Abstract

This study shows that high-performance metasurface polarizers are possible in the deep ultraviolet (DUV) region. A metasurface consisting of a trilayer of an Al (Aluminum) grating, an Al2O3 (Alumina) thin film, and an Al thin film serves as a mirror with high reflectance for light with polarization parallel to the grooves. The reflectance for polarization perpendicular to the grooves vanishes owing to destructive interference between the propagating and gap surface plasmon polaritons. As a result, the metasurface plays the role of a polarizer with a high extinction ratio exceeding 6.2 × 106. This study also shows that the bandwidth is improved by adjusting the incident angle, period, and the Al2O3 layer of the metasurface. The performance of the metasurface polarizer is discussed experimentally. Our finding paves the way for realizing high-performance polarizers in the DUV region.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced extinction ratios of metasurface polarizers by surface-plasmon interference

Hiroyuki Kurosawa and Shin-Ichiro Inoue
J. Opt. Soc. Am. B 37(3) 673-681 (2020)

High-performance metasurface polarizers with extinction ratios exceeding 12000

Hiroyuki Kurosawa, Bongseok Choi, Yoshimasa Sugimoto, and Masanobu Iwanaga
Opt. Express 25(4) 4446-4455 (2017)

Broad visible spectral subwavelength polarizer with high extinction ratio using hyperbolic metamaterial

Wei Zhang, Xin Tan, Na Wu, Wenhao Li, Qingbin Jiao, and Shuo Yang
Opt. Express 27(13) 18399-18409 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref]
  2. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref]
  3. P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
    [Crossref]
  4. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref]
  5. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
    [Crossref]
  6. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
    [Crossref]
  7. R. S. Savelev, I. V. Shadrivov, P. A. Belov, N. N. Rosanov, S. V. Fedorov, A. A. Sukhorukov, and Y. S. Kivshar, “Loss compensation in metal-dielectric layered metamaterials,” Phys. Rev. B 87(11), 115139 (2013).
    [Crossref]
  8. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref]
  9. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref]
  10. S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
    [Crossref]
  11. S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
    [Crossref]
  12. W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10(1), 355 (2019).
    [Crossref]
  13. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
    [Crossref]
  14. C. Pfeiffer and A. Grbic, “Controlling vector bessel beams with metasurfaces,” Phys. Rev. Appl. 2(4), 044012 (2014).
    [Crossref]
  15. Y. Nakata, Y. Urade, K. Okimura, T. Nakanishi, F. Miyamaru, M. W. Takeda, and M. Kitano, “Anisotropic babinet-invertible metasurfaces to realize transmission-reflection switching for orthogonal polarizations of light,” Phys. Rev. Appl. 6(4), 044022 (2016).
    [Crossref]
  16. S. Ohno, “Projection of phase singularities in moiré fringe onto a light field,” Appl. Phys. Lett. 108(25), 251104 (2016).
    [Crossref]
  17. Y. Nakata, K. Fukawa, T. Nakanishi, Y. Urade, K. Okimura, and F. Miyamaru, “Reconfigurable terahertz quarter-wave plate for helicity switching based on babinet inversion of an anisotropic checkerboard metasurface,” Phys. Rev. Appl. 11(4), 044008 (2019).
    [Crossref]
  18. Z. Ma, S. M. Hanham, Y. Gong, and M. Hong, “All-dielectric reflective half-wave plate metasurface based on the anisotropic excitation of electric and magnetic dipole resonances,” Opt. Lett. 43(4), 911–914 (2018).
    [Crossref]
  19. M. Iwanaga, “Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs,” Appl. Phys. Lett. 96(8), 083106 (2010).
    [Crossref]
  20. M. Babinet, “Mémoires d’optique métérologigue,” Compt. Rend. Acad. Sci. 4, 638 (1837).
  21. M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999), 7th ed.
  22. M. Iwanaga, “Subwavelength electromagnetic dynamics in stacked complementary plasmonic crystal slabs,” Opt. Express 18(15), 15389–15398 (2010).
    [Crossref]
  23. M. Iwanaga, “Electromagnetic eigenmodes in a stacked complementary plasmonic crystal slab,” Phys. Rev. B 82(15), 155402 (2010).
    [Crossref]
  24. M. Iwanaga, “Photonic metamaterials: a new class of materials for manipulating light waves,” Sci. Technol. Adv. Mater. 13(5), 053002 (2012).
    [Crossref]
  25. H. Kurosawa, B. Choi, Y. Sugimoto, and M. Iwanaga, “High-performance metasurface polarizers with extinction ratios exceeding 12000,” Opt. Express 25(4), 4446–4455 (2017).
    [Crossref]
  26. H. Kurosawa, B. Choi, and M. Iwanaga, “Enhanced high performance of a metasurface polarizer through numerical analysis of the degradation characteristics,” Nanoscale Res. Lett. 13(1), 225 (2018).
    [Crossref]
  27. H. Kurosawa and S.-I. Inoue, “Enhanced extinction ratios of metasurface polarizers by surface-plasmon interference,” J. Opt. Soc. Am. B 37(3), 673–681 (2020).
    [Crossref]
  28. K. Asano, S. Yokoyama, A. Kemmochi, and T. Yatagai, “Fabrication and characterization of a deep ultraviolet wire grid polarizer with a chromium-oxide subwavelength grating,” Appl. Opt. 53(13), 2942–2948 (2014).
    [Crossref]
  29. T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
    [Crossref]
  30. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
    [Crossref]
  31. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13(5), 1024–1035 (1996).
    [Crossref]
  32. L. Li, “New formulation of the fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14(10), 2758–2767 (1997).
    [Crossref]
  33. F. Gervais, “Aluminum oxide (al2o3),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Burlington, 1997), pp. 761–775.
  34. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]
  35. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref]
  36. W. Ren, Y. Dai, H. Cai, H. Ding, N. Pan, and X. Wang, “Tailoring the coupling between localized and propagating surface plasmons: realizing fano-like interference and high-performance sensor,” Opt. Express 21(8), 10251–10258 (2013).
    [Crossref]
  37. K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
    [Crossref]
  38. R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P.-M. Adam, and T. Maurer, “Plasmonic mode interferences and fano resonances in metal-insulator-metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
    [Crossref]

2020 (1)

2019 (2)

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10(1), 355 (2019).
[Crossref]

Y. Nakata, K. Fukawa, T. Nakanishi, Y. Urade, K. Okimura, and F. Miyamaru, “Reconfigurable terahertz quarter-wave plate for helicity switching based on babinet inversion of an anisotropic checkerboard metasurface,” Phys. Rev. Appl. 11(4), 044008 (2019).
[Crossref]

2018 (2)

Z. Ma, S. M. Hanham, Y. Gong, and M. Hong, “All-dielectric reflective half-wave plate metasurface based on the anisotropic excitation of electric and magnetic dipole resonances,” Opt. Lett. 43(4), 911–914 (2018).
[Crossref]

H. Kurosawa, B. Choi, and M. Iwanaga, “Enhanced high performance of a metasurface polarizer through numerical analysis of the degradation characteristics,” Nanoscale Res. Lett. 13(1), 225 (2018).
[Crossref]

2017 (2)

H. Kurosawa, B. Choi, Y. Sugimoto, and M. Iwanaga, “High-performance metasurface polarizers with extinction ratios exceeding 12000,” Opt. Express 25(4), 4446–4455 (2017).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

2016 (3)

Y. Nakata, Y. Urade, K. Okimura, T. Nakanishi, F. Miyamaru, M. W. Takeda, and M. Kitano, “Anisotropic babinet-invertible metasurfaces to realize transmission-reflection switching for orthogonal polarizations of light,” Phys. Rev. Appl. 6(4), 044022 (2016).
[Crossref]

S. Ohno, “Projection of phase singularities in moiré fringe onto a light field,” Appl. Phys. Lett. 108(25), 251104 (2016).
[Crossref]

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
[Crossref]

2015 (1)

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P.-M. Adam, and T. Maurer, “Plasmonic mode interferences and fano resonances in metal-insulator-metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
[Crossref]

2014 (2)

2013 (5)

W. Ren, Y. Dai, H. Cai, H. Ding, N. Pan, and X. Wang, “Tailoring the coupling between localized and propagating surface plasmons: realizing fano-like interference and high-performance sensor,” Opt. Express 21(8), 10251–10258 (2013).
[Crossref]

K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

R. S. Savelev, I. V. Shadrivov, P. A. Belov, N. N. Rosanov, S. V. Fedorov, A. A. Sukhorukov, and Y. S. Kivshar, “Loss compensation in metal-dielectric layered metamaterials,” Phys. Rev. B 87(11), 115139 (2013).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

2012 (3)

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref]

M. Iwanaga, “Photonic metamaterials: a new class of materials for manipulating light waves,” Sci. Technol. Adv. Mater. 13(5), 053002 (2012).
[Crossref]

2011 (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

2010 (4)

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref]

M. Iwanaga, “Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs,” Appl. Phys. Lett. 96(8), 083106 (2010).
[Crossref]

M. Iwanaga, “Subwavelength electromagnetic dynamics in stacked complementary plasmonic crystal slabs,” Opt. Express 18(15), 15389–15398 (2010).
[Crossref]

M. Iwanaga, “Electromagnetic eigenmodes in a stacked complementary plasmonic crystal slab,” Phys. Rev. B 82(15), 155402 (2010).
[Crossref]

2006 (1)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

2005 (1)

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
[Crossref]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

2002 (1)

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref]

1998 (1)

1997 (1)

1996 (1)

1965 (1)

1837 (1)

M. Babinet, “Mémoires d’optique métérologigue,” Compt. Rend. Acad. Sci. 4, 638 (1837).

Adam, P.-M.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P.-M. Adam, and T. Maurer, “Plasmonic mode interferences and fano resonances in metal-insulator-metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
[Crossref]

Aieta, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Anderson, Z.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Asano, K.

Babinet, M.

M. Babinet, “Mémoires d’optique métérologigue,” Compt. Rend. Acad. Sci. 4, 638 (1837).

Belov, P. A.

R. S. Savelev, I. V. Shadrivov, P. A. Belov, N. N. Rosanov, S. V. Fedorov, A. A. Sukhorukov, and Y. S. Kivshar, “Loss compensation in metal-dielectric layered metamaterials,” Phys. Rev. B 87(11), 115139 (2013).
[Crossref]

Bharwani, Z.

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10(1), 355 (2019).
[Crossref]

Bhatia, A. B.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999), 7th ed.

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

Borghs, G.

K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

Born, M.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999), 7th ed.

Briggs, D. P.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Cai, H.

Capasso, F.

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10(1), 355 (2019).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Chen, J.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Chen, J.-W.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Chen, W. T.

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10(1), 355 (2019).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Chettiar, U. K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref]

Choi, B.

H. Kurosawa, B. Choi, and M. Iwanaga, “Enhanced high performance of a metasurface polarizer through numerical analysis of the degradation characteristics,” Nanoscale Res. Lett. 13(1), 225 (2018).
[Crossref]

H. Kurosawa, B. Choi, Y. Sugimoto, and M. Iwanaga, “High-performance metasurface polarizers with extinction ratios exceeding 12000,” Opt. Express 25(4), 4446–4455 (2017).
[Crossref]

Clemmow, P. C.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999), 7th ed.

Dai, Y.

Dietrich, K.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
[Crossref]

Ding, H.

Djurišic, A. B.

Drachev, V. P.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref]

Elazar, J. M.

Fedorov, S. V.

R. S. Savelev, I. V. Shadrivov, P. A. Belov, N. N. Rosanov, S. V. Fedorov, A. A. Sukhorukov, and Y. S. Kivshar, “Loss compensation in metal-dielectric layered metamaterials,” Phys. Rev. B 87(11), 115139 (2013).
[Crossref]

Franta, D.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
[Crossref]

Fukawa, K.

Y. Nakata, K. Fukawa, T. Nakanishi, Y. Urade, K. Okimura, and F. Miyamaru, “Reconfigurable terahertz quarter-wave plate for helicity switching based on babinet inversion of an anisotropic checkerboard metasurface,” Phys. Rev. Appl. 11(4), 044008 (2019).
[Crossref]

Gabor, D.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999), 7th ed.

Gaburro, Z.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Genevet, P.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Gervais, F.

F. Gervais, “Aluminum oxide (al2o3),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Burlington, 1997), pp. 761–775.

Gippius, N. A.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

Gong, Y.

Grbic, A.

C. Pfeiffer and A. Grbic, “Controlling vector bessel beams with metasurfaces,” Phys. Rev. Appl. 2(4), 044012 (2014).
[Crossref]

Guo, G.-Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Hanham, S. M.

He, Q.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Herro, Z.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P.-M. Adam, and T. Maurer, “Plasmonic mode interferences and fano resonances in metal-insulator-metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
[Crossref]

Hong, M.

Hung Chu, C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Inoue, S.-I.

Ishihara, T.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

Iwanaga, M.

H. Kurosawa, B. Choi, and M. Iwanaga, “Enhanced high performance of a metasurface polarizer through numerical analysis of the degradation characteristics,” Nanoscale Res. Lett. 13(1), 225 (2018).
[Crossref]

H. Kurosawa, B. Choi, Y. Sugimoto, and M. Iwanaga, “High-performance metasurface polarizers with extinction ratios exceeding 12000,” Opt. Express 25(4), 4446–4455 (2017).
[Crossref]

M. Iwanaga, “Photonic metamaterials: a new class of materials for manipulating light waves,” Sci. Technol. Adv. Mater. 13(5), 053002 (2012).
[Crossref]

M. Iwanaga, “Subwavelength electromagnetic dynamics in stacked complementary plasmonic crystal slabs,” Opt. Express 18(15), 15389–15398 (2010).
[Crossref]

M. Iwanaga, “Electromagnetic eigenmodes in a stacked complementary plasmonic crystal slab,” Phys. Rev. B 82(15), 155402 (2010).
[Crossref]

M. Iwanaga, “Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs,” Appl. Phys. Lett. 96(8), 083106 (2010).
[Crossref]

Juan, T.-K.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Kats, M. A.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Kazan, M.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P.-M. Adam, and T. Maurer, “Plasmonic mode interferences and fano resonances in metal-insulator-metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
[Crossref]

Kemmochi, A.

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref]

Kitano, M.

Y. Nakata, Y. Urade, K. Okimura, T. Nakanishi, F. Miyamaru, M. W. Takeda, and M. Kitano, “Anisotropic babinet-invertible metasurfaces to realize transmission-reflection switching for orthogonal polarizations of light,” Phys. Rev. Appl. 6(4), 044022 (2016).
[Crossref]

Kivshar, Y. S.

R. S. Savelev, I. V. Shadrivov, P. A. Belov, N. N. Rosanov, S. V. Fedorov, A. A. Sukhorukov, and Y. S. Kivshar, “Loss compensation in metal-dielectric layered metamaterials,” Phys. Rev. B 87(11), 115139 (2013).
[Crossref]

Kley, E.-B.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
[Crossref]

Kravchenko, I. I.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Kroker, S.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
[Crossref]

Kuan, C.-H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Kung, W.-T.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Kurosawa, H.

Lagae, L.

K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

Lai, Y.-C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Lévêque, G.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P.-M. Adam, and T. Maurer, “Plasmonic mode interferences and fano resonances in metal-insulator-metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
[Crossref]

Li, L.

Li, T.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Liao, C. Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Lodewijks, K.

K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

Lu, S.-H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Ma, Z.

Madi, Y.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P.-M. Adam, and T. Maurer, “Plasmonic mode interferences and fano resonances in metal-insulator-metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
[Crossref]

Majewski, M. L.

Malitson, I. H.

Marae-Djouda, J.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P.-M. Adam, and T. Maurer, “Plasmonic mode interferences and fano resonances in metal-insulator-metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
[Crossref]

Maurer, T.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P.-M. Adam, and T. Maurer, “Plasmonic mode interferences and fano resonances in metal-insulator-metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
[Crossref]

Miyamaru, F.

Y. Nakata, K. Fukawa, T. Nakanishi, Y. Urade, K. Okimura, and F. Miyamaru, “Reconfigurable terahertz quarter-wave plate for helicity switching based on babinet inversion of an anisotropic checkerboard metasurface,” Phys. Rev. Appl. 11(4), 044008 (2019).
[Crossref]

Y. Nakata, Y. Urade, K. Okimura, T. Nakanishi, F. Miyamaru, M. W. Takeda, and M. Kitano, “Anisotropic babinet-invertible metasurfaces to realize transmission-reflection switching for orthogonal polarizations of light,” Phys. Rev. Appl. 6(4), 044022 (2016).
[Crossref]

Moitra, P.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Montay, G.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P.-M. Adam, and T. Maurer, “Plasmonic mode interferences and fano resonances in metal-insulator-metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
[Crossref]

Muljarov, E. A.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

Nakanishi, T.

Y. Nakata, K. Fukawa, T. Nakanishi, Y. Urade, K. Okimura, and F. Miyamaru, “Reconfigurable terahertz quarter-wave plate for helicity switching based on babinet inversion of an anisotropic checkerboard metasurface,” Phys. Rev. Appl. 11(4), 044008 (2019).
[Crossref]

Y. Nakata, Y. Urade, K. Okimura, T. Nakanishi, F. Miyamaru, M. W. Takeda, and M. Kitano, “Anisotropic babinet-invertible metasurfaces to realize transmission-reflection switching for orthogonal polarizations of light,” Phys. Rev. Appl. 6(4), 044022 (2016).
[Crossref]

Nakata, Y.

Y. Nakata, K. Fukawa, T. Nakanishi, Y. Urade, K. Okimura, and F. Miyamaru, “Reconfigurable terahertz quarter-wave plate for helicity switching based on babinet inversion of an anisotropic checkerboard metasurface,” Phys. Rev. Appl. 11(4), 044008 (2019).
[Crossref]

Y. Nakata, Y. Urade, K. Okimura, T. Nakanishi, F. Miyamaru, M. W. Takeda, and M. Kitano, “Anisotropic babinet-invertible metasurfaces to realize transmission-reflection switching for orthogonal polarizations of light,” Phys. Rev. Appl. 6(4), 044022 (2016).
[Crossref]

Ni, X.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref]

Nicolas, R.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P.-M. Adam, and T. Maurer, “Plasmonic mode interferences and fano resonances in metal-insulator-metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
[Crossref]

Ohlídal, I.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
[Crossref]

Ohno, S.

S. Ohno, “Projection of phase singularities in moiré fringe onto a light field,” Appl. Phys. Lett. 108(25), 251104 (2016).
[Crossref]

Okimura, K.

Y. Nakata, K. Fukawa, T. Nakanishi, Y. Urade, K. Okimura, and F. Miyamaru, “Reconfigurable terahertz quarter-wave plate for helicity switching based on babinet inversion of an anisotropic checkerboard metasurface,” Phys. Rev. Appl. 11(4), 044008 (2019).
[Crossref]

Y. Nakata, Y. Urade, K. Okimura, T. Nakanishi, F. Miyamaru, M. W. Takeda, and M. Kitano, “Anisotropic babinet-invertible metasurfaces to realize transmission-reflection switching for orthogonal polarizations of light,” Phys. Rev. Appl. 6(4), 044022 (2016).
[Crossref]

Pan, N.

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref]

Pfeiffer, C.

C. Pfeiffer and A. Grbic, “Controlling vector bessel beams with metasurfaces,” Phys. Rev. Appl. 2(4), 044012 (2014).
[Crossref]

Pfeiffer, K.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
[Crossref]

Plain, J.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P.-M. Adam, and T. Maurer, “Plasmonic mode interferences and fano resonances in metal-insulator-metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
[Crossref]

Puffky, O.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
[Crossref]

Rakic, A. D.

Ramakrishna, S. A.

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
[Crossref]

Ren, W.

Rosanov, N. N.

R. S. Savelev, I. V. Shadrivov, P. A. Belov, N. N. Rosanov, S. V. Fedorov, A. A. Sukhorukov, and Y. S. Kivshar, “Loss compensation in metal-dielectric layered metamaterials,” Phys. Rev. B 87(11), 115139 (2013).
[Crossref]

Ryken, J.

K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

Savelev, R. S.

R. S. Savelev, I. V. Shadrivov, P. A. Belov, N. N. Rosanov, S. V. Fedorov, A. A. Sukhorukov, and Y. S. Kivshar, “Loss compensation in metal-dielectric layered metamaterials,” Phys. Rev. B 87(11), 115139 (2013).
[Crossref]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

Shadrivov, I. V.

R. S. Savelev, I. V. Shadrivov, P. A. Belov, N. N. Rosanov, S. V. Fedorov, A. A. Sukhorukov, and Y. S. Kivshar, “Loss compensation in metal-dielectric layered metamaterials,” Phys. Rev. B 87(11), 115139 (2013).
[Crossref]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref]

Siefke, T.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
[Crossref]

Sisler, J.

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10(1), 355 (2019).
[Crossref]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

Stokes, A. R.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999), 7th ed.

Su, V.-C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Sugimoto, Y.

Sukhorukov, A. A.

R. S. Savelev, I. V. Shadrivov, P. A. Belov, N. N. Rosanov, S. V. Fedorov, A. A. Sukhorukov, and Y. S. Kivshar, “Loss compensation in metal-dielectric layered metamaterials,” Phys. Rev. B 87(11), 115139 (2013).
[Crossref]

Sun, S.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Szeghalmi, A.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
[Crossref]

Takeda, M. W.

Y. Nakata, Y. Urade, K. Okimura, T. Nakanishi, F. Miyamaru, M. W. Takeda, and M. Kitano, “Anisotropic babinet-invertible metasurfaces to realize transmission-reflection switching for orthogonal polarizations of light,” Phys. Rev. Appl. 6(4), 044022 (2016).
[Crossref]

Taylor, A. M.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999), 7th ed.

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Tikhodeev, S. G.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

Tsai, D. P.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Tünnermann, A.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
[Crossref]

Urade, Y.

Y. Nakata, K. Fukawa, T. Nakanishi, Y. Urade, K. Okimura, and F. Miyamaru, “Reconfigurable terahertz quarter-wave plate for helicity switching based on babinet inversion of an anisotropic checkerboard metasurface,” Phys. Rev. Appl. 11(4), 044008 (2019).
[Crossref]

Y. Nakata, Y. Urade, K. Okimura, T. Nakanishi, F. Miyamaru, M. W. Takeda, and M. Kitano, “Anisotropic babinet-invertible metasurfaces to realize transmission-reflection switching for orthogonal polarizations of light,” Phys. Rev. Appl. 6(4), 044022 (2016).
[Crossref]

Valentine, J.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Van Dorpe, P.

K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

Van Roy, W.

K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

Wang, C.-M.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Wang, S.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Wang, X.

Wayman, P. A.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999), 7th ed.

Wilcock, W. L.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999), 7th ed.

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

Wolf, E.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999), 7th ed.

Wu, P. C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Xiao, S.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref]

Xu, B.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Yablonskii, A. L.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

Yang, K.-Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Yang, Y.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Yatagai, T.

Yokoyama, S.

Yu, N.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Yuan, H.-K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref]

Zhou, L.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Zhu, A. Y.

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10(1), 355 (2019).
[Crossref]

Zhu, S.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Adv. Opt. Mater. (1)

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Opt. Mater. 4(11), 1780–1786 (2016).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

S. Ohno, “Projection of phase singularities in moiré fringe onto a light field,” Appl. Phys. Lett. 108(25), 251104 (2016).
[Crossref]

M. Iwanaga, “Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs,” Appl. Phys. Lett. 96(8), 083106 (2010).
[Crossref]

Compt. Rend. Acad. Sci. (1)

M. Babinet, “Mémoires d’optique métérologigue,” Compt. Rend. Acad. Sci. 4, 638 (1837).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Nano Lett. (2)

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref]

Nanoscale Res. Lett. (1)

H. Kurosawa, B. Choi, and M. Iwanaga, “Enhanced high performance of a metasurface polarizer through numerical analysis of the degradation characteristics,” Nanoscale Res. Lett. 13(1), 225 (2018).
[Crossref]

Nat. Commun. (2)

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10(1), 355 (2019).
[Crossref]

Nat. Photonics (1)

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Nature (1)

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Appl. (3)

C. Pfeiffer and A. Grbic, “Controlling vector bessel beams with metasurfaces,” Phys. Rev. Appl. 2(4), 044012 (2014).
[Crossref]

Y. Nakata, Y. Urade, K. Okimura, T. Nakanishi, F. Miyamaru, M. W. Takeda, and M. Kitano, “Anisotropic babinet-invertible metasurfaces to realize transmission-reflection switching for orthogonal polarizations of light,” Phys. Rev. Appl. 6(4), 044022 (2016).
[Crossref]

Y. Nakata, K. Fukawa, T. Nakanishi, Y. Urade, K. Okimura, and F. Miyamaru, “Reconfigurable terahertz quarter-wave plate for helicity switching based on babinet inversion of an anisotropic checkerboard metasurface,” Phys. Rev. Appl. 11(4), 044008 (2019).
[Crossref]

Phys. Rev. B (3)

R. S. Savelev, I. V. Shadrivov, P. A. Belov, N. N. Rosanov, S. V. Fedorov, A. A. Sukhorukov, and Y. S. Kivshar, “Loss compensation in metal-dielectric layered metamaterials,” Phys. Rev. B 87(11), 115139 (2013).
[Crossref]

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

M. Iwanaga, “Electromagnetic eigenmodes in a stacked complementary plasmonic crystal slab,” Phys. Rev. B 82(15), 155402 (2010).
[Crossref]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref]

Plasmonics (1)

K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

Rep. Prog. Phys. (1)

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
[Crossref]

Sci. Rep. (1)

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P.-M. Adam, and T. Maurer, “Plasmonic mode interferences and fano resonances in metal-insulator-metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
[Crossref]

Sci. Technol. Adv. Mater. (1)

M. Iwanaga, “Photonic metamaterials: a new class of materials for manipulating light waves,” Sci. Technol. Adv. Mater. 13(5), 053002 (2012).
[Crossref]

Science (4)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Other (2)

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999), 7th ed.

F. Gervais, “Aluminum oxide (al2o3),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Burlington, 1997), pp. 761–775.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Bird’s eye view and (b) cross section view of the metasurface polarizer.
Fig. 2.
Fig. 2. (a) Schematic of a metasurface polarizer combined with a half mirror working at normal incidence. (b, c) Optical spectra for (b) $x$ and (c) $y$ polarizations. (d) Extinction ratio spectrum. The inset shows the enlarged spectrum around 260 nm.
Fig. 3.
Fig. 3. Angle-resolved reflectance spectra for (a) p- and (b) s-polarizations. The horizontal axis shows the wavevetor parallel to the periodic direction, normalized to the reciprocal lattice vector $G=2\pi /P_x$. The color bar indicates the reflectance intensity. The white dashed lines are drawn for eye guide.
Fig. 4.
Fig. 4. (a) Calculated optical spectra at $45^\circ$. (b-e) Snap shots of the magnetic field distributions at (b) 598.75 nm, (c) 281.05 nm, (d) 352 nm, and (e) 329.65 nm. The color bar indicates the value of the magnetic field.
Fig. 5.
Fig. 5. Pseudo color plots of $R_x, R_y$, and extinction ratio spectra as a function of the thickness of $\mathrm {Al}_2\mathrm {O}_3$ layer (a, b, c), period (d, e, f), height of the grating (g, h, i). A white dashed line in each figure indicates the position of the original value of the swept parameter.
Fig. 6.
Fig. 6. (a) Schematic of a metasurface polarizer working at $45^\circ$ incidence. (b, c) Optical spectra for (b) $x$ and (c) $y$ polarizations. (d) Extinction ratio spectrum.
Fig. 7.
Fig. 7. (a) Optical microscope and (b, c) scanning electron microscope images of the prepared metasurface polarizer. Figures (b) and (c) are the top and cross-section views, respectively.
Fig. 8.
Fig. 8. (a, b) Measured and (c, d) calculated angle-resolved reflectance spectra displayed with offset for (a,c) p- and (b,d) s-polarizations. The reflectance spectra are highlighted in blue in $10^\circ$ steps.
Fig. 9.
Fig. 9. (a) Measured and (b) calculated angle-resolved extinction ratio spectra. The spectra are displayed with offset and highlighted in blue in $10^\circ$ steps. The logarithm of the extinction ratio is plotted in the calculation results to clearly show the spectral features. (c) Measured extinction spectra at incident angles of $5^\circ$, $10^\circ$, $45^\circ$, $50^\circ$, and $60^\circ$.

Metrics