Abstract

An avalanche photodetector (APD) based on the AlxIn1-xAsySb1-y digital alloy materials system has recently attracted extensive attention due to its extremely low excess noise. Device defects are a critical factor limiting the performance of APDs. In this work, we use low frequency noise spectroscopy (LFNS) to characterize the property of the defects in AlxIn1-xAsySb1-y APDs grown by molecular beam epitaxy (MBE) using the digital alloy technique. Based on low frequency noise spectroscopy results carried out before and after device oxidation, two surface defects and one bulk defect have been identified, which could provide useful information for the future optimization the material growth and device fabrication processes.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
AlxIn1-xAsySb1-y photodiodes with low avalanche breakdown temperature dependence

Andrew H. Jones, Yuan Yuan, Min Ren, Scott J. Maddox, Seth R. Bank, and Joe C. Campbell
Opt. Express 25(20) 24340-24345 (2017)

Electron-initiated low noise 1064 nm InGaAsP/InAlAs avalanche photodetectors

Yingjie Ma, Yonggang Zhang, Yi Gu, Yanhui Shi, Xingyou Chen, Wanyan Ji, Ben Du, Xiumei Shao, and Jiaxiong Fang
Opt. Express 26(2) 1028-1037 (2018)

Tailoring the performances of low operating voltage InAlAs/InGaAs avalanche photodetectors

Yingjie Ma, Yonggang Zhang, Yi Gu, Xingyou Chen, Suping Xi, Ben Du, and Hsby Li
Opt. Express 23(15) 19278-19287 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Campbell, “Recent Advances in Avalanche Photodiodes,” J. Lightwave Technol. 34(2), 278–285 (2016).
    [Crossref]
  2. X. Jiang, M. Itzler, K. O’Donnell, M. Entwistle, M. Owens, K. Slomkowski, and S. Rangwala, “InP-based single-photon detectors and geiger-mode APD arrays for quantum communications applications,” IEEE J. Sel. Top. Quantum Electron. 21(3), 5–16 (2015).
    [Crossref]
  3. P. Vines, K. Kuzmenko, J. Kirdoda, D. C. Dumas, M. M. Mirza, R. W. Millar, D. J. Paul, and G. S. Buller, “High performance planar germanium-on-silicon single-photon avalanche diode detectors,” Nat. Commun. 10(1), 1086 (2019).
    [Crossref]
  4. X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci. 3(3), 150584 (2016).
    [Crossref]
  5. G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
    [Crossref]
  6. B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, and K. M. Lau, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photonics 7(2), 528–533 (2020).
    [Crossref]
  7. R. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron Devices ED-13(1), 164–168 (1966).
    [Crossref]
  8. A. R. Marshall, P. J. Ker, A. Krysa, J. P. David, and C. H. Tan, “High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit,” Opt. Express 19(23), 23341–23349 (2011).
    [Crossref]
  9. W. Sun, Z. Lu, X. Zheng, J. C. Campbell, S. J. Maddox, H. P. Nair, and S. R. Bank, “High-gain InAs avalanche photodiodes,” IEEE J. Quantum Electron. 49(2), 154–161 (2013).
    [Crossref]
  10. A. R. Marshall, J. P. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron Devices 57(10), 2631–2638 (2010).
    [Crossref]
  11. A. R. Marshall, C. H. Tan, M. J. Steer, and J. P. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photonics Technol. Lett. 21(13), 866–868 (2009).
    [Crossref]
  12. X. Yi, S. Xie, B. Liang, L. W. Lim, J. S. Cheong, M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P. David, “Extremely low excess noise and high sensitivity AlAs 0.56 Sb 0.44 avalanche photodiodes,” Nat. Photonics 13(10), 683–686 (2019).
    [Crossref]
  13. X. Yi, S. Xie, B. Liang, L. W. Lim, X. Zhou, M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P. David, “Demonstration of large ionization coefficient ratio in AlAs 0.56 Sb 0.44 lattice matched to InP,” Sci. Rep. 8(1), 1–6 (2018).
    [Crossref]
  14. J. Xie, S. Xie, R. Tozer, and C. H. Tan, “Excess noise characteristics of thin AlAsSb APDs,” IEEE Trans. Electron Devices 59(5), 1475–1479 (2012).
    [Crossref]
  15. S. Xie, X. Zhou, S. Zhang, D. J. Thomson, X. Chen, G. T. Reed, J. S. Ng, and C. H. Tan, “InGaAs/AlGaAsSb avalanche photodiode with high gain-bandwidth product,” Opt. Express 24(21), 24242–24247 (2016).
    [Crossref]
  16. M. Kinch, J. Beck, C.-F. Wan, F. Ma, and J. Campbell, “HgCdTe electron avalanche photodiodes,” J. Electron. Mater. 33(6), 630–639 (2004).
    [Crossref]
  17. J. D. Beck, C.-F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” in Materials for Infrared Detectors, (International Society for Optics and Photonics, 2001), 188–197.
  18. S. R. Bank, J. C. Campbell, S. J. Maddox, M. Ren, A. K. Rockwell, M. E. Woodson, and S. D. March, “Avalanche photodiodes based on the AlInAsSb materials system,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–7 (2018).
    [Crossref]
  19. S. J. Maddox, S. D. March, and S. R. Bank, “Broadly tunable AlInAsSb digital alloys grown on GaSb,” Cryst. Growth Des. 16(7), 3582–3586 (2016).
    [Crossref]
  20. A. H. Jones, Y. Yuan, M. Ren, S. J. Maddox, S. R. Bank, and J. C. Campbell, “Al x In 1-x As y Sb 1-y photodiodes with low avalanche breakdown temperature dependence,” Opt. Express 25(20), 24340–24345 (2017).
    [Crossref]
  21. A. H. Jones, S. D. March, S. R. Bank, and J. C. Campbell, “Al x In 1-x As y Sb 1-y Separate Absorption, Charge, and Multiplication Avalanche Photodiodes for 2-µm Detection,” in 2019 IEEE Photonics Conference (IPC), (IEEE), 1–2.
  22. A. H. Jones, A.-K. Rockwell, S. D. March, Y. Yuan, S. R. Bank, and J. C. Campbell, “High Gain, Low Dark Current Al0.8In0.2As0.23Sb0.77 Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 31(24), 1948–1951 (2019).
    [Crossref]
  23. M. Ren, S. J. Maddox, M. E. Woodson, Y. Chen, S. R. Bank, and J. C. Campbell, “Characteristics of Alx In 1-x Asy Sb1-y(x: 0.3−0.7) Avalanche Photodiodes,” J. Lightwave Technol. 35(12), 2380–2384 (2017).
    [Crossref]
  24. B. K. Jones, “Low-frequency noise spectroscopy,” IEEE Trans. Electron Devices 41(11), 2188–2197 (1994).
    [Crossref]
  25. J. Huang, B. Chen, Z. Deng, Y. Gu, Y. Ma, J. Zhang, X. Chen, and J. Shao, “Deep levels analysis in wavelength extended InGaAsBi photodetector,” Semicond. Sci. Technol. 34(9), 095018 (2019).
    [Crossref]
  26. J. Huang, Y. Wan, D. Jung, J. Norman, C. Shang, Q. Li, K. M. Lau, A. C. Gossard, J. E. Bowers, and B. Chen, “Defect Characterization of InAs/InGaAs Quantum Dot p-i-n Photodetector Grown on GaAs-on-V-Grooved-Si Substrate,” ACS Photonics 6(5), 1100–1105 (2019).
    [Crossref]
  27. L. Zhu, J. Huang, Z. Xie, Z. Deng, L. Chen, C. Lin, and B. Chen, “Low-Frequency Noise Spectroscopy Characterization of HgCdTe Infrared Detectors,” IEEE Trans. Electron Devices 67(2), 547–551 (2020).
    [Crossref]
  28. W. Chen, B. Chen, J. Yuan, A. Holmes, and P. Fay, “Bulk and interfacial deep levels observed in In0. 53Ga0. 47As/GaAs0. 5Sb0. 5 multiple quantum well photodiode,” Appl. Phys. Lett. 101(5), 052107 (2012).
    [Crossref]
  29. W. Chen, B. Chen, A. Holmes, and P. Fay, “Investigation of traps in strained-well InGaAs/GaAsSb quantum well photodiodes,” Electron. Lett. 51(18), 1439–1440 (2015).
    [Crossref]

2020 (2)

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, and K. M. Lau, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photonics 7(2), 528–533 (2020).
[Crossref]

L. Zhu, J. Huang, Z. Xie, Z. Deng, L. Chen, C. Lin, and B. Chen, “Low-Frequency Noise Spectroscopy Characterization of HgCdTe Infrared Detectors,” IEEE Trans. Electron Devices 67(2), 547–551 (2020).
[Crossref]

2019 (5)

A. H. Jones, A.-K. Rockwell, S. D. March, Y. Yuan, S. R. Bank, and J. C. Campbell, “High Gain, Low Dark Current Al0.8In0.2As0.23Sb0.77 Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 31(24), 1948–1951 (2019).
[Crossref]

J. Huang, B. Chen, Z. Deng, Y. Gu, Y. Ma, J. Zhang, X. Chen, and J. Shao, “Deep levels analysis in wavelength extended InGaAsBi photodetector,” Semicond. Sci. Technol. 34(9), 095018 (2019).
[Crossref]

J. Huang, Y. Wan, D. Jung, J. Norman, C. Shang, Q. Li, K. M. Lau, A. C. Gossard, J. E. Bowers, and B. Chen, “Defect Characterization of InAs/InGaAs Quantum Dot p-i-n Photodetector Grown on GaAs-on-V-Grooved-Si Substrate,” ACS Photonics 6(5), 1100–1105 (2019).
[Crossref]

P. Vines, K. Kuzmenko, J. Kirdoda, D. C. Dumas, M. M. Mirza, R. W. Millar, D. J. Paul, and G. S. Buller, “High performance planar germanium-on-silicon single-photon avalanche diode detectors,” Nat. Commun. 10(1), 1086 (2019).
[Crossref]

X. Yi, S. Xie, B. Liang, L. W. Lim, J. S. Cheong, M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P. David, “Extremely low excess noise and high sensitivity AlAs 0.56 Sb 0.44 avalanche photodiodes,” Nat. Photonics 13(10), 683–686 (2019).
[Crossref]

2018 (2)

X. Yi, S. Xie, B. Liang, L. W. Lim, X. Zhou, M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P. David, “Demonstration of large ionization coefficient ratio in AlAs 0.56 Sb 0.44 lattice matched to InP,” Sci. Rep. 8(1), 1–6 (2018).
[Crossref]

S. R. Bank, J. C. Campbell, S. J. Maddox, M. Ren, A. K. Rockwell, M. E. Woodson, and S. D. March, “Avalanche photodiodes based on the AlInAsSb materials system,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–7 (2018).
[Crossref]

2017 (2)

2016 (4)

S. J. Maddox, S. D. March, and S. R. Bank, “Broadly tunable AlInAsSb digital alloys grown on GaSb,” Cryst. Growth Des. 16(7), 3582–3586 (2016).
[Crossref]

S. Xie, X. Zhou, S. Zhang, D. J. Thomson, X. Chen, G. T. Reed, J. S. Ng, and C. H. Tan, “InGaAs/AlGaAsSb avalanche photodiode with high gain-bandwidth product,” Opt. Express 24(21), 24242–24247 (2016).
[Crossref]

X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci. 3(3), 150584 (2016).
[Crossref]

J. C. Campbell, “Recent Advances in Avalanche Photodiodes,” J. Lightwave Technol. 34(2), 278–285 (2016).
[Crossref]

2015 (2)

X. Jiang, M. Itzler, K. O’Donnell, M. Entwistle, M. Owens, K. Slomkowski, and S. Rangwala, “InP-based single-photon detectors and geiger-mode APD arrays for quantum communications applications,” IEEE J. Sel. Top. Quantum Electron. 21(3), 5–16 (2015).
[Crossref]

W. Chen, B. Chen, A. Holmes, and P. Fay, “Investigation of traps in strained-well InGaAs/GaAsSb quantum well photodiodes,” Electron. Lett. 51(18), 1439–1440 (2015).
[Crossref]

2013 (1)

W. Sun, Z. Lu, X. Zheng, J. C. Campbell, S. J. Maddox, H. P. Nair, and S. R. Bank, “High-gain InAs avalanche photodiodes,” IEEE J. Quantum Electron. 49(2), 154–161 (2013).
[Crossref]

2012 (2)

J. Xie, S. Xie, R. Tozer, and C. H. Tan, “Excess noise characteristics of thin AlAsSb APDs,” IEEE Trans. Electron Devices 59(5), 1475–1479 (2012).
[Crossref]

W. Chen, B. Chen, J. Yuan, A. Holmes, and P. Fay, “Bulk and interfacial deep levels observed in In0. 53Ga0. 47As/GaAs0. 5Sb0. 5 multiple quantum well photodiode,” Appl. Phys. Lett. 101(5), 052107 (2012).
[Crossref]

2011 (1)

2010 (1)

A. R. Marshall, J. P. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron Devices 57(10), 2631–2638 (2010).
[Crossref]

2009 (1)

A. R. Marshall, C. H. Tan, M. J. Steer, and J. P. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photonics Technol. Lett. 21(13), 866–868 (2009).
[Crossref]

2007 (1)

G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

2004 (1)

M. Kinch, J. Beck, C.-F. Wan, F. Ma, and J. Campbell, “HgCdTe electron avalanche photodiodes,” J. Electron. Mater. 33(6), 630–639 (2004).
[Crossref]

1994 (1)

B. K. Jones, “Low-frequency noise spectroscopy,” IEEE Trans. Electron Devices 41(11), 2188–2197 (1994).
[Crossref]

1966 (1)

R. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron Devices ED-13(1), 164–168 (1966).
[Crossref]

Bank, S. R.

A. H. Jones, A.-K. Rockwell, S. D. March, Y. Yuan, S. R. Bank, and J. C. Campbell, “High Gain, Low Dark Current Al0.8In0.2As0.23Sb0.77 Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 31(24), 1948–1951 (2019).
[Crossref]

S. R. Bank, J. C. Campbell, S. J. Maddox, M. Ren, A. K. Rockwell, M. E. Woodson, and S. D. March, “Avalanche photodiodes based on the AlInAsSb materials system,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–7 (2018).
[Crossref]

A. H. Jones, Y. Yuan, M. Ren, S. J. Maddox, S. R. Bank, and J. C. Campbell, “Al x In 1-x As y Sb 1-y photodiodes with low avalanche breakdown temperature dependence,” Opt. Express 25(20), 24340–24345 (2017).
[Crossref]

M. Ren, S. J. Maddox, M. E. Woodson, Y. Chen, S. R. Bank, and J. C. Campbell, “Characteristics of Alx In 1-x Asy Sb1-y(x: 0.3−0.7) Avalanche Photodiodes,” J. Lightwave Technol. 35(12), 2380–2384 (2017).
[Crossref]

S. J. Maddox, S. D. March, and S. R. Bank, “Broadly tunable AlInAsSb digital alloys grown on GaSb,” Cryst. Growth Des. 16(7), 3582–3586 (2016).
[Crossref]

W. Sun, Z. Lu, X. Zheng, J. C. Campbell, S. J. Maddox, H. P. Nair, and S. R. Bank, “High-gain InAs avalanche photodiodes,” IEEE J. Quantum Electron. 49(2), 154–161 (2013).
[Crossref]

A. H. Jones, S. D. March, S. R. Bank, and J. C. Campbell, “Al x In 1-x As y Sb 1-y Separate Absorption, Charge, and Multiplication Avalanche Photodiodes for 2-µm Detection,” in 2019 IEEE Photonics Conference (IPC), (IEEE), 1–2.

Beck, J.

M. Kinch, J. Beck, C.-F. Wan, F. Ma, and J. Campbell, “HgCdTe electron avalanche photodiodes,” J. Electron. Mater. 33(6), 630–639 (2004).
[Crossref]

Beck, J. D.

J. D. Beck, C.-F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” in Materials for Infrared Detectors, (International Society for Optics and Photonics, 2001), 188–197.

Bowers, J. E.

J. Huang, Y. Wan, D. Jung, J. Norman, C. Shang, Q. Li, K. M. Lau, A. C. Gossard, J. E. Bowers, and B. Chen, “Defect Characterization of InAs/InGaAs Quantum Dot p-i-n Photodetector Grown on GaAs-on-V-Grooved-Si Substrate,” ACS Photonics 6(5), 1100–1105 (2019).
[Crossref]

Buller, G.

G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

Buller, G. S.

P. Vines, K. Kuzmenko, J. Kirdoda, D. C. Dumas, M. M. Mirza, R. W. Millar, D. J. Paul, and G. S. Buller, “High performance planar germanium-on-silicon single-photon avalanche diode detectors,” Nat. Commun. 10(1), 1086 (2019).
[Crossref]

Calandri, N.

X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci. 3(3), 150584 (2016).
[Crossref]

Campbell, J.

M. Kinch, J. Beck, C.-F. Wan, F. Ma, and J. Campbell, “HgCdTe electron avalanche photodiodes,” J. Electron. Mater. 33(6), 630–639 (2004).
[Crossref]

Campbell, J. C.

A. H. Jones, A.-K. Rockwell, S. D. March, Y. Yuan, S. R. Bank, and J. C. Campbell, “High Gain, Low Dark Current Al0.8In0.2As0.23Sb0.77 Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 31(24), 1948–1951 (2019).
[Crossref]

S. R. Bank, J. C. Campbell, S. J. Maddox, M. Ren, A. K. Rockwell, M. E. Woodson, and S. D. March, “Avalanche photodiodes based on the AlInAsSb materials system,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–7 (2018).
[Crossref]

A. H. Jones, Y. Yuan, M. Ren, S. J. Maddox, S. R. Bank, and J. C. Campbell, “Al x In 1-x As y Sb 1-y photodiodes with low avalanche breakdown temperature dependence,” Opt. Express 25(20), 24340–24345 (2017).
[Crossref]

M. Ren, S. J. Maddox, M. E. Woodson, Y. Chen, S. R. Bank, and J. C. Campbell, “Characteristics of Alx In 1-x Asy Sb1-y(x: 0.3−0.7) Avalanche Photodiodes,” J. Lightwave Technol. 35(12), 2380–2384 (2017).
[Crossref]

J. C. Campbell, “Recent Advances in Avalanche Photodiodes,” J. Lightwave Technol. 34(2), 278–285 (2016).
[Crossref]

W. Sun, Z. Lu, X. Zheng, J. C. Campbell, S. J. Maddox, H. P. Nair, and S. R. Bank, “High-gain InAs avalanche photodiodes,” IEEE J. Quantum Electron. 49(2), 154–161 (2013).
[Crossref]

A. H. Jones, S. D. March, S. R. Bank, and J. C. Campbell, “Al x In 1-x As y Sb 1-y Separate Absorption, Charge, and Multiplication Avalanche Photodiodes for 2-µm Detection,” in 2019 IEEE Photonics Conference (IPC), (IEEE), 1–2.

Chen, B.

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, and K. M. Lau, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photonics 7(2), 528–533 (2020).
[Crossref]

L. Zhu, J. Huang, Z. Xie, Z. Deng, L. Chen, C. Lin, and B. Chen, “Low-Frequency Noise Spectroscopy Characterization of HgCdTe Infrared Detectors,” IEEE Trans. Electron Devices 67(2), 547–551 (2020).
[Crossref]

J. Huang, Y. Wan, D. Jung, J. Norman, C. Shang, Q. Li, K. M. Lau, A. C. Gossard, J. E. Bowers, and B. Chen, “Defect Characterization of InAs/InGaAs Quantum Dot p-i-n Photodetector Grown on GaAs-on-V-Grooved-Si Substrate,” ACS Photonics 6(5), 1100–1105 (2019).
[Crossref]

J. Huang, B. Chen, Z. Deng, Y. Gu, Y. Ma, J. Zhang, X. Chen, and J. Shao, “Deep levels analysis in wavelength extended InGaAsBi photodetector,” Semicond. Sci. Technol. 34(9), 095018 (2019).
[Crossref]

W. Chen, B. Chen, A. Holmes, and P. Fay, “Investigation of traps in strained-well InGaAs/GaAsSb quantum well photodiodes,” Electron. Lett. 51(18), 1439–1440 (2015).
[Crossref]

W. Chen, B. Chen, J. Yuan, A. Holmes, and P. Fay, “Bulk and interfacial deep levels observed in In0. 53Ga0. 47As/GaAs0. 5Sb0. 5 multiple quantum well photodiode,” Appl. Phys. Lett. 101(5), 052107 (2012).
[Crossref]

Chen, L.

L. Zhu, J. Huang, Z. Xie, Z. Deng, L. Chen, C. Lin, and B. Chen, “Low-Frequency Noise Spectroscopy Characterization of HgCdTe Infrared Detectors,” IEEE Trans. Electron Devices 67(2), 547–551 (2020).
[Crossref]

Chen, W.

W. Chen, B. Chen, A. Holmes, and P. Fay, “Investigation of traps in strained-well InGaAs/GaAsSb quantum well photodiodes,” Electron. Lett. 51(18), 1439–1440 (2015).
[Crossref]

W. Chen, B. Chen, J. Yuan, A. Holmes, and P. Fay, “Bulk and interfacial deep levels observed in In0. 53Ga0. 47As/GaAs0. 5Sb0. 5 multiple quantum well photodiode,” Appl. Phys. Lett. 101(5), 052107 (2012).
[Crossref]

Chen, X.

J. Huang, B. Chen, Z. Deng, Y. Gu, Y. Ma, J. Zhang, X. Chen, and J. Shao, “Deep levels analysis in wavelength extended InGaAsBi photodetector,” Semicond. Sci. Technol. 34(9), 095018 (2019).
[Crossref]

S. Xie, X. Zhou, S. Zhang, D. J. Thomson, X. Chen, G. T. Reed, J. S. Ng, and C. H. Tan, “InGaAs/AlGaAsSb avalanche photodiode with high gain-bandwidth product,” Opt. Express 24(21), 24242–24247 (2016).
[Crossref]

Chen, Y.

Cheong, J. S.

X. Yi, S. Xie, B. Liang, L. W. Lim, J. S. Cheong, M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P. David, “Extremely low excess noise and high sensitivity AlAs 0.56 Sb 0.44 avalanche photodiodes,” Nat. Photonics 13(10), 683–686 (2019).
[Crossref]

David, J. P.

X. Yi, S. Xie, B. Liang, L. W. Lim, J. S. Cheong, M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P. David, “Extremely low excess noise and high sensitivity AlAs 0.56 Sb 0.44 avalanche photodiodes,” Nat. Photonics 13(10), 683–686 (2019).
[Crossref]

X. Yi, S. Xie, B. Liang, L. W. Lim, X. Zhou, M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P. David, “Demonstration of large ionization coefficient ratio in AlAs 0.56 Sb 0.44 lattice matched to InP,” Sci. Rep. 8(1), 1–6 (2018).
[Crossref]

A. R. Marshall, P. J. Ker, A. Krysa, J. P. David, and C. H. Tan, “High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit,” Opt. Express 19(23), 23341–23349 (2011).
[Crossref]

A. R. Marshall, J. P. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron Devices 57(10), 2631–2638 (2010).
[Crossref]

A. R. Marshall, C. H. Tan, M. J. Steer, and J. P. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photonics Technol. Lett. 21(13), 866–868 (2009).
[Crossref]

Debnath, M. C.

X. Yi, S. Xie, B. Liang, L. W. Lim, J. S. Cheong, M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P. David, “Extremely low excess noise and high sensitivity AlAs 0.56 Sb 0.44 avalanche photodiodes,” Nat. Photonics 13(10), 683–686 (2019).
[Crossref]

X. Yi, S. Xie, B. Liang, L. W. Lim, X. Zhou, M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P. David, “Demonstration of large ionization coefficient ratio in AlAs 0.56 Sb 0.44 lattice matched to InP,” Sci. Rep. 8(1), 1–6 (2018).
[Crossref]

Deng, Z.

L. Zhu, J. Huang, Z. Xie, Z. Deng, L. Chen, C. Lin, and B. Chen, “Low-Frequency Noise Spectroscopy Characterization of HgCdTe Infrared Detectors,” IEEE Trans. Electron Devices 67(2), 547–551 (2020).
[Crossref]

J. Huang, B. Chen, Z. Deng, Y. Gu, Y. Ma, J. Zhang, X. Chen, and J. Shao, “Deep levels analysis in wavelength extended InGaAsBi photodetector,” Semicond. Sci. Technol. 34(9), 095018 (2019).
[Crossref]

Dumas, D. C.

P. Vines, K. Kuzmenko, J. Kirdoda, D. C. Dumas, M. M. Mirza, R. W. Millar, D. J. Paul, and G. S. Buller, “High performance planar germanium-on-silicon single-photon avalanche diode detectors,” Nat. Commun. 10(1), 1086 (2019).
[Crossref]

Entwistle, M.

X. Jiang, M. Itzler, K. O’Donnell, M. Entwistle, M. Owens, K. Slomkowski, and S. Rangwala, “InP-based single-photon detectors and geiger-mode APD arrays for quantum communications applications,” IEEE J. Sel. Top. Quantum Electron. 21(3), 5–16 (2015).
[Crossref]

Fay, P.

W. Chen, B. Chen, A. Holmes, and P. Fay, “Investigation of traps in strained-well InGaAs/GaAsSb quantum well photodiodes,” Electron. Lett. 51(18), 1439–1440 (2015).
[Crossref]

W. Chen, B. Chen, J. Yuan, A. Holmes, and P. Fay, “Bulk and interfacial deep levels observed in In0. 53Ga0. 47As/GaAs0. 5Sb0. 5 multiple quantum well photodiode,” Appl. Phys. Lett. 101(5), 052107 (2012).
[Crossref]

Gossard, A. C.

J. Huang, Y. Wan, D. Jung, J. Norman, C. Shang, Q. Li, K. M. Lau, A. C. Gossard, J. E. Bowers, and B. Chen, “Defect Characterization of InAs/InGaAs Quantum Dot p-i-n Photodetector Grown on GaAs-on-V-Grooved-Si Substrate,” ACS Photonics 6(5), 1100–1105 (2019).
[Crossref]

Gu, Y.

J. Huang, B. Chen, Z. Deng, Y. Gu, Y. Ma, J. Zhang, X. Chen, and J. Shao, “Deep levels analysis in wavelength extended InGaAsBi photodetector,” Semicond. Sci. Technol. 34(9), 095018 (2019).
[Crossref]

Holmes, A.

W. Chen, B. Chen, A. Holmes, and P. Fay, “Investigation of traps in strained-well InGaAs/GaAsSb quantum well photodiodes,” Electron. Lett. 51(18), 1439–1440 (2015).
[Crossref]

W. Chen, B. Chen, J. Yuan, A. Holmes, and P. Fay, “Bulk and interfacial deep levels observed in In0. 53Ga0. 47As/GaAs0. 5Sb0. 5 multiple quantum well photodiode,” Appl. Phys. Lett. 101(5), 052107 (2012).
[Crossref]

Huang, J.

L. Zhu, J. Huang, Z. Xie, Z. Deng, L. Chen, C. Lin, and B. Chen, “Low-Frequency Noise Spectroscopy Characterization of HgCdTe Infrared Detectors,” IEEE Trans. Electron Devices 67(2), 547–551 (2020).
[Crossref]

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, and K. M. Lau, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photonics 7(2), 528–533 (2020).
[Crossref]

J. Huang, B. Chen, Z. Deng, Y. Gu, Y. Ma, J. Zhang, X. Chen, and J. Shao, “Deep levels analysis in wavelength extended InGaAsBi photodetector,” Semicond. Sci. Technol. 34(9), 095018 (2019).
[Crossref]

J. Huang, Y. Wan, D. Jung, J. Norman, C. Shang, Q. Li, K. M. Lau, A. C. Gossard, J. E. Bowers, and B. Chen, “Defect Characterization of InAs/InGaAs Quantum Dot p-i-n Photodetector Grown on GaAs-on-V-Grooved-Si Substrate,” ACS Photonics 6(5), 1100–1105 (2019).
[Crossref]

Huffaker, D. L.

X. Yi, S. Xie, B. Liang, L. W. Lim, J. S. Cheong, M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P. David, “Extremely low excess noise and high sensitivity AlAs 0.56 Sb 0.44 avalanche photodiodes,” Nat. Photonics 13(10), 683–686 (2019).
[Crossref]

X. Yi, S. Xie, B. Liang, L. W. Lim, X. Zhou, M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P. David, “Demonstration of large ionization coefficient ratio in AlAs 0.56 Sb 0.44 lattice matched to InP,” Sci. Rep. 8(1), 1–6 (2018).
[Crossref]

Itzler, M.

X. Jiang, M. Itzler, K. O’Donnell, M. Entwistle, M. Owens, K. Slomkowski, and S. Rangwala, “InP-based single-photon detectors and geiger-mode APD arrays for quantum communications applications,” IEEE J. Sel. Top. Quantum Electron. 21(3), 5–16 (2015).
[Crossref]

Jiang, X.

X. Jiang, M. Itzler, K. O’Donnell, M. Entwistle, M. Owens, K. Slomkowski, and S. Rangwala, “InP-based single-photon detectors and geiger-mode APD arrays for quantum communications applications,” IEEE J. Sel. Top. Quantum Electron. 21(3), 5–16 (2015).
[Crossref]

Jones, A. H.

A. H. Jones, A.-K. Rockwell, S. D. March, Y. Yuan, S. R. Bank, and J. C. Campbell, “High Gain, Low Dark Current Al0.8In0.2As0.23Sb0.77 Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 31(24), 1948–1951 (2019).
[Crossref]

A. H. Jones, Y. Yuan, M. Ren, S. J. Maddox, S. R. Bank, and J. C. Campbell, “Al x In 1-x As y Sb 1-y photodiodes with low avalanche breakdown temperature dependence,” Opt. Express 25(20), 24340–24345 (2017).
[Crossref]

A. H. Jones, S. D. March, S. R. Bank, and J. C. Campbell, “Al x In 1-x As y Sb 1-y Separate Absorption, Charge, and Multiplication Avalanche Photodiodes for 2-µm Detection,” in 2019 IEEE Photonics Conference (IPC), (IEEE), 1–2.

Jones, B. K.

B. K. Jones, “Low-frequency noise spectroscopy,” IEEE Trans. Electron Devices 41(11), 2188–2197 (1994).
[Crossref]

Jung, D.

J. Huang, Y. Wan, D. Jung, J. Norman, C. Shang, Q. Li, K. M. Lau, A. C. Gossard, J. E. Bowers, and B. Chen, “Defect Characterization of InAs/InGaAs Quantum Dot p-i-n Photodetector Grown on GaAs-on-V-Grooved-Si Substrate,” ACS Photonics 6(5), 1100–1105 (2019).
[Crossref]

Ker, P. J.

Kinch, M.

M. Kinch, J. Beck, C.-F. Wan, F. Ma, and J. Campbell, “HgCdTe electron avalanche photodiodes,” J. Electron. Mater. 33(6), 630–639 (2004).
[Crossref]

Kinch, M. A.

J. D. Beck, C.-F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” in Materials for Infrared Detectors, (International Society for Optics and Photonics, 2001), 188–197.

Kirdoda, J.

P. Vines, K. Kuzmenko, J. Kirdoda, D. C. Dumas, M. M. Mirza, R. W. Millar, D. J. Paul, and G. S. Buller, “High performance planar germanium-on-silicon single-photon avalanche diode detectors,” Nat. Commun. 10(1), 1086 (2019).
[Crossref]

Krysa, A.

Kuzmenko, K.

P. Vines, K. Kuzmenko, J. Kirdoda, D. C. Dumas, M. M. Mirza, R. W. Millar, D. J. Paul, and G. S. Buller, “High performance planar germanium-on-silicon single-photon avalanche diode detectors,” Nat. Commun. 10(1), 1086 (2019).
[Crossref]

Lau, K. M.

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, and K. M. Lau, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photonics 7(2), 528–533 (2020).
[Crossref]

J. Huang, Y. Wan, D. Jung, J. Norman, C. Shang, Q. Li, K. M. Lau, A. C. Gossard, J. E. Bowers, and B. Chen, “Defect Characterization of InAs/InGaAs Quantum Dot p-i-n Photodetector Grown on GaAs-on-V-Grooved-Si Substrate,” ACS Photonics 6(5), 1100–1105 (2019).
[Crossref]

Li, Q.

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, and K. M. Lau, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photonics 7(2), 528–533 (2020).
[Crossref]

J. Huang, Y. Wan, D. Jung, J. Norman, C. Shang, Q. Li, K. M. Lau, A. C. Gossard, J. E. Bowers, and B. Chen, “Defect Characterization of InAs/InGaAs Quantum Dot p-i-n Photodetector Grown on GaAs-on-V-Grooved-Si Substrate,” ACS Photonics 6(5), 1100–1105 (2019).
[Crossref]

Liang, B.

X. Yi, S. Xie, B. Liang, L. W. Lim, J. S. Cheong, M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P. David, “Extremely low excess noise and high sensitivity AlAs 0.56 Sb 0.44 avalanche photodiodes,” Nat. Photonics 13(10), 683–686 (2019).
[Crossref]

X. Yi, S. Xie, B. Liang, L. W. Lim, X. Zhou, M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P. David, “Demonstration of large ionization coefficient ratio in AlAs 0.56 Sb 0.44 lattice matched to InP,” Sci. Rep. 8(1), 1–6 (2018).
[Crossref]

Lim, L. W.

X. Yi, S. Xie, B. Liang, L. W. Lim, J. S. Cheong, M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P. David, “Extremely low excess noise and high sensitivity AlAs 0.56 Sb 0.44 avalanche photodiodes,” Nat. Photonics 13(10), 683–686 (2019).
[Crossref]

X. Yi, S. Xie, B. Liang, L. W. Lim, X. Zhou, M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P. David, “Demonstration of large ionization coefficient ratio in AlAs 0.56 Sb 0.44 lattice matched to InP,” Sci. Rep. 8(1), 1–6 (2018).
[Crossref]

Lin, C.

L. Zhu, J. Huang, Z. Xie, Z. Deng, L. Chen, C. Lin, and B. Chen, “Low-Frequency Noise Spectroscopy Characterization of HgCdTe Infrared Detectors,” IEEE Trans. Electron Devices 67(2), 547–551 (2020).
[Crossref]

Lu, Z.

W. Sun, Z. Lu, X. Zheng, J. C. Campbell, S. J. Maddox, H. P. Nair, and S. R. Bank, “High-gain InAs avalanche photodiodes,” IEEE J. Quantum Electron. 49(2), 154–161 (2013).
[Crossref]

Ma, F.

M. Kinch, J. Beck, C.-F. Wan, F. Ma, and J. Campbell, “HgCdTe electron avalanche photodiodes,” J. Electron. Mater. 33(6), 630–639 (2004).
[Crossref]

Ma, Y.

J. Huang, B. Chen, Z. Deng, Y. Gu, Y. Ma, J. Zhang, X. Chen, and J. Shao, “Deep levels analysis in wavelength extended InGaAsBi photodetector,” Semicond. Sci. Technol. 34(9), 095018 (2019).
[Crossref]

Maddox, S. J.

S. R. Bank, J. C. Campbell, S. J. Maddox, M. Ren, A. K. Rockwell, M. E. Woodson, and S. D. March, “Avalanche photodiodes based on the AlInAsSb materials system,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–7 (2018).
[Crossref]

M. Ren, S. J. Maddox, M. E. Woodson, Y. Chen, S. R. Bank, and J. C. Campbell, “Characteristics of Alx In 1-x Asy Sb1-y(x: 0.3−0.7) Avalanche Photodiodes,” J. Lightwave Technol. 35(12), 2380–2384 (2017).
[Crossref]

A. H. Jones, Y. Yuan, M. Ren, S. J. Maddox, S. R. Bank, and J. C. Campbell, “Al x In 1-x As y Sb 1-y photodiodes with low avalanche breakdown temperature dependence,” Opt. Express 25(20), 24340–24345 (2017).
[Crossref]

S. J. Maddox, S. D. March, and S. R. Bank, “Broadly tunable AlInAsSb digital alloys grown on GaSb,” Cryst. Growth Des. 16(7), 3582–3586 (2016).
[Crossref]

W. Sun, Z. Lu, X. Zheng, J. C. Campbell, S. J. Maddox, H. P. Nair, and S. R. Bank, “High-gain InAs avalanche photodiodes,” IEEE J. Quantum Electron. 49(2), 154–161 (2013).
[Crossref]

March, S. D.

A. H. Jones, A.-K. Rockwell, S. D. March, Y. Yuan, S. R. Bank, and J. C. Campbell, “High Gain, Low Dark Current Al0.8In0.2As0.23Sb0.77 Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 31(24), 1948–1951 (2019).
[Crossref]

S. R. Bank, J. C. Campbell, S. J. Maddox, M. Ren, A. K. Rockwell, M. E. Woodson, and S. D. March, “Avalanche photodiodes based on the AlInAsSb materials system,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–7 (2018).
[Crossref]

S. J. Maddox, S. D. March, and S. R. Bank, “Broadly tunable AlInAsSb digital alloys grown on GaSb,” Cryst. Growth Des. 16(7), 3582–3586 (2016).
[Crossref]

A. H. Jones, S. D. March, S. R. Bank, and J. C. Campbell, “Al x In 1-x As y Sb 1-y Separate Absorption, Charge, and Multiplication Avalanche Photodiodes for 2-µm Detection,” in 2019 IEEE Photonics Conference (IPC), (IEEE), 1–2.

Marshall, A. R.

A. R. Marshall, P. J. Ker, A. Krysa, J. P. David, and C. H. Tan, “High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit,” Opt. Express 19(23), 23341–23349 (2011).
[Crossref]

A. R. Marshall, J. P. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron Devices 57(10), 2631–2638 (2010).
[Crossref]

A. R. Marshall, C. H. Tan, M. J. Steer, and J. P. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photonics Technol. Lett. 21(13), 866–868 (2009).
[Crossref]

McIntyre, R.

R. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron Devices ED-13(1), 164–168 (1966).
[Crossref]

Meng, X.

X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci. 3(3), 150584 (2016).
[Crossref]

Millar, R. W.

P. Vines, K. Kuzmenko, J. Kirdoda, D. C. Dumas, M. M. Mirza, R. W. Millar, D. J. Paul, and G. S. Buller, “High performance planar germanium-on-silicon single-photon avalanche diode detectors,” Nat. Commun. 10(1), 1086 (2019).
[Crossref]

Mirza, M. M.

P. Vines, K. Kuzmenko, J. Kirdoda, D. C. Dumas, M. M. Mirza, R. W. Millar, D. J. Paul, and G. S. Buller, “High performance planar germanium-on-silicon single-photon avalanche diode detectors,” Nat. Commun. 10(1), 1086 (2019).
[Crossref]

Nair, H. P.

W. Sun, Z. Lu, X. Zheng, J. C. Campbell, S. J. Maddox, H. P. Nair, and S. R. Bank, “High-gain InAs avalanche photodiodes,” IEEE J. Quantum Electron. 49(2), 154–161 (2013).
[Crossref]

Ng, J. S.

X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci. 3(3), 150584 (2016).
[Crossref]

S. Xie, X. Zhou, S. Zhang, D. J. Thomson, X. Chen, G. T. Reed, J. S. Ng, and C. H. Tan, “InGaAs/AlGaAsSb avalanche photodiode with high gain-bandwidth product,” Opt. Express 24(21), 24242–24247 (2016).
[Crossref]

Norman, J.

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, and K. M. Lau, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photonics 7(2), 528–533 (2020).
[Crossref]

J. Huang, Y. Wan, D. Jung, J. Norman, C. Shang, Q. Li, K. M. Lau, A. C. Gossard, J. E. Bowers, and B. Chen, “Defect Characterization of InAs/InGaAs Quantum Dot p-i-n Photodetector Grown on GaAs-on-V-Grooved-Si Substrate,” ACS Photonics 6(5), 1100–1105 (2019).
[Crossref]

O’Donnell, K.

X. Jiang, M. Itzler, K. O’Donnell, M. Entwistle, M. Owens, K. Slomkowski, and S. Rangwala, “InP-based single-photon detectors and geiger-mode APD arrays for quantum communications applications,” IEEE J. Sel. Top. Quantum Electron. 21(3), 5–16 (2015).
[Crossref]

Owens, M.

X. Jiang, M. Itzler, K. O’Donnell, M. Entwistle, M. Owens, K. Slomkowski, and S. Rangwala, “InP-based single-photon detectors and geiger-mode APD arrays for quantum communications applications,” IEEE J. Sel. Top. Quantum Electron. 21(3), 5–16 (2015).
[Crossref]

Paul, D. J.

P. Vines, K. Kuzmenko, J. Kirdoda, D. C. Dumas, M. M. Mirza, R. W. Millar, D. J. Paul, and G. S. Buller, “High performance planar germanium-on-silicon single-photon avalanche diode detectors,” Nat. Commun. 10(1), 1086 (2019).
[Crossref]

Rangwala, S.

X. Jiang, M. Itzler, K. O’Donnell, M. Entwistle, M. Owens, K. Slomkowski, and S. Rangwala, “InP-based single-photon detectors and geiger-mode APD arrays for quantum communications applications,” IEEE J. Sel. Top. Quantum Electron. 21(3), 5–16 (2015).
[Crossref]

Reed, G. T.

Ren, M.

Robinson, J. E.

J. D. Beck, C.-F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” in Materials for Infrared Detectors, (International Society for Optics and Photonics, 2001), 188–197.

Rockwell, A. K.

S. R. Bank, J. C. Campbell, S. J. Maddox, M. Ren, A. K. Rockwell, M. E. Woodson, and S. D. March, “Avalanche photodiodes based on the AlInAsSb materials system,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–7 (2018).
[Crossref]

Rockwell, A.-K.

A. H. Jones, A.-K. Rockwell, S. D. March, Y. Yuan, S. R. Bank, and J. C. Campbell, “High Gain, Low Dark Current Al0.8In0.2As0.23Sb0.77 Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 31(24), 1948–1951 (2019).
[Crossref]

Sanzaro, M.

X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci. 3(3), 150584 (2016).
[Crossref]

Shang, C.

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, and K. M. Lau, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photonics 7(2), 528–533 (2020).
[Crossref]

J. Huang, Y. Wan, D. Jung, J. Norman, C. Shang, Q. Li, K. M. Lau, A. C. Gossard, J. E. Bowers, and B. Chen, “Defect Characterization of InAs/InGaAs Quantum Dot p-i-n Photodetector Grown on GaAs-on-V-Grooved-Si Substrate,” ACS Photonics 6(5), 1100–1105 (2019).
[Crossref]

Shao, J.

J. Huang, B. Chen, Z. Deng, Y. Gu, Y. Ma, J. Zhang, X. Chen, and J. Shao, “Deep levels analysis in wavelength extended InGaAsBi photodetector,” Semicond. Sci. Technol. 34(9), 095018 (2019).
[Crossref]

Slomkowski, K.

X. Jiang, M. Itzler, K. O’Donnell, M. Entwistle, M. Owens, K. Slomkowski, and S. Rangwala, “InP-based single-photon detectors and geiger-mode APD arrays for quantum communications applications,” IEEE J. Sel. Top. Quantum Electron. 21(3), 5–16 (2015).
[Crossref]

Steer, M. J.

A. R. Marshall, C. H. Tan, M. J. Steer, and J. P. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photonics Technol. Lett. 21(13), 866–868 (2009).
[Crossref]

Sun, W.

W. Sun, Z. Lu, X. Zheng, J. C. Campbell, S. J. Maddox, H. P. Nair, and S. R. Bank, “High-gain InAs avalanche photodiodes,” IEEE J. Quantum Electron. 49(2), 154–161 (2013).
[Crossref]

Tan, C. H.

X. Yi, S. Xie, B. Liang, L. W. Lim, J. S. Cheong, M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P. David, “Extremely low excess noise and high sensitivity AlAs 0.56 Sb 0.44 avalanche photodiodes,” Nat. Photonics 13(10), 683–686 (2019).
[Crossref]

X. Yi, S. Xie, B. Liang, L. W. Lim, X. Zhou, M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P. David, “Demonstration of large ionization coefficient ratio in AlAs 0.56 Sb 0.44 lattice matched to InP,” Sci. Rep. 8(1), 1–6 (2018).
[Crossref]

S. Xie, X. Zhou, S. Zhang, D. J. Thomson, X. Chen, G. T. Reed, J. S. Ng, and C. H. Tan, “InGaAs/AlGaAsSb avalanche photodiode with high gain-bandwidth product,” Opt. Express 24(21), 24242–24247 (2016).
[Crossref]

X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci. 3(3), 150584 (2016).
[Crossref]

J. Xie, S. Xie, R. Tozer, and C. H. Tan, “Excess noise characteristics of thin AlAsSb APDs,” IEEE Trans. Electron Devices 59(5), 1475–1479 (2012).
[Crossref]

A. R. Marshall, P. J. Ker, A. Krysa, J. P. David, and C. H. Tan, “High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit,” Opt. Express 19(23), 23341–23349 (2011).
[Crossref]

A. R. Marshall, J. P. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron Devices 57(10), 2631–2638 (2010).
[Crossref]

A. R. Marshall, C. H. Tan, M. J. Steer, and J. P. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photonics Technol. Lett. 21(13), 866–868 (2009).
[Crossref]

Thomson, D. J.

Tong, Y.

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, and K. M. Lau, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photonics 7(2), 528–533 (2020).
[Crossref]

Tosi, A.

X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci. 3(3), 150584 (2016).
[Crossref]

Tozer, R.

J. Xie, S. Xie, R. Tozer, and C. H. Tan, “Excess noise characteristics of thin AlAsSb APDs,” IEEE Trans. Electron Devices 59(5), 1475–1479 (2012).
[Crossref]

Vines, P.

P. Vines, K. Kuzmenko, J. Kirdoda, D. C. Dumas, M. M. Mirza, R. W. Millar, D. J. Paul, and G. S. Buller, “High performance planar germanium-on-silicon single-photon avalanche diode detectors,” Nat. Commun. 10(1), 1086 (2019).
[Crossref]

Wallace, A.

G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

Wan, C.-F.

M. Kinch, J. Beck, C.-F. Wan, F. Ma, and J. Campbell, “HgCdTe electron avalanche photodiodes,” J. Electron. Mater. 33(6), 630–639 (2004).
[Crossref]

J. D. Beck, C.-F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” in Materials for Infrared Detectors, (International Society for Optics and Photonics, 2001), 188–197.

Wan, Y.

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, and K. M. Lau, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photonics 7(2), 528–533 (2020).
[Crossref]

J. Huang, Y. Wan, D. Jung, J. Norman, C. Shang, Q. Li, K. M. Lau, A. C. Gossard, J. E. Bowers, and B. Chen, “Defect Characterization of InAs/InGaAs Quantum Dot p-i-n Photodetector Grown on GaAs-on-V-Grooved-Si Substrate,” ACS Photonics 6(5), 1100–1105 (2019).
[Crossref]

Woodson, M. E.

S. R. Bank, J. C. Campbell, S. J. Maddox, M. Ren, A. K. Rockwell, M. E. Woodson, and S. D. March, “Avalanche photodiodes based on the AlInAsSb materials system,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–7 (2018).
[Crossref]

M. Ren, S. J. Maddox, M. E. Woodson, Y. Chen, S. R. Bank, and J. C. Campbell, “Characteristics of Alx In 1-x Asy Sb1-y(x: 0.3−0.7) Avalanche Photodiodes,” J. Lightwave Technol. 35(12), 2380–2384 (2017).
[Crossref]

Xie, J.

J. Xie, S. Xie, R. Tozer, and C. H. Tan, “Excess noise characteristics of thin AlAsSb APDs,” IEEE Trans. Electron Devices 59(5), 1475–1479 (2012).
[Crossref]

Xie, S.

X. Yi, S. Xie, B. Liang, L. W. Lim, J. S. Cheong, M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P. David, “Extremely low excess noise and high sensitivity AlAs 0.56 Sb 0.44 avalanche photodiodes,” Nat. Photonics 13(10), 683–686 (2019).
[Crossref]

X. Yi, S. Xie, B. Liang, L. W. Lim, X. Zhou, M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P. David, “Demonstration of large ionization coefficient ratio in AlAs 0.56 Sb 0.44 lattice matched to InP,” Sci. Rep. 8(1), 1–6 (2018).
[Crossref]

S. Xie, X. Zhou, S. Zhang, D. J. Thomson, X. Chen, G. T. Reed, J. S. Ng, and C. H. Tan, “InGaAs/AlGaAsSb avalanche photodiode with high gain-bandwidth product,” Opt. Express 24(21), 24242–24247 (2016).
[Crossref]

X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci. 3(3), 150584 (2016).
[Crossref]

J. Xie, S. Xie, R. Tozer, and C. H. Tan, “Excess noise characteristics of thin AlAsSb APDs,” IEEE Trans. Electron Devices 59(5), 1475–1479 (2012).
[Crossref]

Xie, Z.

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, and K. M. Lau, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photonics 7(2), 528–533 (2020).
[Crossref]

L. Zhu, J. Huang, Z. Xie, Z. Deng, L. Chen, C. Lin, and B. Chen, “Low-Frequency Noise Spectroscopy Characterization of HgCdTe Infrared Detectors,” IEEE Trans. Electron Devices 67(2), 547–551 (2020).
[Crossref]

Yi, X.

X. Yi, S. Xie, B. Liang, L. W. Lim, J. S. Cheong, M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P. David, “Extremely low excess noise and high sensitivity AlAs 0.56 Sb 0.44 avalanche photodiodes,” Nat. Photonics 13(10), 683–686 (2019).
[Crossref]

X. Yi, S. Xie, B. Liang, L. W. Lim, X. Zhou, M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P. David, “Demonstration of large ionization coefficient ratio in AlAs 0.56 Sb 0.44 lattice matched to InP,” Sci. Rep. 8(1), 1–6 (2018).
[Crossref]

Yuan, J.

W. Chen, B. Chen, J. Yuan, A. Holmes, and P. Fay, “Bulk and interfacial deep levels observed in In0. 53Ga0. 47As/GaAs0. 5Sb0. 5 multiple quantum well photodiode,” Appl. Phys. Lett. 101(5), 052107 (2012).
[Crossref]

Yuan, Y.

A. H. Jones, A.-K. Rockwell, S. D. March, Y. Yuan, S. R. Bank, and J. C. Campbell, “High Gain, Low Dark Current Al0.8In0.2As0.23Sb0.77 Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 31(24), 1948–1951 (2019).
[Crossref]

A. H. Jones, Y. Yuan, M. Ren, S. J. Maddox, S. R. Bank, and J. C. Campbell, “Al x In 1-x As y Sb 1-y photodiodes with low avalanche breakdown temperature dependence,” Opt. Express 25(20), 24340–24345 (2017).
[Crossref]

Zhang, J.

J. Huang, B. Chen, Z. Deng, Y. Gu, Y. Ma, J. Zhang, X. Chen, and J. Shao, “Deep levels analysis in wavelength extended InGaAsBi photodetector,” Semicond. Sci. Technol. 34(9), 095018 (2019).
[Crossref]

Zhang, N.

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, and K. M. Lau, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photonics 7(2), 528–533 (2020).
[Crossref]

Zhang, S.

Zheng, X.

W. Sun, Z. Lu, X. Zheng, J. C. Campbell, S. J. Maddox, H. P. Nair, and S. R. Bank, “High-gain InAs avalanche photodiodes,” IEEE J. Quantum Electron. 49(2), 154–161 (2013).
[Crossref]

Zhou, X.

X. Yi, S. Xie, B. Liang, L. W. Lim, X. Zhou, M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P. David, “Demonstration of large ionization coefficient ratio in AlAs 0.56 Sb 0.44 lattice matched to InP,” Sci. Rep. 8(1), 1–6 (2018).
[Crossref]

X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci. 3(3), 150584 (2016).
[Crossref]

S. Xie, X. Zhou, S. Zhang, D. J. Thomson, X. Chen, G. T. Reed, J. S. Ng, and C. H. Tan, “InGaAs/AlGaAsSb avalanche photodiode with high gain-bandwidth product,” Opt. Express 24(21), 24242–24247 (2016).
[Crossref]

Zhu, L.

L. Zhu, J. Huang, Z. Xie, Z. Deng, L. Chen, C. Lin, and B. Chen, “Low-Frequency Noise Spectroscopy Characterization of HgCdTe Infrared Detectors,” IEEE Trans. Electron Devices 67(2), 547–551 (2020).
[Crossref]

ACS Photonics (2)

B. Chen, Y. Wan, Z. Xie, J. Huang, N. Zhang, C. Shang, J. Norman, Q. Li, Y. Tong, and K. M. Lau, “Low dark current high gain InAs quantum dot avalanche photodetectors monolithically grown on Si,” ACS Photonics 7(2), 528–533 (2020).
[Crossref]

J. Huang, Y. Wan, D. Jung, J. Norman, C. Shang, Q. Li, K. M. Lau, A. C. Gossard, J. E. Bowers, and B. Chen, “Defect Characterization of InAs/InGaAs Quantum Dot p-i-n Photodetector Grown on GaAs-on-V-Grooved-Si Substrate,” ACS Photonics 6(5), 1100–1105 (2019).
[Crossref]

Appl. Phys. Lett. (1)

W. Chen, B. Chen, J. Yuan, A. Holmes, and P. Fay, “Bulk and interfacial deep levels observed in In0. 53Ga0. 47As/GaAs0. 5Sb0. 5 multiple quantum well photodiode,” Appl. Phys. Lett. 101(5), 052107 (2012).
[Crossref]

Cryst. Growth Des. (1)

S. J. Maddox, S. D. March, and S. R. Bank, “Broadly tunable AlInAsSb digital alloys grown on GaSb,” Cryst. Growth Des. 16(7), 3582–3586 (2016).
[Crossref]

Electron. Lett. (1)

W. Chen, B. Chen, A. Holmes, and P. Fay, “Investigation of traps in strained-well InGaAs/GaAsSb quantum well photodiodes,” Electron. Lett. 51(18), 1439–1440 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

W. Sun, Z. Lu, X. Zheng, J. C. Campbell, S. J. Maddox, H. P. Nair, and S. R. Bank, “High-gain InAs avalanche photodiodes,” IEEE J. Quantum Electron. 49(2), 154–161 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

X. Jiang, M. Itzler, K. O’Donnell, M. Entwistle, M. Owens, K. Slomkowski, and S. Rangwala, “InP-based single-photon detectors and geiger-mode APD arrays for quantum communications applications,” IEEE J. Sel. Top. Quantum Electron. 21(3), 5–16 (2015).
[Crossref]

G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

S. R. Bank, J. C. Campbell, S. J. Maddox, M. Ren, A. K. Rockwell, M. E. Woodson, and S. D. March, “Avalanche photodiodes based on the AlInAsSb materials system,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–7 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (2)

A. R. Marshall, C. H. Tan, M. J. Steer, and J. P. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photonics Technol. Lett. 21(13), 866–868 (2009).
[Crossref]

A. H. Jones, A.-K. Rockwell, S. D. March, Y. Yuan, S. R. Bank, and J. C. Campbell, “High Gain, Low Dark Current Al0.8In0.2As0.23Sb0.77 Avalanche Photodiodes,” IEEE Photonics Technol. Lett. 31(24), 1948–1951 (2019).
[Crossref]

IEEE Trans. Electron Devices (5)

A. R. Marshall, J. P. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron Devices 57(10), 2631–2638 (2010).
[Crossref]

R. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron Devices ED-13(1), 164–168 (1966).
[Crossref]

J. Xie, S. Xie, R. Tozer, and C. H. Tan, “Excess noise characteristics of thin AlAsSb APDs,” IEEE Trans. Electron Devices 59(5), 1475–1479 (2012).
[Crossref]

B. K. Jones, “Low-frequency noise spectroscopy,” IEEE Trans. Electron Devices 41(11), 2188–2197 (1994).
[Crossref]

L. Zhu, J. Huang, Z. Xie, Z. Deng, L. Chen, C. Lin, and B. Chen, “Low-Frequency Noise Spectroscopy Characterization of HgCdTe Infrared Detectors,” IEEE Trans. Electron Devices 67(2), 547–551 (2020).
[Crossref]

J. Electron. Mater. (1)

M. Kinch, J. Beck, C.-F. Wan, F. Ma, and J. Campbell, “HgCdTe electron avalanche photodiodes,” J. Electron. Mater. 33(6), 630–639 (2004).
[Crossref]

J. Lightwave Technol. (2)

Nat. Commun. (1)

P. Vines, K. Kuzmenko, J. Kirdoda, D. C. Dumas, M. M. Mirza, R. W. Millar, D. J. Paul, and G. S. Buller, “High performance planar germanium-on-silicon single-photon avalanche diode detectors,” Nat. Commun. 10(1), 1086 (2019).
[Crossref]

Nat. Photonics (1)

X. Yi, S. Xie, B. Liang, L. W. Lim, J. S. Cheong, M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P. David, “Extremely low excess noise and high sensitivity AlAs 0.56 Sb 0.44 avalanche photodiodes,” Nat. Photonics 13(10), 683–686 (2019).
[Crossref]

Opt. Express (3)

R. Soc. Open Sci. (1)

X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci. 3(3), 150584 (2016).
[Crossref]

Sci. Rep. (1)

X. Yi, S. Xie, B. Liang, L. W. Lim, X. Zhou, M. C. Debnath, D. L. Huffaker, C. H. Tan, and J. P. David, “Demonstration of large ionization coefficient ratio in AlAs 0.56 Sb 0.44 lattice matched to InP,” Sci. Rep. 8(1), 1–6 (2018).
[Crossref]

Semicond. Sci. Technol. (1)

J. Huang, B. Chen, Z. Deng, Y. Gu, Y. Ma, J. Zhang, X. Chen, and J. Shao, “Deep levels analysis in wavelength extended InGaAsBi photodetector,” Semicond. Sci. Technol. 34(9), 095018 (2019).
[Crossref]

Other (2)

J. D. Beck, C.-F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” in Materials for Infrared Detectors, (International Society for Optics and Photonics, 2001), 188–197.

A. H. Jones, S. D. March, S. R. Bank, and J. C. Campbell, “Al x In 1-x As y Sb 1-y Separate Absorption, Charge, and Multiplication Avalanche Photodiodes for 2-µm Detection,” in 2019 IEEE Photonics Conference (IPC), (IEEE), 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Cross-sectional schematic of the AlxIn1-xAsySb1-y APD device.
Fig. 2.
Fig. 2. The dark current versus diameter at -1 V at 300 K of the AlInAsSb (a) all the devices tested (b)devices with best performance at each size
Fig. 3.
Fig. 3. The quantum efficiency of the 150 µm diameter AlInAsSb APD at -1 V.
Fig. 4.
Fig. 4. I−V curves of a 500-µm device (a) and 200-µm diameter device (b) as a function of temperature
Fig. 5.
Fig. 5. Arrhenius plot of temperature-dependent dark current at -1 V.
Fig. 6.
Fig. 6. The measured noise spectrum of a 500-µm diameter device at different temperatures, shown with Lorentzian fitting.
Fig. 7.
Fig. 7. The measured noise spectrum of a 200-µm diameter device under different temperatures, shown with Lorentzian fitting.
Fig. 8.
Fig. 8. Arrhenius plot of the defects in 500-µm diameter (red) and 200-µm diameter (blue) AlxIn1-xAsySb1-y (x = 0.3) APDs.
Fig. 9.
Fig. 9. Dark current versus temperature at -1 V before and after oxidation for the 500-µm and 200-µm diameter devices.
Fig. 10.
Fig. 10. The measured noise spectrum of the 500-µm diameter device at different temperatures after surface oxidation, shown with Lorentzian fitting.
Fig. 11.
Fig. 11. The measured noise spectrum of the 200-µm diameter device at different temperatures after surface oxidation, shown with Lorentzian fitting.
Fig. 12.
Fig. 12. Arrhenius plot of the defects in 500-µm diameter (red) and 200-µm diameter (blue) AlxIn1-xAsySb1-y (x = 0.3) APDs after surface oxidation.

Tables (1)

Tables Icon

Table 1. Detailed LFNS defect summary

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S I = A i τ o i 1 + ( 2 π f τ o i ) 2 + B f + C
f S I = f A i τ o i 1 + ( 2 π f τ o i ) 2 + B + f C

Metrics