, R. Y. Tay, C. J. Ciccarino, Q. Ma, D. Rodan-Legrain, P. Jarillo-Herrero, E. H. T. Teo, M. M. Fogler, P. Narang, J. Kong, and D. N. Basov, “Phonon Polaritons in Monolayers of Hexagonal Boron Nitride,” Adv. Mater. 31(37), 1806603 (2019).
[Crossref]

Kretinin, A. V.

P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6(1), 7507 (2015).
[Crossref]

Krishna, S.

S. Foteinopoulou, G. C. R. Devarapu, G. S. Subramania, S. Krishna, and D. Wasserman, “Phonon-polaritonics: enabling powerful capabilities for infrared photonics,” Nanophotonics 8(12), 2129–2175 (2019).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Lee, D.

D. M. Nguyen, D. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
[Crossref]

Lewin, M.

P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6(1), 7507 (2015).
[Crossref]

Lezec, H. J.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref]

Li, P.

P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6(1), 7507 (2015).
[Crossref]

Li, T.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Li, X.

Y. Chen, X. Li, X. Luo, S. A. Maier, and M. Hong, “Tunable near-infrared plasmonic perfect absorber based on phase-change materials,” Photonics Res. 3(3), 54 (2015).
[Crossref]

Liang, G.

H. X. Xu, G. M. Wang, M. Q. Qi, G. Liang, J. Q. Gong, and Z. M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B 86(20), 205104 (2012).
[Crossref]

Liao, Y. L.

Y. L. Liao and Y. Zhao, “Ultra-narrowband dielectric metamaterial absorber with ultra-sparse nanowire grids for sensing applications,” Sci. Rep. 10(1), 1480 (2020).
[Crossref]

Lin, X.

Y. Zhao, Q. Huang, H. Cai, X. Lin, H. He, T. Ma, and Y. Lu, “Dual band and tunable perfect absorber based on dual gratings-coupled graphene-dielectric multilayer structures,” Opt. Express 27(4), 5217–5229 (2019).
[Crossref]

Y. Zhao, Q. Huang, H. Cai, X. Lin, and Y. Lu, “A broadband and switchable VO2-based perfect absorber at the THz frequency,” Opt. Commun. 426, 443–449 (2018).
[Crossref]

Litchinitser, N. M.

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by Nature: From Ultraviolet to Terahertz,” ACS Photonics 1(4), 293–303 (2014).
[Crossref]

Liu, F.

Liu, H.

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref]

Liu, M.

S. Dai, J. Zhang, Q. Ma, S. Kittiwatanakul, A. McLeod, X. Chen, S. G. Corder, K. Watanabe, T. Taniguchi, J. Lu, Q. Dai, P. Jarillo-Herrero, M. Liu, and D. N. Basov, “Phase-Change Hyperbolic Heterostructures for Nanopolaritonics: A Case Study of hBN/VO2,” Adv. Mater. 31(18), 1900251 (2019).
[Crossref]

Liu, N.

N. Liu, M. Mesch, and T. M. Weiss, “Hentschel, H. Giessen, Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Liu, Y.

Liu, Z.

H. Gao, D. Zhou, W. Cui, Z. Liu, Y. Liu, Z. Jing, and W. Peng, “Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands,” J. Opt. Soc. Am. A 36(2), 264–269 (2019).
[Crossref]

X. Song, Z. Liu, J. Scheuer, Y. Xiang, and K. Aydin, “Tunable polaritonic metasurface absorbers in mid-IR based on hexagonal boron nitride and vanadium dioxide layers,” J. Phys. D: Appl. Phys. 52(16), 164002 (2019).
[Crossref]

H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, and K. Aydin, “Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films,” Sci. Rep. 5(1), 13384 (2015).
[Crossref]

Long, L. L.

Lozano, G.

G. Pirruccio, L. M. Moreno, G. Lozano, and J. G. Rivas, “Coherent and Broadband Enhanced Optical Absorption in Graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref]

Lu, G.

Lu, J.

S. Dai, J. Zhang, Q. Ma, S. Kittiwatanakul, A. McLeod, X. Chen, S. G. Corder, K. Watanabe, T. Taniguchi, J. Lu, Q. Dai, P. Jarillo-Herrero, M. Liu, and D. N. Basov, “Phase-Change Hyperbolic Heterostructures for Nanopolaritonics: A Case Study of hBN/VO2,” Adv. Mater. 31(18), 1900251 (2019).
[Crossref]

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref]

Lu, Y.

Y. Zhao, Q. Huang, H. Cai, X. Lin, H. He, T. Ma, and Y. Lu, “Dual band and tunable perfect absorber based on dual gratings-coupled graphene-dielectric multilayer structures,” Opt. Express 27(4), 5217–5229 (2019).
[Crossref]

Y. Zhao, Q. Huang, H. Cai, X. Lin, and Y. Lu, “A broadband and switchable VO2-based perfect absorber at the THz frequency,” Opt. Commun. 426, 443–449 (2018).
[Crossref]

Luo, X.

L. Xu, B. Peng, X. Luo, X. Zhai, and L. Wang, “A broadband and polarization-insensitive perfect absorber based on a van der Waals material in the mid-infrared regime,” Results Phys. 15, 102687 (2019).
[Crossref]

Y. Chen, X. Li, X. Luo, S. A. Maier, and M. Hong, “Tunable near-infrared plasmonic perfect absorber based on phase-change materials,” Photonics Res. 3(3), 54 (2015).
[Crossref]

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Fang, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413 (2011).
[Crossref]

Ma, Q.

S. Dai, J. Zhang, Q. Ma, S. Kittiwatanakul, A. McLeod, X. Chen, S. G. Corder, K. Watanabe, T. Taniguchi, J. Lu, Q. Dai, P. Jarillo-Herrero, M. Liu, and D. N. Basov, “Phase-Change Hyperbolic Heterostructures for Nanopolaritonics: A Case Study of hBN/VO2,” Adv. Mater. 31(18), 1900251 (2019).
[Crossref]

S. Dai, W. Fang, N. Rivera, Y. Stehle, B. Y. Jiang, J. Shen, R. Y. Tay, C. J. Ciccarino, Q. Ma, D. Rodan-Legrain, P. Jarillo-Herrero, E. H. T. Teo, M. M. Fogler, P. Narang, J. Kong, and D. N. Basov, “Phonon Polaritons in Monolayers of Hexagonal Boron Nitride,” Adv. Mater. 31(37), 1806603 (2019).
[Crossref]

Ma, T.

Ma, Y.

Maier, S. A.

Y. Chen, X. Li, X. Luo, S. A. Maier, and M. Hong, “Tunable near-infrared plasmonic perfect absorber based on phase-change materials,” Photonics Res. 3(3), 54 (2015).
[Crossref]

McLeod, A.

S. Dai, J. Zhang, Q. Ma, S. Kittiwatanakul, A. McLeod, X. Chen, S. G. Corder, K. Watanabe, T. Taniguchi, J. Lu, Q. Dai, P. Jarillo-Herrero, M. Liu, and D. N. Basov, “Phase-Change Hyperbolic Heterostructures for Nanopolaritonics: A Case Study of hBN/VO2,” Adv. Mater. 31(18), 1900251 (2019).
[Crossref]

Mei, L.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, and T. M. Weiss, “Hentschel, H. Giessen, Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Moreno, L. M.

G. Pirruccio, L. M. Moreno, G. Lozano, and J. G. Rivas, “Coherent and Broadband Enhanced Optical Absorption in Graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref]

Narang, P.

S. Dai, W. Fang, N. Rivera, Y. Stehle, B. Y. Jiang, J. Shen, R. Y. Tay, C. J. Ciccarino, Q. Ma, D. Rodan-Legrain, P. Jarillo-Herrero, E. H. T. Teo, M. M. Fogler, P. Narang, J. Kong, and D. N. Basov, “Phonon Polaritons in Monolayers of Hexagonal Boron Nitride,” Adv. Mater. 31(37), 1806603 (2019).
[Crossref]

Nguyen, D. M.

D. M. Nguyen, D. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
[Crossref]

Nguyen, V. H.

Novoselov, K. S.

J. D. Caldwell and K. S. Novoselov, “Van der Waals heterostructures: Mid-infrared nanophotonics,” Nat. Mater. 14(4), 364–366 (2015).
[Crossref]

P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6(1), 7507 (2015).
[Crossref]

O’Hara, J. F.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Ordal, M. A.

Ouerghi, F.

S. Haxha, F. AbdelMalek, F. Ouerghi, M. D. B. Charlton, A. Aggoun, and X. Fang, “Metamaterial Superlenses Operating at Visible Wavelength for Imaging Applications,” Sci. Rep. 8(1), 16119 (2018).
[Crossref]

Ozbay, E.

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Palacios, E.

H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, and K. Aydin, “Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films,” Sci. Rep. 5(1), 13384 (2015).
[Crossref]

Pendry, J. B.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref]

Peng, B.

L. Xu, B. Peng, X. Luo, X. Zhai, and L. Wang, “A broadband and polarization-insensitive perfect absorber based on a van der Waals material in the mid-infrared regime,” Results Phys. 15, 102687 (2019).
[Crossref]

Peng, W.

Perry, C. H.

R. Geick, C. H. Perry, and G. Rupprecht, “Normal Modes in Hexagonal Boron Nitride,” Phys. Rev. 146(2), 543–547 (1966).
[Crossref]

Pirruccio, G.

G. Pirruccio, L. M. Moreno, G. Lozano, and J. G. Rivas, “Coherent and Broadband Enhanced Optical Absorption in Graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref]

Pu, M.

Qi, M. Q.

H. X. Xu, G. M. Wang, M. Q. Qi, G. Liang, J. Q. Gong, and Z. M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B 86(20), 205104 (2012).
[Crossref]

Qiu Xu, Y.

Y. Qiu Xu, P. Heng Zhou, H. Bin Zhang, L. Chen, and L. Jiang Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

Querry, M. R.

Ra’di, Y.

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband Reflectionless Metasheets: Frequency-Selective Transmission and Perfect Absorption,” Phys. Rev. X 5, 031005 (2015).
[Crossref]

Rho, J.

D. M. Nguyen, D. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
[Crossref]

Rivas, J. G.

G. Pirruccio, L. M. Moreno, G. Lozano, and J. G. Rivas, “Coherent and Broadband Enhanced Optical Absorption in Graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref]

Rivera, N.

S. Dai, W. Fang, N. Rivera, Y. Stehle, B. Y. Jiang, J. Shen, R. Y. Tay, C. J. Ciccarino, Q. Ma, D. Rodan-Legrain, P. Jarillo-Herrero, E. H. T. Teo, M. M. Fogler, P. Narang, J. Kong, and D. N. Basov, “Phonon Polaritons in Monolayers of Hexagonal Boron Nitride,” Adv. Mater. 31(37), 1806603 (2019).
[Crossref]

Rodan-Legrain, D.

S. Dai, W. Fang, N. Rivera, Y. Stehle, B. Y. Jiang, J. Shen, R. Y. Tay, C. J. Ciccarino, Q. Ma, D. Rodan-Legrain, P. Jarillo-Herrero, E. H. T. Teo, M. M. Fogler, P. Narang, J. Kong, and D. N. Basov, “Phonon Polaritons in Monolayers of Hexagonal Boron Nitride,” Adv. Mater. 31(37), 1806603 (2019).
[Crossref]

Rodríguez-Ulibarri, P.

P. Rodríguez-Ulibarri, M. Beruete, and A. E. Serebryannikov, “One-way quasiplanar terahertz absorbers using nonstructured polar dielectric layers,” Phys. Rev. B 96(15), 155148 (2017).
[Crossref]

Rupprecht, G.

R. Geick, C. H. Perry, and G. Rupprecht, “Normal Modes in Hexagonal Boron Nitride,” Phys. Rev. 146(2), 543–547 (1966).
[Crossref]

Saha, S.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Scheuer, J.

X. Song, Z. Liu, J. Scheuer, Y. Xiang, and K. Aydin, “Tunable polaritonic metasurface absorbers in mid-IR based on hexagonal boron nitride and vanadium dioxide layers,” J. Phys. D: Appl. Phys. 52(16), 164002 (2019).
[Crossref]

Schnakenberg, U.

Semchenko, I. V.

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband Reflectionless Metasheets: Frequency-Selective Transmission and Perfect Absorption,” Phys. Rev. X 5, 031005 (2015).
[Crossref]

Serebryannikov, A. E.

Shen, J.

S. Dai, W. Fang, N. Rivera, Y. Stehle, B. Y. Jiang, J. Shen, R. Y. Tay, C. J. Ciccarino, Q. Ma, D. Rodan-Legrain, P. Jarillo-Herrero, E. H. T. Teo, M. M. Fogler, P. Narang, J. Kong, and D. N. Basov, “Phonon Polaritons in Monolayers of Hexagonal Boron Nitride,” Adv. Mater. 31(37), 1806603 (2019).
[Crossref]

Shin, Y. J.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Song, X.

X. Song, Z. Liu, J. Scheuer, Y. Xiang, and K. Aydin, “Tunable polaritonic metasurface absorbers in mid-IR based on hexagonal boron nitride and vanadium dioxide layers,” J. Phys. D: Appl. Phys. 52(16), 164002 (2019).
[Crossref]

Stehle, Y.

S. Dai, W. Fang, N. Rivera, Y. Stehle, B. Y. Jiang, J. Shen, R. Y. Tay, C. J. Ciccarino, Q. Ma, D. Rodan-Legrain, P. Jarillo-Herrero, E. H. T. Teo, M. M. Fogler, P. Narang, J. Kong, and D. N. Basov, “Phonon Polaritons in Monolayers of Hexagonal Boron Nitride,” Adv. Mater. 31(37), 1806603 (2019).
[Crossref]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref]

Subramania, G. S.

S. Foteinopoulou, G. C. R. Devarapu, G. S. Subramania, S. Krishna, and D. Wasserman, “Phonon-polaritonics: enabling powerful capabilities for infrared photonics,” Nanophotonics 8(12), 2129–2175 (2019).
[Crossref]

Sun, J.

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by Nature: From Ultraviolet to Terahertz,” ACS Photonics 1(4), 293–303 (2014).
[Crossref]

Tang, M. C.

Taniguchi, T.

S. Dai, J. Zhang, Q. Ma, S. Kittiwatanakul, A. McLeod, X. Chen, S. G. Corder, K. Watanabe, T. Taniguchi, J. Lu, Q. Dai, P. Jarillo-Herrero, M. Liu, and D. N. Basov, “Phase-Change Hyperbolic Heterostructures for Nanopolaritonics: A Case Study of hBN/VO2,” Adv. Mater. 31(18), 1900251 (2019).
[Crossref]

P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6(1), 7507 (2015).
[Crossref]

Taubner, T.

P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6(1), 7507 (2015).
[Crossref]

T. Wang, V. H. Nguyen, A. Buchenauer, U. Schnakenberg, and T. Taubner, “Surface enhanced infrared spectroscopy with gold strip gratings,” Opt. Express 21(7), 9005–9010 (2013).
[Crossref]

Tay, R. Y.

S. Dai, W. Fang, N. Rivera, Y. Stehle, B. Y. Jiang, J. Shen, R. Y. Tay, C. J. Ciccarino, Q. Ma, D. Rodan-Legrain, P. Jarillo-Herrero, E. H. T. Teo, M. M. Fogler, P. Narang, J. Kong, and D. N. Basov, “Phonon Polaritons in Monolayers of Hexagonal Boron Nitride,” Adv. Mater. 31(37), 1806603 (2019).
[Crossref]

Taylor, A. J.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Teo, E. H. T.

S. Dai, W. Fang, N. Rivera, Y. Stehle, B. Y. Jiang, J. Shen, R. Y. Tay, C. J. Ciccarino, Q. Ma, D. Rodan-Legrain, P. Jarillo-Herrero, E. H. T. Teo, M. M. Fogler, P. Narang, J. Kong, and D. N. Basov, “Phonon Polaritons in Monolayers of Hexagonal Boron Nitride,” Adv. Mater. 31(37), 1806603 (2019).
[Crossref]

Th Tee, C. A.

Tongay, S.

H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, and K. Aydin, “Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films,” Sci. Rep. 5(1), 13384 (2015).
[Crossref]

Toprak, A.

Tretyakov, S. A.

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband Reflectionless Metasheets: Frequency-Selective Transmission and Perfect Absorption,” Phys. Rev. X 5, 031005 (2015).
[Crossref]

Vandenbosch, G. A. E.

Verleur, H. W.

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

Wang, A.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Wang, C.

Wang, G. M.

H. X. Xu, G. M. Wang, M. Q. Qi, G. Liang, J. Q. Gong, and Z. M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B 86(20), 205104 (2012).
[Crossref]

Wang, J.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Wang, K.

H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, and K. Aydin, “Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films,” Sci. Rep. 5(1), 13384 (2015).
[Crossref]

Wang, L.

L. Xu, B. Peng, X. Luo, X. Zhai, and L. Wang, “A broadband and polarization-insensitive perfect absorber based on a van der Waals material in the mid-infrared regime,” Results Phys. 15, 102687 (2019).
[Crossref]

Wang, M.

Wang, S.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Wang, T.

Wang, X. R.

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref]

Wasserman, D.

S. Foteinopoulou, G. C. R. Devarapu, G. S. Subramania, S. Krishna, and D. Wasserman, “Phonon-polaritonics: enabling powerful capabilities for infrared photonics,” Nanophotonics 8(12), 2129–2175 (2019).
[Crossref]

Watanabe, K.

S. Dai, J. Zhang, Q. Ma, S. Kittiwatanakul, A. McLeod, X. Chen, S. G. Corder, K. Watanabe, T. Taniguchi, J. Lu, Q. Dai, P. Jarillo-Herrero, M. Liu, and D. N. Basov, “Phase-Change Hyperbolic Heterostructures for Nanopolaritonics: A Case Study of hBN/VO2,” Adv. Mater. 31(18), 1900251 (2019).
[Crossref]

P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6(1), 7507 (2015).
[Crossref]

Wegener, M.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref]

Weiss, T. M.

N. Liu, M. Mesch, and T. M. Weiss, “Hentschel, H. Giessen, Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Wen, S.

Weng, X.

Wu, F.

Wu, J.

J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a Graphene-hBN Hyper Crystal,” Opt. Express 24(15), 17103–17114 (2016).
[Crossref]

H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, and K. Aydin, “Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films,” Sci. Rep. 5(1), 13384 (2015).
[Crossref]

Wu, Y. B.

Xiang, Y.

X. Song, Z. Liu, J. Scheuer, Y. Xiang, and K. Aydin, “Tunable polaritonic metasurface absorbers in mid-IR based on hexagonal boron nitride and vanadium dioxide layers,” J. Phys. D: Appl. Phys. 52(16), 164002 (2019).
[Crossref]

J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a Graphene-hBN Hyper Crystal,” Opt. Express 24(15), 17103–17114 (2016).
[Crossref]

Xie, J.

Xiong, H.

Xu, H. X.

H. X. Xu, G. M. Wang, M. Q. Qi, G. Liang, J. Q. Gong, and Z. M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B 86(20), 205104 (2012).
[Crossref]

Xu, L.

L. Xu, B. Peng, X. Luo, X. Zhai, and L. Wang, “A broadband and polarization-insensitive perfect absorber based on a van der Waals material in the mid-infrared regime,” Results Phys. 15, 102687 (2019).
[Crossref]

Xu, T.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref]

Xu, Z. M.

H. X. Xu, G. M. Wang, M. Q. Qi, G. Liang, J. Q. Gong, and Z. M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B 86(20), 205104 (2012).
[Crossref]

Xue, C.

Yang, L.

Yang, X.

Youn, H.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Yu, H.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Yu, X.

Yu, Y.

Yuan, W.

Zeng, X. P.

Zhai, X.

L. Xu, B. Peng, X. Luo, X. Zhai, and L. Wang, “A broadband and polarization-insensitive perfect absorber based on a van der Waals material in the mid-infrared regime,” Results Phys. 15, 102687 (2019).
[Crossref]

Zhang, H.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Zhang, J.

S. Dai, J. Zhang, Q. Ma, S. Kittiwatanakul, A. McLeod, X. Chen, S. G. Corder, K. Watanabe, T. Taniguchi, J. Lu, Q. Dai, P. Jarillo-Herrero, M. Liu, and D. N. Basov, “Phase-Change Hyperbolic Heterostructures for Nanopolaritonics: A Case Study of hBN/VO2,” Adv. Mater. 31(18), 1900251 (2019).
[Crossref]

Zhang, L.

Zhang, Y.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[Crossref]

Zhao, J.

Zhao, M.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Zhao, Y.

Y. L. Liao and Y. Zhao, “Ultra-narrowband dielectric metamaterial absorber with ultra-sparse nanowire grids for sensing applications,” Sci. Rep. 10(1), 1480 (2020).
[Crossref]

Y. Zhao, Q. Huang, H. Cai, X. Lin, H. He, T. Ma, and Y. Lu, “Dual band and tunable perfect absorber based on dual gratings-coupled graphene-dielectric multilayer structures,” Opt. Express 27(4), 5217–5229 (2019).
[Crossref]

Y. Zhao, Q. Huang, H. Cai, X. Lin, and Y. Lu, “A broadband and switchable VO2-based perfect absorber at the THz frequency,” Opt. Commun. 426, 443–449 (2018).
[Crossref]

Zhao, Z.

Zhen, G.

Zheng, M.

Zhou, D.

Zhou, J.

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by Nature: From Ultraviolet to Terahertz,” ACS Photonics 1(4), 293–303 (2014).
[Crossref]

Zhou, P.

Zhou, X.

Zhu, B.

ACS Nano (2)

K. Chen, R. Adato, and H. Altug, “Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref]

G. Pirruccio, L. M. Moreno, G. Lozano, and J. G. Rivas, “Coherent and Broadband Enhanced Optical Absorption in Graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref]

ACS Photonics (2)

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by Nature: From Ultraviolet to Terahertz,” ACS Photonics 1(4), 293–303 (2014).
[Crossref]

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and Flexible Polarization-Independent Microwave Broadband Absorber,” ACS Photonics 1(3), 279–284 (2014).
[Crossref]

Adv. Mater. (3)

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

S. Dai, W. Fang, N. Rivera, Y. Stehle, B. Y. Jiang, J. Shen, R. Y. Tay, C. J. Ciccarino, Q. Ma, D. Rodan-Legrain, P. Jarillo-Herrero, E. H. T. Teo, M. M. Fogler, P. Narang, J. Kong, and D. N. Basov, “Phonon Polaritons in Monolayers of Hexagonal Boron Nitride,” Adv. Mater. 31(37), 1806603 (2019).
[Crossref]

S. Dai, J. Zhang, Q. Ma, S. Kittiwatanakul, A. McLeod, X. Chen, S. G. Corder, K. Watanabe, T. Taniguchi, J. Lu, Q. Dai, P. Jarillo-Herrero, M. Liu, and D. N. Basov, “Phase-Change Hyperbolic Heterostructures for Nanopolaritonics: A Case Study of hBN/VO2,” Adv. Mater. 31(18), 1900251 (2019).
[Crossref]

Appl. Opt. (1)

J. Appl. Phys. (1)

Y. Qiu Xu, P. Heng Zhou, H. Bin Zhang, L. Chen, and L. Jiang Deng, “A wide-angle planar metamaterial absorber based on split ring resonator coupling,” J. Appl. Phys. 110(4), 044102 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

X. Song, Z. Liu, J. Scheuer, Y. Xiang, and K. Aydin, “Tunable polaritonic metasurface absorbers in mid-IR based on hexagonal boron nitride and vanadium dioxide layers,” J. Phys. D: Appl. Phys. 52(16), 164002 (2019).
[Crossref]

Nano Lett. (1)

N. Liu, M. Mesch, and T. M. Weiss, “Hentschel, H. Giessen, Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Nanophotonics (1)

S. Foteinopoulou, G. C. R. Devarapu, G. S. Subramania, S. Krishna, and D. Wasserman, “Phonon-polaritonics: enabling powerful capabilities for infrared photonics,” Nanophotonics 8(12), 2129–2175 (2019).
[Crossref]

Nanotechnology (1)

H. Liu, J. Lu, and X. R. Wang, “Metamaterials based on the phase transition of VO2,” Nanotechnology 29(2), 024002 (2018).
[Crossref]

Nat. Commun. (2)

P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6(1), 7507 (2015).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

Nat. Mater. (1)

J. D. Caldwell and K. S. Novoselov, “Van der Waals heterostructures: Mid-infrared nanophotonics,” Nat. Mater. 14(4), 364–366 (2015).
[Crossref]

Nature (1)

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref]

Opt. Commun. (1)

Y. Zhao, Q. Huang, H. Cai, X. Lin, and Y. Lu, “A broadband and switchable VO2-based perfect absorber at the THz frequency,” Opt. Commun. 426, 443–449 (2018).
[Crossref]

Opt. Express (8)

Y. Zhao, Q. Huang, H. Cai, X. Lin, H. He, T. Ma, and Y. Lu, “Dual band and tunable perfect absorber based on dual gratings-coupled graphene-dielectric multilayer structures,” Opt. Express 27(4), 5217–5229 (2019).
[Crossref]

T. Wang, V. H. Nguyen, A. Buchenauer, U. Schnakenberg, and T. Taubner, “Surface enhanced infrared spectroscopy with gold strip gratings,” Opt. Express 21(7), 9005–9010 (2013).
[Crossref]

J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a Graphene-hBN Hyper Crystal,” Opt. Express 24(15), 17103–17114 (2016).
[Crossref]

A. Ghobadi, H. Hajian, M. Gokbayrak, S. A. Dereshgi, A. Toprak, B. Butun, and E. Ozbay, “Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity,” Opt. Express 25(22), 27624–27634 (2017).
[Crossref]

G. Lu, F. Wu, M. Zheng, C. Chen, X. Zhou, C. Diao, F. Liu, G. Du, C. Xue, H. Jiang, and H. Chen, “Perfect optical absorbers in a wide range of incidence by photonic heterostructures containing layered hyperbolic metamaterials,” Opt. Express 27(4), 5326–5336 (2019).
[Crossref]

M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Fang, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413 (2011).
[Crossref]

H. Xiong, Y. B. Wu, J. Dong, M. C. Tang, Y. N. Jiang, and X. P. Zeng, “Ultra-thin and broadband tunable metamaterial graphene absorber,” Opt. Express 26(2), 1681–1688 (2018).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (1)

Photonics Res. (1)

Y. Chen, X. Li, X. Luo, S. A. Maier, and M. Hong, “Tunable near-infrared plasmonic perfect absorber based on phase-change materials,” Photonics Res. 3(3), 54 (2015).
[Crossref]

Phys. Rev. (1)

R. Geick, C. H. Perry, and G. Rupprecht, “Normal Modes in Hexagonal Boron Nitride,” Phys. Rev. 146(2), 543–547 (1966).
[Crossref]

Phys. Rev. Appl. (1)

G. C. R. Devarapu and S. Foteinopoulou, “Broadband Near-Unidirectional Absorption Enabled by Phonon-Polariton Resonances in SiC Micropyramid Arrays,” Phys. Rev. Appl. 7(3), 034001 (2017).
[Crossref]

Phys. Rev. B (2)

P. Rodríguez-Ulibarri, M. Beruete, and A. E. Serebryannikov, “One-way quasiplanar terahertz absorbers using nonstructured polar dielectric layers,” Phys. Rev. B 96(15), 155148 (2017).
[Crossref]

H. X. Xu, G. M. Wang, M. Q. Qi, G. Liang, J. Q. Gong, and Z. M. Xu, “Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber,” Phys. Rev. B 86(20), 205104 (2012).
[Crossref]

Phys. Rev. Lett. (2)

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Phys. Rev. X (1)

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband Reflectionless Metasheets: Frequency-Selective Transmission and Perfect Absorption,” Phys. Rev. X 5, 031005 (2015).
[Crossref]

Prog. Electromagn. Res. (1)

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagn. Res. 113, 103–110 (2011).
[Crossref]

Results Phys. (1)

L. Xu, B. Peng, X. Luo, X. Zhai, and L. Wang, “A broadband and polarization-insensitive perfect absorber based on a van der Waals material in the mid-infrared regime,” Results Phys. 15, 102687 (2019).
[Crossref]

Sci. Rep. (5)

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Y. L. Liao and Y. Zhao, “Ultra-narrowband dielectric metamaterial absorber with ultra-sparse nanowire grids for sensing applications,” Sci. Rep. 10(1), 1480 (2020).
[Crossref]

D. M. Nguyen, D. Lee, and J. Rho, “Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths,” Sci. Rep. 7(1), 2611 (2017).
[Crossref]

S. Haxha, F. AbdelMalek, F. Ouerghi, M. D. B. Charlton, A. Aggoun, and X. Fang, “Metamaterial Superlenses Operating at Visible Wavelength for Imaging Applications,” Sci. Rep. 8(1), 16119 (2018).
[Crossref]

H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, and K. Aydin, “Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films,” Sci. Rep. 5(1), 13384 (2015).
[Crossref]

Science (1)

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref]

Other (1)

G.V. Eleftheriades and K.G. Balmain, “Negative-refraction metamaterials: fundamental principles and applications”, pp. 313–315 (John Wiley and Sons Inc, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic of the tunable polaritonic perfect absorber and absorption spectra. (a) Schematic view of the unit of designed absorber and the incident light polarization configuration. (b) Simulated absorption at T < Tc(black) and T > Tc (red), respectively. Numerical calculations of normalized optical impedance and reflection of the designed absorber at T < Tc (c) and T > Tc (d). The impedance is perfectly matched to the vacuum at resonant wavelengths both at 7.2µm and 12µm. The black solid lines, red dashed lines and blue triangle lines represent the real part of the impedance, imaginary part of the impedance and reflectance, respectively.
Fig. 2.
Fig. 2. The physical mechanism behind the perfect absorber. Electric field distributions of xz cross sections at 7.2µm(a) and 12µm(b). The difference of field confinement corresponds to different absorption behaviors of the electromagnetic resonance. The absorption(A) for the designed structure at T < Tc (c), and T > Tc (d), where ‘all’ (black), ‘hBN’(red), ‘VO2’ (blue) correspond to the calculated absorptions in the whole structure, in hBN layer and in VO2 layer, respectively.
Fig. 3.
Fig. 3. The absorption dependencies on wavelength and incidence angle. The simulated absorption of the proposed perfect absorber when incident angles θ ranging from 0° to 60° for TE polarization at T < Tc(a), T > Tc(c)), and TM polarization at T < Tc(b), T > Tc(d).
Fig. 4.
Fig. 4. The absorption tolerance of the structural parameters. (a), (c) and (e) show the absorption spectra as functions of the hBN disk radius r, the VO2 block thickness dv, and the VO2 block width l below T = Tc, respectively. (b), (d) and (f) accordingly show the absorptions as functions of the three parameters above T = Tc.

Metrics