Abstract

We propose and theoretically demonstrate an integrated polarization beam splitter on the x-cut lithium-niobate-on-insulator (LNOI) platform. The device is based on a Mach-Zehnder interferometer with an anisotropy-engineered multi-section phase shifter. The phase shift can be simultaneously controlled for the TE and TM polarizations by engineering the length and direction of the anisotropic LNOI waveguide. For TE polarization, the phase shift is −π/2, while for TM polarization, the phase shift is π/2. Thus, the incident TE and TM modes can be coupled into different output ports. The simulation results show an ultra-high polarization extinction ratio of ∼47.7 dB, a low excess loss of ∼0.9 dB and an ultra-broad working bandwidth of ∼200 nm. To the best of our knowledge, the proposed structure is the first integrated polarization beam splitter on the x-cut LNOI platform.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High extinction ratio and low loss polarization beam splitter based on multimode interference for PICs

Shamsul Hassan, Devendra Chack, and Varad Mahajan
Appl. Opt. 59(11) 3369-3375 (2020)

Ultra-broadband and compact polarizing beam splitter in silicon photonics

Fang Zhang, Jiajiu Zheng, Yipeng Song, Weixi Liu, Peipeng Xu, and Arka Majumdar
OSA Continuum 3(3) 560-567 (2020)

References

  • View by:
  • |
  • |
  • |

  1. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser & Photon. Rev. 6(4), 488–503 (2012).
    [Crossref]
  2. I. Krasnokutska, J.-L. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26(2), 897–904 (2018).
    [Crossref]
  3. H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
    [Crossref]
  4. S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photonics Technol. Lett. 28(7), 736–739 (2016).
    [Crossref]
  5. L. Cai, Y. Wang, and H. Hu, “Low-loss waveguides in a single-crystal lithium niobate thin film,” Opt. Lett. 40(13), 3013 (2015).
    [Crossref]
  6. H. Liang, R. Luo, Y. He, H. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica 4(10), 1251 (2017).
    [Crossref]
  7. R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Lithium niobate micro-disk resonators of quality factors above 107,” Opt. Lett. 43(17), 4116–4119 (2018).
    [Crossref]
  8. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536 (2017).
    [Crossref]
  9. C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
    [Crossref]
  10. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
    [Crossref]
  11. M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
    [Crossref]
  12. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
    [Crossref]
  13. A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26(11), 14810–14816 (2018).
    [Crossref]
  14. V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered Thin Film Lithium Niobate Substrate for High Gain-Bandwidth Electro-optic Modulators,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3O.3.
  15. C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25(6), 6963–6973 (2017).
    [Crossref]
  16. J.-Y. Chen, Y. Sua, Z.-H. Ma, C. Tang, Z. Li, and Y.-P. Huang, “Efficient parametric frequency conversion in lithium niobate nanophotonic chips,” OSA Continuum 2(10), 2914 (2019).
    [Crossref]
  17. D. Pohl, M. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14(1), 24–29 (2020).
    [Crossref]
  18. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S.-I. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872 (2008).
    [Crossref]
  19. J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photon. Rev.8 (2014).
  20. L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
    [Crossref]
  21. D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36(13), 2590 (2011).
    [Crossref]
  22. H. Wu, Y. Tan, and D. Dai, “Ultra-broadband high-performance polarizing beam splitter on silicon,” Opt. Express 25(6), 6069 (2017).
    [Crossref]
  23. H. Xu and Y. Shi, “Ultra-broadband silicon polarization splitter-rotator based on the multi-mode waveguide,” Opt. Express 25(15), 18485–18491 (2017).
    [Crossref]
  24. H. Xu and Y. Shi, “On-chip silicon TE-pass polarizer based on asymmetrical directional couplers,” IEEE Photonics Technol. Lett. 29(11), 861–864 (2017).
    [Crossref]
  25. Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, and Y. Su, “High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations,” Opt. Express 24(6), 6586–6593 (2016).
    [Crossref]
  26. X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39(2), 259–262 (2014).
    [Crossref]
  27. Y. Jiao, D. Dai, Y. Shi, and S. He, “Shortened polarization beam splitters with two cascaded multimode interference sections,” IEEE Photonics Technol. Lett. 21(20), 1538–1540 (2009).
    [Crossref]
  28. C. Li and D. Dai, “Compact polarization beam splitter for silicon photonic integrated circuits with a 340-nm-thick silicon core layer,” Opt. Lett. 42(21), 4243 (2017).
    [Crossref]
  29. H. Xu, D. Dai, and Y. Shi, “Ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials,” Laser Photon. Rev. 13(4), 1800349 (2019).
    [Crossref]
  30. H. Xu, D. Dai, and Y. Shi, “Anisotropic metamaterial-assisted all-silicon polarizer with 415-nm bandwidth,” Photonics Res. 7(12), 1432 (2019).
    [Crossref]
  31. H.-P. Chung, C.-H. Lee, K.-H. Huang, S.-L. Yang, K. Wang, A. S. Solntsev, A. A. Sukhorukov, F. Setzpfandt, and Y.-H. Chen, “Broadband on-chip polarization mode splitters in lithium niobate integrated adiabatic couplers,” Opt. Express 27(2), 1632 (2019).
    [Crossref]
  32. A. Pan, C. Hu, C. Zeng, and J. Xia, “Fundamental mode hybridization in a thin film lithium niobate ridge waveguide,” Opt. Express 27(24), 35659–35669 (2019).
    [Crossref]
  33. D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17(3), 332–335 (1976).
    [Crossref]
  34. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]
  35. L. He, M. Zhang, A. Shams-Ansari, R. Zhu, C. Wang, and L. Marko, “Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits,” Opt. Lett. 44, 2314–2317 (2019).
    [Crossref]
  36. X. Li, K. Chen, and Z. Hu, “Low-loss bent channel waveguides in lithium niobate thin film by proton exchange and dry etching,” Opt. Mater. Express 8(5), 1322 (2018).
    [Crossref]
  37. M. Bahadori, Y. Yang, L. L. Goddard, and S. Gong, “High performance fully etched isotropic microring resonators in thin-film lithium niobate on insulator platform,” Opt. Express 27(15), 22025–22039 (2019).
    [Crossref]
  38. R. Halir, G. Roelkens, A. Ortega-Moñux, and J. G. Wangüemert-Pérez, “High-performance 90° hybrid based on a silicon-on-insulator multimode interference coupler,” Opt. Lett. 36(2), 178–180 (2011).
    [Crossref]
  39. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [Crossref]
  40. J. M. Heaton and R. M. Jenkins, “General matrix theory of self-imaging in multimode interference (MMI) couplers,” IEEE Photonics Technol. Lett. 11(2), 212–214 (1999).
    [Crossref]
  41. D. J. Thomson, Y. Hu, G. T. Reed, and J.-M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
    [Crossref]
  42. H. Xu, L. Liu, and Y. Shi, “Polarization-insensitive four-channel coarse wavelength-division (de)multiplexer based on Mach–Zehnder interferometers with bent directional couplers and polarization rotators,” Opt. Lett. 43(7), 1483–1486 (2018).
    [Crossref]
  43. H. Xu and Y. Shi, “Flat-top CWDM (de)multiplexer based on MZI with bent directional couplers,” IEEE Photonics Technol. Lett. 30(2), 169–172 (2018).
    [Crossref]
  44. H. Xu and Y. Shi, “On-chip silicon triplexer based on asymmetrical directional couplers,” IEEE Photonics Technol. Lett. 29(15), 1265–1268 (2017).
    [Crossref]
  45. D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical Mach-Zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24(8), 673–675 (2012).
    [Crossref]
  46. D. Dai, Z. Wang, and J. E. Bowers, “Considerations for the design of asymmetrical Mach-Zehnder interferometers used as polarization beam splitters on a submicrometer silicon-on-insulator platform,” J. Lightwave Technol. 29(12), 1808–1817 (2011).
    [Crossref]

2020 (1)

D. Pohl, M. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14(1), 24–29 (2020).
[Crossref]

2019 (8)

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

J.-Y. Chen, Y. Sua, Z.-H. Ma, C. Tang, Z. Li, and Y.-P. Huang, “Efficient parametric frequency conversion in lithium niobate nanophotonic chips,” OSA Continuum 2(10), 2914 (2019).
[Crossref]

H. Xu, D. Dai, and Y. Shi, “Ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials,” Laser Photon. Rev. 13(4), 1800349 (2019).
[Crossref]

H. Xu, D. Dai, and Y. Shi, “Anisotropic metamaterial-assisted all-silicon polarizer with 415-nm bandwidth,” Photonics Res. 7(12), 1432 (2019).
[Crossref]

H.-P. Chung, C.-H. Lee, K.-H. Huang, S.-L. Yang, K. Wang, A. S. Solntsev, A. A. Sukhorukov, F. Setzpfandt, and Y.-H. Chen, “Broadband on-chip polarization mode splitters in lithium niobate integrated adiabatic couplers,” Opt. Express 27(2), 1632 (2019).
[Crossref]

A. Pan, C. Hu, C. Zeng, and J. Xia, “Fundamental mode hybridization in a thin film lithium niobate ridge waveguide,” Opt. Express 27(24), 35659–35669 (2019).
[Crossref]

L. He, M. Zhang, A. Shams-Ansari, R. Zhu, C. Wang, and L. Marko, “Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits,” Opt. Lett. 44, 2314–2317 (2019).
[Crossref]

M. Bahadori, Y. Yang, L. L. Goddard, and S. Gong, “High performance fully etched isotropic microring resonators in thin-film lithium niobate on insulator platform,” Opt. Express 27(15), 22025–22039 (2019).
[Crossref]

2018 (8)

X. Li, K. Chen, and Z. Hu, “Low-loss bent channel waveguides in lithium niobate thin film by proton exchange and dry etching,” Opt. Mater. Express 8(5), 1322 (2018).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26(11), 14810–14816 (2018).
[Crossref]

I. Krasnokutska, J.-L. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26(2), 897–904 (2018).
[Crossref]

R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Lithium niobate micro-disk resonators of quality factors above 107,” Opt. Lett. 43(17), 4116–4119 (2018).
[Crossref]

H. Xu, L. Liu, and Y. Shi, “Polarization-insensitive four-channel coarse wavelength-division (de)multiplexer based on Mach–Zehnder interferometers with bent directional couplers and polarization rotators,” Opt. Lett. 43(7), 1483–1486 (2018).
[Crossref]

H. Xu and Y. Shi, “Flat-top CWDM (de)multiplexer based on MZI with bent directional couplers,” IEEE Photonics Technol. Lett. 30(2), 169–172 (2018).
[Crossref]

2017 (8)

2016 (3)

Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, and Y. Su, “High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations,” Opt. Express 24(6), 6586–6593 (2016).
[Crossref]

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref]

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photonics Technol. Lett. 28(7), 736–739 (2016).
[Crossref]

2015 (1)

2014 (1)

2012 (2)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser & Photon. Rev. 6(4), 488–503 (2012).
[Crossref]

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical Mach-Zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24(8), 673–675 (2012).
[Crossref]

2011 (3)

2010 (1)

D. J. Thomson, Y. Hu, G. T. Reed, and J.-M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
[Crossref]

2009 (2)

Y. Jiao, D. Dai, Y. Shi, and S. He, “Shortened polarization beam splitters with two cascaded multimode interference sections,” IEEE Photonics Technol. Lett. 21(20), 1538–1540 (2009).
[Crossref]

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
[Crossref]

2008 (1)

2007 (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

1999 (1)

J. M. Heaton and R. M. Jenkins, “General matrix theory of self-imaging in multimode interference (MMI) couplers,” IEEE Photonics Technol. Lett. 11(2), 212–214 (1999).
[Crossref]

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

1976 (1)

D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17(3), 332–335 (1976).
[Crossref]

1965 (1)

Alberti, E.

D. Pohl, M. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14(1), 24–29 (2020).
[Crossref]

Andrade, N.

Bahadori, M.

Bertrand, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Bowers, J. E.

Brotzer, P.

D. Pohl, M. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14(1), 24–29 (2020).
[Crossref]

Busch, J.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered Thin Film Lithium Niobate Substrate for High Gain-Bandwidth Electro-optic Modulators,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3O.3.

Cai, L.

Cai, X.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Chai, Z.

Chandrasekhar, S.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Chen, H.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Chen, J.-Y.

Chen, K.

Chen, X.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Chen, Y.-H.

Cheng, R.

Cheng, Y.

Chung, H.-P.

Dai, D.

H. Xu, D. Dai, and Y. Shi, “Anisotropic metamaterial-assisted all-silicon polarizer with 415-nm bandwidth,” Photonics Res. 7(12), 1432 (2019).
[Crossref]

H. Xu, D. Dai, and Y. Shi, “Ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials,” Laser Photon. Rev. 13(4), 1800349 (2019).
[Crossref]

C. Li and D. Dai, “Compact polarization beam splitter for silicon photonic integrated circuits with a 340-nm-thick silicon core layer,” Opt. Lett. 42(21), 4243 (2017).
[Crossref]

H. Wu, Y. Tan, and D. Dai, “Ultra-broadband high-performance polarizing beam splitter on silicon,” Opt. Express 25(6), 6069 (2017).
[Crossref]

X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39(2), 259–262 (2014).
[Crossref]

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical Mach-Zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24(8), 673–675 (2012).
[Crossref]

D. Dai, Z. Wang, and J. E. Bowers, “Considerations for the design of asymmetrical Mach-Zehnder interferometers used as polarization beam splitters on a submicrometer silicon-on-insulator platform,” J. Lightwave Technol. 29(12), 1808–1817 (2011).
[Crossref]

D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36(13), 2590 (2011).
[Crossref]

Y. Jiao, D. Dai, Y. Shi, and S. He, “Shortened polarization beam splitters with two cascaded multimode interference sections,” IEEE Photonics Technol. Lett. 21(20), 1538–1540 (2009).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photon. Rev.8 (2014).

Dai, D.-X.

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref]

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Edwin, R. P.

D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17(3), 332–335 (1976).
[Crossref]

Escalé, M.

D. Pohl, M. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14(1), 24–29 (2020).
[Crossref]

Fang, W.

Fedeli, J.-M.

D. J. Thomson, Y. Hu, G. T. Reed, and J.-M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
[Crossref]

Feng, L.-T.

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref]

Fukuda, H.

Gao, S.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Giaccari, P.

D. Pohl, M. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14(1), 24–29 (2020).
[Crossref]

Goddard, L. L.

Gong, S.

Grange, R.

D. Pohl, M. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14(1), 24–29 (2020).
[Crossref]

Guan, X.

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Guldimann, B.

D. Pohl, M. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14(1), 24–29 (2020).
[Crossref]

Günter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser & Photon. Rev. 6(4), 488–503 (2012).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Guo, C.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Guo, G.-C.

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25(6), 6963–6973 (2017).
[Crossref]

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref]

Guo, G.-P.

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref]

Halir, R.

He, L.

He, M.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

He, S.

Y. Jiao, D. Dai, Y. Shi, and S. He, “Shortened polarization beam splitters with two cascaded multimode interference sections,” IEEE Photonics Technol. Lett. 21(20), 1538–1540 (2009).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photon. Rev.8 (2014).

He, Y.

Heaton, J. M.

J. M. Heaton and R. M. Jenkins, “General matrix theory of self-imaging in multimode interference (MMI) couplers,” IEEE Photonics Technol. Lett. 11(2), 212–214 (1999).
[Crossref]

Hu, C.

Hu, H.

Hu, Y.

D. J. Thomson, Y. Hu, G. T. Reed, and J.-M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
[Crossref]

Hu, Z.

Huang, K.-H.

Huang, Y.-P.

Itabashi, S.-I.

Jenkins, R. M.

J. M. Heaton and R. M. Jenkins, “General matrix theory of self-imaging in multimode interference (MMI) couplers,” IEEE Photonics Technol. Lett. 11(2), 212–214 (1999).
[Crossref]

Jian, J.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Jiang, H.

Jiang, X.

Jiao, Y.

Y. Jiao, D. Dai, Y. Shi, and S. He, “Shortened polarization beam splitters with two cascaded multimode interference sections,” IEEE Photonics Technol. Lett. 21(20), 1538–1540 (2009).
[Crossref]

Jin, S.

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photonics Technol. Lett. 28(7), 736–739 (2016).
[Crossref]

Kaufmann, F.

D. Pohl, M. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14(1), 24–29 (2020).
[Crossref]

Krasnokutska, I.

Lee, C.-H.

Li, C.

Li, M.

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref]

Li, X.

Li, Y.

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photonics Technol. Lett. 28(7), 736–739 (2016).
[Crossref]

Li, Z.

Liang, H.

Lin, J.

Lin, Q.

Lipson, M.

Liu, L.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

H. Xu, L. Liu, and Y. Shi, “Polarization-insensitive four-channel coarse wavelength-division (de)multiplexer based on Mach–Zehnder interferometers with bent directional couplers and polarization rotators,” Opt. Lett. 43(7), 1483–1486 (2018).
[Crossref]

Liu, R.

Loncar, M.

Luo, R.

Ma, Z.-H.

Madi, M.

D. Pohl, M. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14(1), 24–29 (2020).
[Crossref]

Malitson, I. H.

Marko, L.

Meier, U.

D. Pohl, M. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14(1), 24–29 (2020).
[Crossref]

Mercante, A. J.

Ortega-Moñux, A.

Pan, A.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Peruzzo, A.

Peters, J.

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical Mach-Zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24(8), 673–675 (2012).
[Crossref]

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser & Photon. Rev. 6(4), 488–503 (2012).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Pohl, D.

D. Pohl, M. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14(1), 24–29 (2020).
[Crossref]

Pollick, A.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered Thin Film Lithium Niobate Substrate for High Gain-Bandwidth Electro-optic Modulators,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3O.3.

Pontius, P.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered Thin Film Lithium Niobate Substrate for High Gain-Bandwidth Electro-optic Modulators,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3O.3.

Prather, D. W.

Qiao, L.

Qiu, C.

Reed, G. T.

D. J. Thomson, Y. Hu, G. T. Reed, and J.-M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
[Crossref]

Ren, X.-F.

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25(6), 6963–6973 (2017).
[Crossref]

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref]

Ren, Y.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Riccius, H. D.

D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17(3), 332–335 (1976).
[Crossref]

Ricken, R.

Roelkens, G.

Ruan, Z.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Scholl, J.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered Thin Film Lithium Niobate Substrate for High Gain-Bandwidth Electro-optic Modulators,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3O.3.

Sergeyev, A.

D. Pohl, M. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14(1), 24–29 (2020).
[Crossref]

Setzpfandt, F.

Shams-Ansari, A.

Shi, B.-S.

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref]

Shi, S.

Shi, Y.

H. Xu, D. Dai, and Y. Shi, “Anisotropic metamaterial-assisted all-silicon polarizer with 415-nm bandwidth,” Photonics Res. 7(12), 1432 (2019).
[Crossref]

H. Xu, D. Dai, and Y. Shi, “Ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials,” Laser Photon. Rev. 13(4), 1800349 (2019).
[Crossref]

H. Xu, L. Liu, and Y. Shi, “Polarization-insensitive four-channel coarse wavelength-division (de)multiplexer based on Mach–Zehnder interferometers with bent directional couplers and polarization rotators,” Opt. Lett. 43(7), 1483–1486 (2018).
[Crossref]

H. Xu and Y. Shi, “Flat-top CWDM (de)multiplexer based on MZI with bent directional couplers,” IEEE Photonics Technol. Lett. 30(2), 169–172 (2018).
[Crossref]

H. Xu and Y. Shi, “On-chip silicon triplexer based on asymmetrical directional couplers,” IEEE Photonics Technol. Lett. 29(15), 1265–1268 (2017).
[Crossref]

H. Xu and Y. Shi, “Ultra-broadband silicon polarization splitter-rotator based on the multi-mode waveguide,” Opt. Express 25(15), 18485–18491 (2017).
[Crossref]

H. Xu and Y. Shi, “On-chip silicon TE-pass polarizer based on asymmetrical directional couplers,” IEEE Photonics Technol. Lett. 29(11), 861–864 (2017).
[Crossref]

X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39(2), 259–262 (2014).
[Crossref]

Y. Jiao, D. Dai, Y. Shi, and S. He, “Shortened polarization beam splitters with two cascaded multimode interference sections,” IEEE Photonics Technol. Lett. 21(20), 1538–1540 (2009).
[Crossref]

Shinojima, H.

Smith, D. S.

D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17(3), 332–335 (1976).
[Crossref]

Sohler, W.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser & Photon. Rev. 6(4), 488–503 (2012).
[Crossref]

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
[Crossref]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Solntsev, A. S.

Sriram, S.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered Thin Film Lithium Niobate Substrate for High Gain-Bandwidth Electro-optic Modulators,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3O.3.

Stenger, V.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered Thin Film Lithium Niobate Substrate for High Gain-Bandwidth Electro-optic Modulators,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3O.3.

Stern, B.

Su, Y.

Sua, Y.

Sukhorukov, A. A.

Sun, S.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Tambasco, J.-L. J.

Tan, Y.

Tang, C.

Thomson, D. J.

D. J. Thomson, Y. Hu, G. T. Reed, and J.-M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
[Crossref]

Toney, J.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered Thin Film Lithium Niobate Substrate for High Gain-Bandwidth Electro-optic Modulators,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3O.3.

Tremblay, C.

Tsuchizawa, T.

Venkataraman, V.

Wang, C.

Wang, J.

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photon. Rev.8 (2014).

Wang, K.

Wang, Y.

Wang, Z.

Wangüemert-Pérez, J. G.

Watanabe, T.

Weikle, R. M.

Wen, X.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Winzer, P.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Wu, H.

Wu, J.

Wu, R.

Xia, J.

Xie, L.

Xiong, X.

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25(6), 6963–6973 (2017).
[Crossref]

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref]

Xu, H.

H. Xu, D. Dai, and Y. Shi, “Anisotropic metamaterial-assisted all-silicon polarizer with 415-nm bandwidth,” Photonics Res. 7(12), 1432 (2019).
[Crossref]

H. Xu, D. Dai, and Y. Shi, “Ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials,” Laser Photon. Rev. 13(4), 1800349 (2019).
[Crossref]

H. Xu, L. Liu, and Y. Shi, “Polarization-insensitive four-channel coarse wavelength-division (de)multiplexer based on Mach–Zehnder interferometers with bent directional couplers and polarization rotators,” Opt. Lett. 43(7), 1483–1486 (2018).
[Crossref]

H. Xu and Y. Shi, “Flat-top CWDM (de)multiplexer based on MZI with bent directional couplers,” IEEE Photonics Technol. Lett. 30(2), 169–172 (2018).
[Crossref]

H. Xu and Y. Shi, “On-chip silicon triplexer based on asymmetrical directional couplers,” IEEE Photonics Technol. Lett. 29(15), 1265–1268 (2017).
[Crossref]

H. Xu and Y. Shi, “Ultra-broadband silicon polarization splitter-rotator based on the multi-mode waveguide,” Opt. Express 25(15), 18485–18491 (2017).
[Crossref]

H. Xu and Y. Shi, “On-chip silicon TE-pass polarizer based on asymmetrical directional couplers,” IEEE Photonics Technol. Lett. 29(11), 861–864 (2017).
[Crossref]

Xu, L.

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photonics Technol. Lett. 28(7), 736–739 (2016).
[Crossref]

Xu, M.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Xu, Y.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Yamada, K.

Yang, J.

Yang, S.-L.

Yang, Y.

Yao, N.

Yao, P.

Yu, L.

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref]

Yu, S.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Zeng, C.

Zhang, H.

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photonics Technol. Lett. 28(7), 736–739 (2016).
[Crossref]

Zhang, J.

Zhang, M.

L. He, M. Zhang, A. Shams-Ansari, R. Zhu, C. Wang, and L. Marko, “Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits,” Opt. Lett. 44, 2314–2317 (2019).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536 (2017).
[Crossref]

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref]

Zhang, Y.

Zhou, L.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Zhou, Z.-Y.

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref]

Zhu, R.

IEEE Photonics Technol. Lett. (8)

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photonics Technol. Lett. 28(7), 736–739 (2016).
[Crossref]

H. Xu and Y. Shi, “On-chip silicon TE-pass polarizer based on asymmetrical directional couplers,” IEEE Photonics Technol. Lett. 29(11), 861–864 (2017).
[Crossref]

J. M. Heaton and R. M. Jenkins, “General matrix theory of self-imaging in multimode interference (MMI) couplers,” IEEE Photonics Technol. Lett. 11(2), 212–214 (1999).
[Crossref]

D. J. Thomson, Y. Hu, G. T. Reed, and J.-M. Fedeli, “Low loss MMI couplers for high performance MZI modulators,” IEEE Photonics Technol. Lett. 22(20), 1485–1487 (2010).
[Crossref]

H. Xu and Y. Shi, “Flat-top CWDM (de)multiplexer based on MZI with bent directional couplers,” IEEE Photonics Technol. Lett. 30(2), 169–172 (2018).
[Crossref]

H. Xu and Y. Shi, “On-chip silicon triplexer based on asymmetrical directional couplers,” IEEE Photonics Technol. Lett. 29(15), 1265–1268 (2017).
[Crossref]

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical Mach-Zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24(8), 673–675 (2012).
[Crossref]

Y. Jiao, D. Dai, Y. Shi, and S. He, “Shortened polarization beam splitters with two cascaded multimode interference sections,” IEEE Photonics Technol. Lett. 21(20), 1538–1540 (2009).
[Crossref]

J. Lightwave Technol. (2)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

D. Dai, Z. Wang, and J. E. Bowers, “Considerations for the design of asymmetrical Mach-Zehnder interferometers used as polarization beam splitters on a submicrometer silicon-on-insulator platform,” J. Lightwave Technol. 29(12), 1808–1817 (2011).
[Crossref]

J. Opt. Soc. Am. (1)

Laser & Photon. Rev. (1)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser & Photon. Rev. 6(4), 488–503 (2012).
[Crossref]

Laser Photon. Rev. (1)

H. Xu, D. Dai, and Y. Shi, “Ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials,” Laser Photon. Rev. 13(4), 1800349 (2019).
[Crossref]

Nat. Commun. (1)

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref]

Nat. Photonics (3)

D. Pohl, M. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14(1), 24–29 (2020).
[Crossref]

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[Crossref]

Nature (1)

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Opt. Commun. (1)

D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17(3), 332–335 (1976).
[Crossref]

Opt. Express (12)

Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, and Y. Su, “High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations,” Opt. Express 24(6), 6586–6593 (2016).
[Crossref]

H. Wu, Y. Tan, and D. Dai, “Ultra-broadband high-performance polarizing beam splitter on silicon,” Opt. Express 25(6), 6069 (2017).
[Crossref]

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25(6), 6963–6973 (2017).
[Crossref]

H. Xu and Y. Shi, “Ultra-broadband silicon polarization splitter-rotator based on the multi-mode waveguide,” Opt. Express 25(15), 18485–18491 (2017).
[Crossref]

I. Krasnokutska, J.-L. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26(2), 897–904 (2018).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S.-I. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872 (2008).
[Crossref]

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009).
[Crossref]

A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26(11), 14810–14816 (2018).
[Crossref]

H.-P. Chung, C.-H. Lee, K.-H. Huang, S.-L. Yang, K. Wang, A. S. Solntsev, A. A. Sukhorukov, F. Setzpfandt, and Y.-H. Chen, “Broadband on-chip polarization mode splitters in lithium niobate integrated adiabatic couplers,” Opt. Express 27(2), 1632 (2019).
[Crossref]

M. Bahadori, Y. Yang, L. L. Goddard, and S. Gong, “High performance fully etched isotropic microring resonators in thin-film lithium niobate on insulator platform,” Opt. Express 27(15), 22025–22039 (2019).
[Crossref]

A. Pan, C. Hu, C. Zeng, and J. Xia, “Fundamental mode hybridization in a thin film lithium niobate ridge waveguide,” Opt. Express 27(24), 35659–35669 (2019).
[Crossref]

Opt. Lett. (8)

L. He, M. Zhang, A. Shams-Ansari, R. Zhu, C. Wang, and L. Marko, “Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits,” Opt. Lett. 44, 2314–2317 (2019).
[Crossref]

R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Lithium niobate micro-disk resonators of quality factors above 107,” Opt. Lett. 43(17), 4116–4119 (2018).
[Crossref]

C. Li and D. Dai, “Compact polarization beam splitter for silicon photonic integrated circuits with a 340-nm-thick silicon core layer,” Opt. Lett. 42(21), 4243 (2017).
[Crossref]

R. Halir, G. Roelkens, A. Ortega-Moñux, and J. G. Wangüemert-Pérez, “High-performance 90° hybrid based on a silicon-on-insulator multimode interference coupler,” Opt. Lett. 36(2), 178–180 (2011).
[Crossref]

H. Xu, L. Liu, and Y. Shi, “Polarization-insensitive four-channel coarse wavelength-division (de)multiplexer based on Mach–Zehnder interferometers with bent directional couplers and polarization rotators,” Opt. Lett. 43(7), 1483–1486 (2018).
[Crossref]

D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36(13), 2590 (2011).
[Crossref]

X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39(2), 259–262 (2014).
[Crossref]

L. Cai, Y. Wang, and H. Hu, “Low-loss waveguides in a single-crystal lithium niobate thin film,” Opt. Lett. 40(13), 3013 (2015).
[Crossref]

Opt. Mater. Express (1)

Optica (2)

OSA Continuum (1)

Photonics Res. (1)

H. Xu, D. Dai, and Y. Shi, “Anisotropic metamaterial-assisted all-silicon polarizer with 415-nm bandwidth,” Photonics Res. 7(12), 1432 (2019).
[Crossref]

Other (2)

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photon. Rev.8 (2014).

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered Thin Film Lithium Niobate Substrate for High Gain-Bandwidth Electro-optic Modulators,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3O.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) The schematic for the MZI-based PBS with some key parameters labeled. (b) The effective index distribution for the anisotropy-engineered phase shifter (PS). (c) (d) The schematics for the phase shift and light coupling in the MZI-based PBS.
Fig. 2.
Fig. 2. (a) The cross-section of the single-mode LNOI waveguide with some key parameters labeled. The calculated (b) TE0 and (c) TM0 effective indices for the LNOI waveguide with varied waveguide width wwg. (d) The calculated mode profiles for the TE0 and TM0 modes in the optimized LNOI waveguide with different directions. The red arrows show the optical axis orientations. The calculated dispersion curves for the (e) TE0 and (f) TM0 modes.
Fig. 3.
Fig. 3. (a) The schematic for the 1×2 MMI with some key parameters labeled. (b) The calculated MMI length LMMI1 with varied MMI width wMMI1. (c) The calculated excess loss ELMMI1 for the optimized 1×2 MMI. The calculated light propagation profiles for the optimized 1×2 MMI when the (d) TE0 and (e) TM0 modes are launched.
Fig. 4.
Fig. 4. (a) The schematic for the 2×2 MMI with some key parameters labeled. (b) The calculated MMI length LMMI2 with varied MMI width wMMI2. The calculated (c) excess loss ELMMI2 and (d) coupling ratio CR for the optimized 2×2 MMI. The calculated light propagation profiles for the optimized 2×2 MMI when the (e) TE0 and (f) TM0 modes are launched.
Fig. 5.
Fig. 5. The calculated transmittance spectra for the MZI-based PBS when the TE0 and TM0 modes are launched.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

d L e f f = n z d L 1 n y d L 2 ,
[ d L e f f , T E d L e f f , T M ] = [ n z , T E 0 n y , T E 0 n z , T M 0 n y , T M 0 ] [ d L 1 d L 2 ] ,
d L 1 = Δ 1 / Δ 0 ,
d L 2 = Δ 2 / Δ 0 ,
Δ 0 = n z , T E 0 n y , T M 0 n z , T M 0 n y , T E 0 ,
Δ 1 = d L e f f , T E n y , T M 0 d L e f f , T M n y , T E 0 ,
Δ 2 = d L e f f , T E n z , T M 0 d L e f f , T M n z , T E 0 ,
d L 1 = λ ( n y , T M 0 + n y , T E 0 ) 4 Δ 0 ,
d L 2 = λ ( n z , T M 0 + n z , T E 0 ) 4 Δ 0 ,
Δ 0 > 0 ,
L M M I 1 , T E = λ 4 ( n y , T E 0 n y , T E 2 ) ,
L M M I 1 , T M = λ 4 ( n y , T M 0 n y , T M 2 ) ,
E L M M I 1 = 10 log 10 ( T # 2 + T # 3 ) ,
L M M I 2 , T E = λ 4 ( n y , T E 0 n y , T E 1 ) ,
L M M I 2 , T M = λ 4 ( n y , T M 0 n y , T M 1 ) ,
E L M M I 2 = 10 log 10 ( T # 4 + T # 5 ) ,
C R = T # 4 T # 4 + T # 5 ,
P E R T E = 10 log 10 ( T O 1 , T E / T O 2 , T E ) ,
P E R T M = 10 log 10 ( T O 2 , T M / T O 1 , T M ) ,
E L T E = 10 log 10 ( T O 1 , T E ) ,
E L T M = 10 log 10 ( T O 2 , T M ) ,

Metrics