Abstract

Dual-comb spectroscopy using a silicon Mach-Zehnder modulator is reported for the first time. First, the properties of frequency combs generated by silicon modulators are assessed in terms of tunability, coherence, and number of lines. Then, taking advantage of the frequency agility of electro-optical frequency combs, a new technique for fine resolution absorption spectroscopy is proposed, named frequency-tuning dual-comb spectroscopy, which combines dual-comb spectroscopy and frequency spacing tunability to measure optical spectra with detection at a unique RF frequency. As a proof of concept, a 24 GHz optical bandwidth is scanned with a 1 GHz resolution.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband and high-resolution electro-optic dual-comb interferometer with frequency agility

Bingxin Xu, Xinyu Fan, Shuai Wang, and Zuyuan He
Opt. Express 27(6) 9266-9275 (2019)

Power efficient optical frequency comb generation using laser gain switching and dual-drive Mach-Zehnder modulator

Amol Delmade, Marko Krstić, Colm Browning, Jasna Crnjanski, Dejan Gvozdić, and Liam Barry
Opt. Express 27(17) 24135-24146 (2019)

Bandwidth scaling of silicon modulator-based combs using multi-carriers and frequency offset locking

K. P. Nagarjun, Roopa Prakash, B. S. Vikram, Shilpi Arora, Vadivukkarasi Jeyaselvan, Shankar Kumar Selvaraja, and V. R. Supradeepa
OSA Continuum 3(4) 921-928 (2020)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Diddams, D. J. Jones, L. S. Ma, S. T. Cundiff, and J. L. Hall, “Optical frequency measurement across a 104-THz gap with a femtosecond laser frequency comb,” Opt. Lett. 25(3), 186–188 (2000).
    [Crossref]
  2. S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72(10), 3749–3771 (2001).
    [Crossref]
  3. V. Torres-Company, J. Schröder, A. Fülöp, M. Mazur, L. Lundberg, Ó. B. Helgason, M. Karlsson, and P. A. Andrekson, “Laser Frequency Combs for Coherent Optical Communication,” J. Lightwave Technol. 37(7), 1663–1670 (2019).
    [Crossref]
  4. V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8(3), 368–393 (2014).
    [Crossref]
  5. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
    [Crossref]
  6. A. Fülöp, M. Mazur, A. Lorences-Riesgo, T. A. Eriksson, P. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “Long-haul coherent communications using microresonator-based frequency combs,” Opt. Express 25(22), 26678–26688 (2017).
    [Crossref]
  7. P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
    [Crossref]
  8. C. Weimann, P. C. Schindler, R. Palmer, S. Wolf, D. Bekele, D. Korn, J. Pfeifle, S. Koeber, R. Schmogrow, L. Alloatti, D. Elder, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission,” Opt. Express 22(3), 3629–3637 (2014).
    [Crossref]
  9. N. Dupuis, C. R. Doerr, L. Zhang, L. Chen, N. J. Sauer, P. Dong, L. L. Buhl, and D. Ahn, “InP-Based Comb Generator for Optical OFDM,” J. Lightwave Technol. 30(4), 466–472 (2012).
    [Crossref]
  10. J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency Comb Generation using a CMOS Compatible SiP DD-MZM for Flexible Networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018).
    [Crossref]
  11. X. Xiao, M. Li, L. Wang, D. Chen, Q. Yang, and S. Yu, “High speed silicon photonic modulators,” In Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, March 19-23, 2017; IEEE, 2017, pp. 1–3 (2017).
  12. Y. Xu, J. Lin, R. Dubé-Demers, S. LaRochelle, L. Rusch, and W. Shi, “Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators,” Opt. Lett. 43(7), 1554–1557 (2018).
    [Crossref]
  13. B. Ping-Piu Kuo, E. Myslivets, V. Ataie, E. G. Temprana, N. Alic, and S. Radic, “Wideband parametric frequency comb as coherent optical carrier,” J. Lightwave Technol. 31(21), 3414–3419 (2013).
    [Crossref]
  14. J. Qian, S. Tian, and L. Shang, “Investigation on Nyquist pulse generation by optical frequency,” J. Opt. Technol. 83(11), 699–702 (2016).
    [Crossref]
  15. E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13(1), 31–35 (2019).
    [Crossref]
  16. N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13(3), 146–157 (2019).
    [Crossref]
  17. G. Scalari, J. Faist, and N. Picqué, “On-chip mid-infrared and THz frequency combs for spectroscopy,” Appl. Phys. Lett. 114(15), 150401 (2019).
    [Crossref]
  18. I. Coddington, N. R. Newbury, and W. C. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  19. Z. Chen, M. Yan, T. W. Hänsch, and N. Picqué, “A phase-stable dual-comb interferometer,” Nat. Commun. 9(1), 3035 (2018).
    [Crossref]
  20. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [Crossref]
  21. S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8(8), 082402 (2015).
    [Crossref]
  22. N. B. Hébert, J. Genest, J. Deschênes, H. Bergeron, G. Y. Chen, C. Khurmi, and D. G. Lancaster, “Self-corrected chip-based dual-comb spectrometer,” Opt. Express 25(7), 8168–8179 (2017).
    [Crossref]
  23. G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5(1), 5192 (2014).
    [Crossref]
  24. M. Yu, Y. Okawachi, C. Joshi, X. Ji, M. Lipson, and A. L. Gaeta, “Gas-Phase Microresonator-Based Comb Spectroscopy without an External Pump Laser,” ACS Photonics 5(7), 2780–2785 (2018).
    [Crossref]
  25. M. Suh, Q. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
    [Crossref]
  26. A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
    [Crossref]
  27. M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9(1), 1869 (2018).
    [Crossref]
  28. G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
    [Crossref]
  29. A. J. Fleisher, D. A. Long, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne Infrared Spectroscopy with Pitch-agile Optical Frequency Comb Generators,” In Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment, Lake Arrowhead, USA, March 1-4, 2015; OSA Technical Digest, FT2A.2 (2015).
  30. D. A. Long, A. J. Fleisher, K. O. Douglass, D. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39(9), 2688–2690 (2014).
    [Crossref]
  31. A. Shams-Ansari, M. Yu, Z. Chen, C. Reimer, M. Zhang, N. Picqué, and M. Loncar, “Microring Electro-optic Frequency Comb Sources for Dual-Comb Spectroscopy,” In Conference on Lasers and Electro-Optics (CLEO), San Jose, USA, May 5-10, 2019; OSA Technical Digest, JTh5B.8 (2019).
  32. A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13(3), 158–169 (2019).
    [Crossref]
  33. T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
    [Crossref]
  34. T. Tanabe, S. Fujii, and R. Suzuki, “Review on microresonator frequency combs,” Jpn. J. Appl. Phys. 58(SJ), SJ0801 (2019).
    [Crossref]
  35. C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10(1), 978 (2019).
    [Crossref]
  36. N. G. Pavlov, G. Lihachev, S. Koptyaev, E. Lucas, M. Karpov, N. M. Kondratiev, I. A. Bilenko, T. J. Kippenberg, and M. L. Gorodetsky, “Soliton dual frequency combs in crystalline microresonators,” Opt. Lett. 42(3), 514–517 (2017).
    [Crossref]
  37. C. Bao, M. Suh, and K. Vahala, “Microresonator soliton dual-comb imaging,” Optica 6(9), 1110–1116 (2019).
    [Crossref]
  38. N. Yokota and H. Yasaka, “Operation strategy of InP Mach–Zehnder modulators for flat optical frequency comb generation,” IEEE J. Quantum Electron. 52(8), 1–7 (2016).
    [Crossref]
  39. T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Loncar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
    [Crossref]
  40. M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
    [Crossref]
  41. Z. Wang, M. Ma, H. Sun, M. Khalil, R. Adams, K. Yim, X. Jin, and L. R. Chen, “Optical frequency comb generation using CMOS compatible cascaded Mach–Zehnder modulators,” IEEE J. Quantum Electron. 55(6), 1–6 (2019).
    [Crossref]
  42. I. Demirtzioglou, C. Lacava, K. R. H. Bottrill, D. J. Thomson, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Frequency comb generation in a silicon ring resonator modulator,” Opt. Express 26(2), 790–796 (2018).
    [Crossref]
  43. K. P. Nagarjun, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, “Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators,” Opt. Express 26(8), 10744–10753 (2018).
    [Crossref]
  44. X Wu and H. K. Tsang, “Flat-top Frequency Comb Generation with Silicon Microring Modulator and Filter,” In Conference on Lasers and Electro-Optics (CLEO), San Jose, USA, May 14-19, 2017; OSA Technical Digest, SM4O.6 (2017).
  45. C. Weimann, M. Lauermann, F. Hoeller, W. Freude, and C. Koos, “Silicon photonic integrated circuit for fast and precise dual-comb distance metrology,” Opt. Express 25(24), 30091–30104 (2017).
    [Crossref]
  46. E. L. Teleanu, V. Durán, and V. Torres-Company, “Electro-optic dual-comb interferometer for high-speed vibrometry,” Opt. Express 25(14), 16427–16436 (2017).
    [Crossref]
  47. E. L. Teleanu, S. Tainta, and V. Torres-Company, “Ultrafast electrooptic dual-comb interferometry,” Opt. Express 23(23), 30557–30569 (2015).
    [Crossref]
  48. T. Sakamoto, T. Kawanishi, and M. Tsuchiya, “10 GHz, 24 ps pulse generation using a single-stage dual-drive Mach-Zehnder modulator,” Opt. Lett. 33(8), 890–892 (2008).
    [Crossref]
  49. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35(19), 3234–3236 (2010).
    [Crossref]
  50. A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-Power Broadly Tunable Electrooptic Frequency Comb Generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231–236 (2013).
    [Crossref]
  51. H. Kim, A. J. Metcalf, O. E. Sandoval, D. E. Leaird, and A. M. Weiner, “Broadband and ultra-flat optical comb generation using an EO comb source and a programmable pulse shaper,” In Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications, San Jose, USA, June 8-13, 2014; IEEE, pp. 1–2 (2014).
  52. K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4(4), 406–411 (2017).
    [Crossref]
  53. P. Martín-Mateos, B. Jerez, P. Largo-Izquierdo, and P. Acedo, “Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time,” Opt. Express 26(8), 9700–9713 (2018).
    [Crossref]
  54. Z. Zhu and G. Wu, “Dual-Comb Ranging,” Engineering 4(6), 772–778 (2018).
    [Crossref]
  55. M. Gianella, A. Nataraj, B. Tuzson, P. Jouy, F. Kapsalidis, M. Beck, M. Mangold, A. Hugi, J. Faist, and L. Emmenegger, “High-resolution and gapless dual comb spectroscopy with current-tuned quantum cascade lasers,” Opt. Express 28(5), 6197–6208 (2020).
    [Crossref]
  56. W. Shi, Y. Xu, H. Sepehrian, S. LaRochelle, and L. A. Rusch, “Silicon photonic modulators for PAM transmissions,” J. Opt. 20(8), 083002 (2018).
    [Crossref]
  57. C. Baudot, A. Fincato, D. Fowler, D. Perez-Galacho, A. Souhaité, S. Messaoudène, R. Blanc, C. Richard, J. Planchot, C. De-Buttet, B. Orlando, F. Gays, C. Mezzomo, B. Bernard, D. Marris-Morini, L. Vivien, C. Kopp, and F. Boeuf, “Daphne silicon photonics technological platform for research and development on WDM applications,” Proc. SPIE 9891, 98911D (2016).
    [Crossref]
  58. V. Torres-Company, J. Lancis, and P. Andrés, “Lossless equalization of frequency combs,” Opt. Lett. 33(16), 1822–1824 (2008).
    [Crossref]

2020 (1)

2019 (11)

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Loncar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Z. Wang, M. Ma, H. Sun, M. Khalil, R. Adams, K. Yim, X. Jin, and L. R. Chen, “Optical frequency comb generation using CMOS compatible cascaded Mach–Zehnder modulators,” IEEE J. Quantum Electron. 55(6), 1–6 (2019).
[Crossref]

V. Torres-Company, J. Schröder, A. Fülöp, M. Mazur, L. Lundberg, Ó. B. Helgason, M. Karlsson, and P. A. Andrekson, “Laser Frequency Combs for Coherent Optical Communication,” J. Lightwave Technol. 37(7), 1663–1670 (2019).
[Crossref]

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13(1), 31–35 (2019).
[Crossref]

N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13(3), 146–157 (2019).
[Crossref]

G. Scalari, J. Faist, and N. Picqué, “On-chip mid-infrared and THz frequency combs for spectroscopy,” Appl. Phys. Lett. 114(15), 150401 (2019).
[Crossref]

A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13(3), 158–169 (2019).
[Crossref]

T. Tanabe, S. Fujii, and R. Suzuki, “Review on microresonator frequency combs,” Jpn. J. Appl. Phys. 58(SJ), SJ0801 (2019).
[Crossref]

C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10(1), 978 (2019).
[Crossref]

C. Bao, M. Suh, and K. Vahala, “Microresonator soliton dual-comb imaging,” Optica 6(9), 1110–1116 (2019).
[Crossref]

2018 (12)

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

M. Yu, Y. Okawachi, C. Joshi, X. Ji, M. Lipson, and A. L. Gaeta, “Gas-Phase Microresonator-Based Comb Spectroscopy without an External Pump Laser,” ACS Photonics 5(7), 2780–2785 (2018).
[Crossref]

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9(1), 1869 (2018).
[Crossref]

J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency Comb Generation using a CMOS Compatible SiP DD-MZM for Flexible Networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018).
[Crossref]

Y. Xu, J. Lin, R. Dubé-Demers, S. LaRochelle, L. Rusch, and W. Shi, “Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators,” Opt. Lett. 43(7), 1554–1557 (2018).
[Crossref]

Z. Chen, M. Yan, T. W. Hänsch, and N. Picqué, “A phase-stable dual-comb interferometer,” Nat. Commun. 9(1), 3035 (2018).
[Crossref]

I. Demirtzioglou, C. Lacava, K. R. H. Bottrill, D. J. Thomson, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Frequency comb generation in a silicon ring resonator modulator,” Opt. Express 26(2), 790–796 (2018).
[Crossref]

K. P. Nagarjun, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, “Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators,” Opt. Express 26(8), 10744–10753 (2018).
[Crossref]

W. Shi, Y. Xu, H. Sepehrian, S. LaRochelle, and L. A. Rusch, “Silicon photonic modulators for PAM transmissions,” J. Opt. 20(8), 083002 (2018).
[Crossref]

P. Martín-Mateos, B. Jerez, P. Largo-Izquierdo, and P. Acedo, “Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time,” Opt. Express 26(8), 9700–9713 (2018).
[Crossref]

Z. Zhu and G. Wu, “Dual-Comb Ranging,” Engineering 4(6), 772–778 (2018).
[Crossref]

2017 (7)

C. Weimann, M. Lauermann, F. Hoeller, W. Freude, and C. Koos, “Silicon photonic integrated circuit for fast and precise dual-comb distance metrology,” Opt. Express 25(24), 30091–30104 (2017).
[Crossref]

E. L. Teleanu, V. Durán, and V. Torres-Company, “Electro-optic dual-comb interferometer for high-speed vibrometry,” Opt. Express 25(14), 16427–16436 (2017).
[Crossref]

K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4(4), 406–411 (2017).
[Crossref]

A. Fülöp, M. Mazur, A. Lorences-Riesgo, T. A. Eriksson, P. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “Long-haul coherent communications using microresonator-based frequency combs,” Opt. Express 25(22), 26678–26688 (2017).
[Crossref]

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

N. B. Hébert, J. Genest, J. Deschênes, H. Bergeron, G. Y. Chen, C. Khurmi, and D. G. Lancaster, “Self-corrected chip-based dual-comb spectrometer,” Opt. Express 25(7), 8168–8179 (2017).
[Crossref]

N. G. Pavlov, G. Lihachev, S. Koptyaev, E. Lucas, M. Karpov, N. M. Kondratiev, I. A. Bilenko, T. J. Kippenberg, and M. L. Gorodetsky, “Soliton dual frequency combs in crystalline microresonators,” Opt. Lett. 42(3), 514–517 (2017).
[Crossref]

2016 (6)

N. Yokota and H. Yasaka, “Operation strategy of InP Mach–Zehnder modulators for flat optical frequency comb generation,” IEEE J. Quantum Electron. 52(8), 1–7 (2016).
[Crossref]

M. Suh, Q. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref]

J. Qian, S. Tian, and L. Shang, “Investigation on Nyquist pulse generation by optical frequency,” J. Opt. Technol. 83(11), 699–702 (2016).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

I. Coddington, N. R. Newbury, and W. C. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

C. Baudot, A. Fincato, D. Fowler, D. Perez-Galacho, A. Souhaité, S. Messaoudène, R. Blanc, C. Richard, J. Planchot, C. De-Buttet, B. Orlando, F. Gays, C. Mezzomo, B. Bernard, D. Marris-Morini, L. Vivien, C. Kopp, and F. Boeuf, “Daphne silicon photonics technological platform for research and development on WDM applications,” Proc. SPIE 9891, 98911D (2016).
[Crossref]

2015 (2)

E. L. Teleanu, S. Tainta, and V. Torres-Company, “Ultrafast electrooptic dual-comb interferometry,” Opt. Express 23(23), 30557–30569 (2015).
[Crossref]

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

2014 (4)

2013 (2)

B. Ping-Piu Kuo, E. Myslivets, V. Ataie, E. G. Temprana, N. Alic, and S. Radic, “Wideband parametric frequency comb as coherent optical carrier,” J. Lightwave Technol. 31(21), 3414–3419 (2013).
[Crossref]

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-Power Broadly Tunable Electrooptic Frequency Comb Generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231–236 (2013).
[Crossref]

2012 (1)

2010 (2)

2008 (3)

2001 (1)

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72(10), 3749–3771 (2001).
[Crossref]

2000 (1)

Acedo, P.

Adams, R.

Z. Wang, M. Ma, H. Sun, M. Khalil, R. Adams, K. Yim, X. Jin, and L. R. Chen, “Optical frequency comb generation using CMOS compatible cascaded Mach–Zehnder modulators,” IEEE J. Quantum Electron. 55(6), 1–6 (2019).
[Crossref]

Ahn, D.

Alic, N.

Alloatti, L.

Anderson, M. H.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13(1), 31–35 (2019).
[Crossref]

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Andrekson, P. A.

Andrés, P.

Ataie, V.

Bao, C.

Baudot, C.

C. Baudot, A. Fincato, D. Fowler, D. Perez-Galacho, A. Souhaité, S. Messaoudène, R. Blanc, C. Richard, J. Planchot, C. De-Buttet, B. Orlando, F. Gays, C. Mezzomo, B. Bernard, D. Marris-Morini, L. Vivien, C. Kopp, and F. Boeuf, “Daphne silicon photonics technological platform for research and development on WDM applications,” Proc. SPIE 9891, 98911D (2016).
[Crossref]

Beck, M.

Beha, K.

Bekele, D.

Bendahmane, A.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Bergeron, H.

Bernard, B.

C. Baudot, A. Fincato, D. Fowler, D. Perez-Galacho, A. Souhaité, S. Messaoudène, R. Blanc, C. Richard, J. Planchot, C. De-Buttet, B. Orlando, F. Gays, C. Mezzomo, B. Bernard, D. Marris-Morini, L. Vivien, C. Kopp, and F. Boeuf, “Daphne silicon photonics technological platform for research and development on WDM applications,” Proc. SPIE 9891, 98911D (2016).
[Crossref]

Bielska, K.

Bilenko, I. A.

Blanc, R.

C. Baudot, A. Fincato, D. Fowler, D. Perez-Galacho, A. Souhaité, S. Messaoudène, R. Blanc, C. Richard, J. Planchot, C. De-Buttet, B. Orlando, F. Gays, C. Mezzomo, B. Bernard, D. Marris-Morini, L. Vivien, C. Kopp, and F. Boeuf, “Daphne silicon photonics technological platform for research and development on WDM applications,” Proc. SPIE 9891, 98911D (2016).
[Crossref]

Blaser, S.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5(1), 5192 (2014).
[Crossref]

Boeuf, F.

C. Baudot, A. Fincato, D. Fowler, D. Perez-Galacho, A. Souhaité, S. Messaoudène, R. Blanc, C. Richard, J. Planchot, C. De-Buttet, B. Orlando, F. Gays, C. Mezzomo, B. Bernard, D. Marris-Morini, L. Vivien, C. Kopp, and F. Boeuf, “Daphne silicon photonics technological platform for research and development on WDM applications,” Proc. SPIE 9891, 98911D (2016).
[Crossref]

Bogaerts, W.

Bottrill, K. R. H.

Bouchy, F.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13(1), 31–35 (2019).
[Crossref]

Brasch, V.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Buhl, L. L.

Buscaino, B.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Cardenas, J.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

Cecconi, M.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13(1), 31–35 (2019).
[Crossref]

Chazelas, B.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13(1), 31–35 (2019).
[Crossref]

Chen, D.

X. Xiao, M. Li, L. Wang, D. Chen, Q. Yang, and S. Yu, “High speed silicon photonic modulators,” In Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, March 19-23, 2017; IEEE, 2017, pp. 1–3 (2017).

Chen, G. Y.

Chen, L.

Chen, L. R.

Z. Wang, M. Ma, H. Sun, M. Khalil, R. Adams, K. Yim, X. Jin, and L. R. Chen, “Optical frequency comb generation using CMOS compatible cascaded Mach–Zehnder modulators,” IEEE J. Quantum Electron. 55(6), 1–6 (2019).
[Crossref]

Chen, Z.

Z. Chen, M. Yan, T. W. Hänsch, and N. Picqué, “A phase-stable dual-comb interferometer,” Nat. Commun. 9(1), 3035 (2018).
[Crossref]

A. Shams-Ansari, M. Yu, Z. Chen, C. Reimer, M. Zhang, N. Picqué, and M. Loncar, “Microring Electro-optic Frequency Comb Sources for Dual-Comb Spectroscopy,” In Conference on Lasers and Electro-Optics (CLEO), San Jose, USA, May 5-10, 2019; OSA Technical Digest, JTh5B.8 (2019).

Coddington, I.

I. Coddington, N. R. Newbury, and W. C. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref]

Coillet, A.

Cole, D. C.

Cullen, T.

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Loncar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
[Crossref]

Cundiff, S. T.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[Crossref]

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72(10), 3749–3771 (2001).
[Crossref]

S. A. Diddams, D. J. Jones, L. S. Ma, S. T. Cundiff, and J. L. Hall, “Optical frequency measurement across a 104-THz gap with a femtosecond laser frequency comb,” Opt. Lett. 25(3), 186–188 (2000).
[Crossref]

Dalton, L. R.

De-Buttet, C.

C. Baudot, A. Fincato, D. Fowler, D. Perez-Galacho, A. Souhaité, S. Messaoudène, R. Blanc, C. Richard, J. Planchot, C. De-Buttet, B. Orlando, F. Gays, C. Mezzomo, B. Bernard, D. Marris-Morini, L. Vivien, C. Kopp, and F. Boeuf, “Daphne silicon photonics technological platform for research and development on WDM applications,” Proc. SPIE 9891, 98911D (2016).
[Crossref]

Del’Haye, P.

Demirtzioglou, I.

Deschênes, J.

Diddams, S. A.

Doerr, C. R.

Dong, P.

Douglass, K. O.

Dubé-Demers, R.

Dupuis, N.

Durán, V.

Dutt, A.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

Elder, D.

Emmenegger, L.

Eriksson, T. A.

Esman, R.

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Loncar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
[Crossref]

Faist, J.

M. Gianella, A. Nataraj, B. Tuzson, P. Jouy, F. Kapsalidis, M. Beck, M. Mangold, A. Hugi, J. Faist, and L. Emmenegger, “High-resolution and gapless dual comb spectroscopy with current-tuned quantum cascade lasers,” Opt. Express 28(5), 6197–6208 (2020).
[Crossref]

G. Scalari, J. Faist, and N. Picqué, “On-chip mid-infrared and THz frequency combs for spectroscopy,” Appl. Phys. Lett. 114(15), 150401 (2019).
[Crossref]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5(1), 5192 (2014).
[Crossref]

Fincato, A.

C. Baudot, A. Fincato, D. Fowler, D. Perez-Galacho, A. Souhaité, S. Messaoudène, R. Blanc, C. Richard, J. Planchot, C. De-Buttet, B. Orlando, F. Gays, C. Mezzomo, B. Bernard, D. Marris-Morini, L. Vivien, C. Kopp, and F. Boeuf, “Daphne silicon photonics technological platform for research and development on WDM applications,” Proc. SPIE 9891, 98911D (2016).
[Crossref]

Fleisher, A. J.

D. A. Long, A. J. Fleisher, K. O. Douglass, D. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39(9), 2688–2690 (2014).
[Crossref]

A. J. Fleisher, D. A. Long, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne Infrared Spectroscopy with Pitch-agile Optical Frequency Comb Generators,” In Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment, Lake Arrowhead, USA, March 1-4, 2015; OSA Technical Digest, FT2A.2 (2015).

Fowler, D.

C. Baudot, A. Fincato, D. Fowler, D. Perez-Galacho, A. Souhaité, S. Messaoudène, R. Blanc, C. Richard, J. Planchot, C. De-Buttet, B. Orlando, F. Gays, C. Mezzomo, B. Bernard, D. Marris-Morini, L. Vivien, C. Kopp, and F. Boeuf, “Daphne silicon photonics technological platform for research and development on WDM applications,” Proc. SPIE 9891, 98911D (2016).
[Crossref]

Freude, W.

Fujii, S.

T. Tanabe, S. Fujii, and R. Suzuki, “Review on microresonator frequency combs,” Jpn. J. Appl. Phys. 58(SJ), SJ0801 (2019).
[Crossref]

Fülöp, A.

Gaeta, A. L.

A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13(3), 158–169 (2019).
[Crossref]

M. Yu, Y. Okawachi, C. Joshi, X. Ji, M. Lipson, and A. L. Gaeta, “Gas-Phase Microresonator-Based Comb Spectroscopy without an External Pump Laser,” ACS Photonics 5(7), 2780–2785 (2018).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9(1), 1869 (2018).
[Crossref]

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

Gays, F.

C. Baudot, A. Fincato, D. Fowler, D. Perez-Galacho, A. Souhaité, S. Messaoudène, R. Blanc, C. Richard, J. Planchot, C. De-Buttet, B. Orlando, F. Gays, C. Mezzomo, B. Bernard, D. Marris-Morini, L. Vivien, C. Kopp, and F. Boeuf, “Daphne silicon photonics technological platform for research and development on WDM applications,” Proc. SPIE 9891, 98911D (2016).
[Crossref]

Geiselmann, M.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13(1), 31–35 (2019).
[Crossref]

Genest, J.

Ghedina, A.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13(1), 31–35 (2019).
[Crossref]

Gianella, M.

Gorodetsky, M. L.

Griffith, A. G.

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9(1), 1869 (2018).
[Crossref]

Hall, J. L.

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72(10), 3749–3771 (2001).
[Crossref]

S. A. Diddams, D. J. Jones, L. S. Ma, S. T. Cundiff, and J. L. Hall, “Optical frequency measurement across a 104-THz gap with a femtosecond laser frequency comb,” Opt. Lett. 25(3), 186–188 (2000).
[Crossref]

Hänsch, T. W.

N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13(3), 146–157 (2019).
[Crossref]

Z. Chen, M. Yan, T. W. Hänsch, and N. Picqué, “A phase-stable dual-comb interferometer,” Nat. Commun. 9(1), 3035 (2018).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Harutyunyan, A.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13(1), 31–35 (2019).
[Crossref]

Hébert, N. B.

Helgason, Ó. B.

Herr, T.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13(1), 31–35 (2019).
[Crossref]

Hodges, J. T.

D. A. Long, A. J. Fleisher, K. O. Douglass, D. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39(9), 2688–2690 (2014).
[Crossref]

A. J. Fleisher, D. A. Long, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne Infrared Spectroscopy with Pitch-agile Optical Frequency Comb Generators,” In Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment, Lake Arrowhead, USA, March 1-4, 2015; OSA Technical Digest, FT2A.2 (2015).

Hoeller, F.

Hong, F.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Hosaka, K.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Hovhannisyan, T.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Hu, H.

C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10(1), 978 (2019).
[Crossref]

Hugi, A.

Inaba, H.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Iwakuni, K.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Jerez, B.

Jeyaselvan, V.

Ji, X.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

M. Yu, Y. Okawachi, C. Joshi, X. Ji, M. Lipson, and A. L. Gaeta, “Gas-Phase Microresonator-Based Comb Spectroscopy without an External Pump Laser,” ACS Photonics 5(7), 2780–2785 (2018).
[Crossref]

Jin, X.

Z. Wang, M. Ma, H. Sun, M. Khalil, R. Adams, K. Yim, X. Jin, and L. R. Chen, “Optical frequency comb generation using CMOS compatible cascaded Mach–Zehnder modulators,” IEEE J. Quantum Electron. 55(6), 1–6 (2019).
[Crossref]

Jones, D. J.

Joshi, C.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

M. Yu, Y. Okawachi, C. Joshi, X. Ji, M. Lipson, and A. L. Gaeta, “Gas-Phase Microresonator-Based Comb Spectroscopy without an External Pump Laser,” ACS Photonics 5(7), 2780–2785 (2018).
[Crossref]

Jouy, P.

Kahn, J. M.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Kapsalidis, F.

Karlsson, M.

Karpov, M.

N. G. Pavlov, G. Lihachev, S. Koptyaev, E. Lucas, M. Karpov, N. M. Kondratiev, I. A. Bilenko, T. J. Kippenberg, and M. L. Gorodetsky, “Soliton dual frequency combs in crystalline microresonators,” Opt. Lett. 42(3), 514–517 (2017).
[Crossref]

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Kawanishi, T.

Kemal, J. N.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Khalil, M.

Z. Wang, M. Ma, H. Sun, M. Khalil, R. Adams, K. Yim, X. Jin, and L. R. Chen, “Optical frequency comb generation using CMOS compatible cascaded Mach–Zehnder modulators,” IEEE J. Quantum Electron. 55(6), 1–6 (2019).
[Crossref]

Khurmi, C.

Kim, H.

H. Kim, A. J. Metcalf, O. E. Sandoval, D. E. Leaird, and A. M. Weiner, “Broadband and ultra-flat optical comb generation using an EO comb source and a programmable pulse shaper,” In Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications, San Jose, USA, June 8-13, 2014; IEEE, pp. 1–2 (2014).

King, O.

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Loncar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
[Crossref]

Kippenberg, T. J.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13(1), 31–35 (2019).
[Crossref]

A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13(3), 158–169 (2019).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

N. G. Pavlov, G. Lihachev, S. Koptyaev, E. Lucas, M. Karpov, N. M. Kondratiev, I. A. Bilenko, T. J. Kippenberg, and M. L. Gorodetsky, “Soliton dual frequency combs in crystalline microresonators,” Opt. Lett. 42(3), 514–517 (2017).
[Crossref]

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Koeber, S.

Kondratiev, N. M.

Koos, C.

Kopp, C.

C. Baudot, A. Fincato, D. Fowler, D. Perez-Galacho, A. Souhaité, S. Messaoudène, R. Blanc, C. Richard, J. Planchot, C. De-Buttet, B. Orlando, F. Gays, C. Mezzomo, B. Bernard, D. Marris-Morini, L. Vivien, C. Kopp, and F. Boeuf, “Daphne silicon photonics technological platform for research and development on WDM applications,” Proc. SPIE 9891, 98911D (2016).
[Crossref]

Koptyaev, S.

Kordts, A.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Korn, D.

Kundermann, S.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13(1), 31–35 (2019).
[Crossref]

Lacava, C.

Lancaster, D. G.

Lancis, J.

Largo-Izquierdo, P.

LaRochelle, S.

Lauermann, M.

Leaird, D. E.

A. Fülöp, M. Mazur, A. Lorences-Riesgo, T. A. Eriksson, P. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “Long-haul coherent communications using microresonator-based frequency combs,” Opt. Express 25(22), 26678–26688 (2017).
[Crossref]

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-Power Broadly Tunable Electrooptic Frequency Comb Generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231–236 (2013).
[Crossref]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35(19), 3234–3236 (2010).
[Crossref]

H. Kim, A. J. Metcalf, O. E. Sandoval, D. E. Leaird, and A. M. Weiner, “Broadband and ultra-flat optical comb generation using an EO comb source and a programmable pulse shaper,” In Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications, San Jose, USA, June 8-13, 2014; IEEE, pp. 1–2 (2014).

Lecomte, S.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13(1), 31–35 (2019).
[Crossref]

Leuthold, J.

Li, M.

X. Xiao, M. Li, L. Wang, D. Chen, Q. Yang, and S. Yu, “High speed silicon photonic modulators,” In Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, March 19-23, 2017; IEEE, 2017, pp. 1–3 (2017).

Lihachev, G.

Lin, J.

Y. Xu, J. Lin, R. Dubé-Demers, S. LaRochelle, L. Rusch, and W. Shi, “Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators,” Opt. Lett. 43(7), 1554–1557 (2018).
[Crossref]

J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency Comb Generation using a CMOS Compatible SiP DD-MZM for Flexible Networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018).
[Crossref]

Lipson, M.

A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13(3), 158–169 (2019).
[Crossref]

M. Yu, Y. Okawachi, C. Joshi, X. Ji, M. Lipson, and A. L. Gaeta, “Gas-Phase Microresonator-Based Comb Spectroscopy without an External Pump Laser,” ACS Photonics 5(7), 2780–2785 (2018).
[Crossref]

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9(1), 1869 (2018).
[Crossref]

Liu, J.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13(1), 31–35 (2019).
[Crossref]

Loncar, M.

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Loncar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10(1), 978 (2019).
[Crossref]

A. Shams-Ansari, M. Yu, Z. Chen, C. Reimer, M. Zhang, N. Picqué, and M. Loncar, “Microring Electro-optic Frequency Comb Sources for Dual-Comb Spectroscopy,” In Conference on Lasers and Electro-Optics (CLEO), San Jose, USA, May 5-10, 2019; OSA Technical Digest, JTh5B.8 (2019).

Long, C. M.

Long, D. A.

D. A. Long, A. J. Fleisher, K. O. Douglass, D. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39(9), 2688–2690 (2014).
[Crossref]

A. J. Fleisher, D. A. Long, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne Infrared Spectroscopy with Pitch-agile Optical Frequency Comb Generators,” In Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment, Lake Arrowhead, USA, March 1-4, 2015; OSA Technical Digest, FT2A.2 (2015).

Lorences-Riesgo, A.

Lucas, E.

Luke, K.

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

Lundberg, L.

Ma, L. S.

Ma, M.

Z. Wang, M. Ma, H. Sun, M. Khalil, R. Adams, K. Yim, X. Jin, and L. R. Chen, “Optical frequency comb generation using CMOS compatible cascaded Mach–Zehnder modulators,” IEEE J. Quantum Electron. 55(6), 1–6 (2019).
[Crossref]

Mangold, M.

Marin-Palomo, P.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Marris-Morini, D.

C. Baudot, A. Fincato, D. Fowler, D. Perez-Galacho, A. Souhaité, S. Messaoudène, R. Blanc, C. Richard, J. Planchot, C. De-Buttet, B. Orlando, F. Gays, C. Mezzomo, B. Bernard, D. Marris-Morini, L. Vivien, C. Kopp, and F. Boeuf, “Daphne silicon photonics technological platform for research and development on WDM applications,” Proc. SPIE 9891, 98911D (2016).
[Crossref]

Martín-Mateos, P.

Maxwell, D. E.

Mazur, M.

Messaoudène, S.

C. Baudot, A. Fincato, D. Fowler, D. Perez-Galacho, A. Souhaité, S. Messaoudène, R. Blanc, C. Richard, J. Planchot, C. De-Buttet, B. Orlando, F. Gays, C. Mezzomo, B. Bernard, D. Marris-Morini, L. Vivien, C. Kopp, and F. Boeuf, “Daphne silicon photonics technological platform for research and development on WDM applications,” Proc. SPIE 9891, 98911D (2016).
[Crossref]

Metcalf, A. J.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-Power Broadly Tunable Electrooptic Frequency Comb Generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231–236 (2013).
[Crossref]

H. Kim, A. J. Metcalf, O. E. Sandoval, D. E. Leaird, and A. M. Weiner, “Broadband and ultra-flat optical comb generation using an EO comb source and a programmable pulse shaper,” In Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications, San Jose, USA, June 8-13, 2014; IEEE, pp. 1–2 (2014).

Mezzomo, C.

C. Baudot, A. Fincato, D. Fowler, D. Perez-Galacho, A. Souhaité, S. Messaoudène, R. Blanc, C. Richard, J. Planchot, C. De-Buttet, B. Orlando, F. Gays, C. Mezzomo, B. Bernard, D. Marris-Morini, L. Vivien, C. Kopp, and F. Boeuf, “Daphne silicon photonics technological platform for research and development on WDM applications,” Proc. SPIE 9891, 98911D (2016).
[Crossref]

Millot, G.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Molinari, E.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13(1), 31–35 (2019).
[Crossref]

Myslivets, E.

Nagarjun, K. P.

Nataraj, A.

Newbury, N. R.

I. Coddington, N. R. Newbury, and W. C. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref]

Obrzud, E.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13(1), 31–35 (2019).
[Crossref]

Okawachi, Y.

M. Yu, Y. Okawachi, C. Joshi, X. Ji, M. Lipson, and A. L. Gaeta, “Gas-Phase Microresonator-Based Comb Spectroscopy without an External Pump Laser,” ACS Photonics 5(7), 2780–2785 (2018).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9(1), 1869 (2018).
[Crossref]

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

Okubo, S.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Onae, A.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Orlando, B.

C. Baudot, A. Fincato, D. Fowler, D. Perez-Galacho, A. Souhaité, S. Messaoudène, R. Blanc, C. Richard, J. Planchot, C. De-Buttet, B. Orlando, F. Gays, C. Mezzomo, B. Bernard, D. Marris-Morini, L. Vivien, C. Kopp, and F. Boeuf, “Daphne silicon photonics technological platform for research and development on WDM applications,” Proc. SPIE 9891, 98911D (2016).
[Crossref]

Palmer, R.

Papp, S. B.

Pavlov, N. G.

Pepe, F.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13(1), 31–35 (2019).
[Crossref]

Perez-Galacho, D.

C. Baudot, A. Fincato, D. Fowler, D. Perez-Galacho, A. Souhaité, S. Messaoudène, R. Blanc, C. Richard, J. Planchot, C. De-Buttet, B. Orlando, F. Gays, C. Mezzomo, B. Bernard, D. Marris-Morini, L. Vivien, C. Kopp, and F. Boeuf, “Daphne silicon photonics technological platform for research and development on WDM applications,” Proc. SPIE 9891, 98911D (2016).
[Crossref]

Petropoulos, P.

Pfeiffer, M. H. P.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Pfeifle, J.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

C. Weimann, P. C. Schindler, R. Palmer, S. Wolf, D. Bekele, D. Korn, J. Pfeifle, S. Koeber, R. Schmogrow, L. Alloatti, D. Elder, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission,” Opt. Express 22(3), 3629–3637 (2014).
[Crossref]

Picqué, N.

N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13(3), 146–157 (2019).
[Crossref]

G. Scalari, J. Faist, and N. Picqué, “On-chip mid-infrared and THz frequency combs for spectroscopy,” Appl. Phys. Lett. 114(15), 150401 (2019).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9(1), 1869 (2018).
[Crossref]

Z. Chen, M. Yan, T. W. Hänsch, and N. Picqué, “A phase-stable dual-comb interferometer,” Nat. Commun. 9(1), 3035 (2018).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

A. Shams-Ansari, M. Yu, Z. Chen, C. Reimer, M. Zhang, N. Picqué, and M. Loncar, “Microring Electro-optic Frequency Comb Sources for Dual-Comb Spectroscopy,” In Conference on Lasers and Electro-Optics (CLEO), San Jose, USA, May 5-10, 2019; OSA Technical Digest, JTh5B.8 (2019).

Ping-Piu Kuo, B.

Pitois, S.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Planchot, J.

C. Baudot, A. Fincato, D. Fowler, D. Perez-Galacho, A. Souhaité, S. Messaoudène, R. Blanc, C. Richard, J. Planchot, C. De-Buttet, B. Orlando, F. Gays, C. Mezzomo, B. Bernard, D. Marris-Morini, L. Vivien, C. Kopp, and F. Boeuf, “Daphne silicon photonics technological platform for research and development on WDM applications,” Proc. SPIE 9891, 98911D (2016).
[Crossref]

Plusquellic, D. F.

D. A. Long, A. J. Fleisher, K. O. Douglass, D. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39(9), 2688–2690 (2014).
[Crossref]

A. J. Fleisher, D. A. Long, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne Infrared Spectroscopy with Pitch-agile Optical Frequency Comb Generators,” In Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment, Lake Arrowhead, USA, March 1-4, 2015; OSA Technical Digest, FT2A.2 (2015).

Qi, M.

Qian, J.

Radic, S.

Rainer, M.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13(1), 31–35 (2019).
[Crossref]

Reed, G. T.

Reimer, C.

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Loncar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

A. Shams-Ansari, M. Yu, Z. Chen, C. Reimer, M. Zhang, N. Picqué, and M. Loncar, “Microring Electro-optic Frequency Comb Sources for Dual-Comb Spectroscopy,” In Conference on Lasers and Electro-Optics (CLEO), San Jose, USA, May 5-10, 2019; OSA Technical Digest, JTh5B.8 (2019).

Ren, T.

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Loncar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
[Crossref]

Richard, C.

C. Baudot, A. Fincato, D. Fowler, D. Perez-Galacho, A. Souhaité, S. Messaoudène, R. Blanc, C. Richard, J. Planchot, C. De-Buttet, B. Orlando, F. Gays, C. Mezzomo, B. Bernard, D. Marris-Morini, L. Vivien, C. Kopp, and F. Boeuf, “Daphne silicon photonics technological platform for research and development on WDM applications,” Proc. SPIE 9891, 98911D (2016).
[Crossref]

Richardson, D. J.

Rosenberger, R.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Rusch, L.

Rusch, L. A.

J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency Comb Generation using a CMOS Compatible SiP DD-MZM for Flexible Networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018).
[Crossref]

W. Shi, Y. Xu, H. Sepehrian, S. LaRochelle, and L. A. Rusch, “Silicon photonic modulators for PAM transmissions,” J. Opt. 20(8), 083002 (2018).
[Crossref]

Sakamoto, T.

Sandoval, O. E.

H. Kim, A. J. Metcalf, O. E. Sandoval, D. E. Leaird, and A. M. Weiner, “Broadband and ultra-flat optical comb generation using an EO comb source and a programmable pulse shaper,” In Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications, San Jose, USA, June 8-13, 2014; IEEE, pp. 1–2 (2014).

Sasada, H.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Sauer, N. J.

Scalari, G.

G. Scalari, J. Faist, and N. Picqué, “On-chip mid-infrared and THz frequency combs for spectroscopy,” Appl. Phys. Lett. 114(15), 150401 (2019).
[Crossref]

Schindler, P. C.

Schmogrow, R.

Schröder, J.

Selvaraja, S. K.

Sepehrian, H.

J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency Comb Generation using a CMOS Compatible SiP DD-MZM for Flexible Networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018).
[Crossref]

W. Shi, Y. Xu, H. Sepehrian, S. LaRochelle, and L. A. Rusch, “Silicon photonic modulators for PAM transmissions,” J. Opt. 20(8), 083002 (2018).
[Crossref]

Shams-Ansari, A.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

A. Shams-Ansari, M. Yu, Z. Chen, C. Reimer, M. Zhang, N. Picqué, and M. Loncar, “Microring Electro-optic Frequency Comb Sources for Dual-Comb Spectroscopy,” In Conference on Lasers and Electro-Optics (CLEO), San Jose, USA, May 5-10, 2019; OSA Technical Digest, JTh5B.8 (2019).

Shang, L.

Shao, L.

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Loncar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
[Crossref]

Shi, W.

W. Shi, Y. Xu, H. Sepehrian, S. LaRochelle, and L. A. Rusch, “Silicon photonic modulators for PAM transmissions,” J. Opt. 20(8), 083002 (2018).
[Crossref]

J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency Comb Generation using a CMOS Compatible SiP DD-MZM for Flexible Networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018).
[Crossref]

Y. Xu, J. Lin, R. Dubé-Demers, S. LaRochelle, L. Rusch, and W. Shi, “Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators,” Opt. Lett. 43(7), 1554–1557 (2018).
[Crossref]

Souhaité, A.

C. Baudot, A. Fincato, D. Fowler, D. Perez-Galacho, A. Souhaité, S. Messaoudène, R. Blanc, C. Richard, J. Planchot, C. De-Buttet, B. Orlando, F. Gays, C. Mezzomo, B. Bernard, D. Marris-Morini, L. Vivien, C. Kopp, and F. Boeuf, “Daphne silicon photonics technological platform for research and development on WDM applications,” Proc. SPIE 9891, 98911D (2016).
[Crossref]

Suh, M.

C. Bao, M. Suh, and K. Vahala, “Microresonator soliton dual-comb imaging,” Optica 6(9), 1110–1116 (2019).
[Crossref]

M. Suh, Q. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref]

Sun, H.

Z. Wang, M. Ma, H. Sun, M. Khalil, R. Adams, K. Yim, X. Jin, and L. R. Chen, “Optical frequency comb generation using CMOS compatible cascaded Mach–Zehnder modulators,” IEEE J. Quantum Electron. 55(6), 1–6 (2019).
[Crossref]

Supradeepa, V. R.

Suzuki, R.

T. Tanabe, S. Fujii, and R. Suzuki, “Review on microresonator frequency combs,” Jpn. J. Appl. Phys. 58(SJ), SJ0801 (2019).
[Crossref]

Swann, W. C.

I. Coddington, N. R. Newbury, and W. C. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref]

Tainta, S.

Tanabe, T.

T. Tanabe, S. Fujii, and R. Suzuki, “Review on microresonator frequency combs,” Jpn. J. Appl. Phys. 58(SJ), SJ0801 (2019).
[Crossref]

Teleanu, E. L.

Temprana, E. G.

Thomson, D. J.

Tian, S.

Torres-Company, V.

Trocha, P.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Tsang, H. K.

X Wu and H. K. Tsang, “Flat-top Frequency Comb Generation with Silicon Microring Modulator and Filter,” In Conference on Lasers and Electro-Optics (CLEO), San Jose, USA, May 14-19, 2017; OSA Technical Digest, SM4O.6 (2017).

Tsuchiya, M.

Tuzson, B.

Vahala, K.

Vahala, K. J.

M. Suh, Q. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref]

Vijayan, K.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Villares, G.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5(1), 5192 (2014).
[Crossref]

Vivien, L.

C. Baudot, A. Fincato, D. Fowler, D. Perez-Galacho, A. Souhaité, S. Messaoudène, R. Blanc, C. Richard, J. Planchot, C. De-Buttet, B. Orlando, F. Gays, C. Mezzomo, B. Bernard, D. Marris-Morini, L. Vivien, C. Kopp, and F. Boeuf, “Daphne silicon photonics technological platform for research and development on WDM applications,” Proc. SPIE 9891, 98911D (2016).
[Crossref]

Wang, C.

C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10(1), 978 (2019).
[Crossref]

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Loncar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Wang, L.

X. Xiao, M. Li, L. Wang, D. Chen, Q. Yang, and S. Yu, “High speed silicon photonic modulators,” In Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, March 19-23, 2017; IEEE, 2017, pp. 1–3 (2017).

Wang, P.

Wang, Z.

Z. Wang, M. Ma, H. Sun, M. Khalil, R. Adams, K. Yim, X. Jin, and L. R. Chen, “Optical frequency comb generation using CMOS compatible cascaded Mach–Zehnder modulators,” IEEE J. Quantum Electron. 55(6), 1–6 (2019).
[Crossref]

Weimann, C.

Weiner, A. M.

A. Fülöp, M. Mazur, A. Lorences-Riesgo, T. A. Eriksson, P. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “Long-haul coherent communications using microresonator-based frequency combs,” Opt. Express 25(22), 26678–26688 (2017).
[Crossref]

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8(3), 368–393 (2014).
[Crossref]

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-Power Broadly Tunable Electrooptic Frequency Comb Generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231–236 (2013).
[Crossref]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35(19), 3234–3236 (2010).
[Crossref]

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[Crossref]

H. Kim, A. J. Metcalf, O. E. Sandoval, D. E. Leaird, and A. M. Weiner, “Broadband and ultra-flat optical comb generation using an EO comb source and a programmable pulse shaper,” In Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications, San Jose, USA, June 8-13, 2014; IEEE, pp. 1–2 (2014).

Wildi, F.

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13(1), 31–35 (2019).
[Crossref]

Wolf, S.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

C. Weimann, P. C. Schindler, R. Palmer, S. Wolf, D. Bekele, D. Korn, J. Pfeifle, S. Koeber, R. Schmogrow, L. Alloatti, D. Elder, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission,” Opt. Express 22(3), 3629–3637 (2014).
[Crossref]

Wu, G.

Z. Zhu and G. Wu, “Dual-Comb Ranging,” Engineering 4(6), 772–778 (2018).
[Crossref]

Wu, R.

Wu, X

X Wu and H. K. Tsang, “Flat-top Frequency Comb Generation with Silicon Microring Modulator and Filter,” In Conference on Lasers and Electro-Optics (CLEO), San Jose, USA, May 14-19, 2017; OSA Technical Digest, SM4O.6 (2017).

Xiao, X.

X. Xiao, M. Li, L. Wang, D. Chen, Q. Yang, and S. Yu, “High speed silicon photonic modulators,” In Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, March 19-23, 2017; IEEE, 2017, pp. 1–3 (2017).

Xu, Y.

Y. Xu, J. Lin, R. Dubé-Demers, S. LaRochelle, L. Rusch, and W. Shi, “Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators,” Opt. Lett. 43(7), 1554–1557 (2018).
[Crossref]

J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency Comb Generation using a CMOS Compatible SiP DD-MZM for Flexible Networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018).
[Crossref]

W. Shi, Y. Xu, H. Sepehrian, S. LaRochelle, and L. A. Rusch, “Silicon photonic modulators for PAM transmissions,” J. Opt. 20(8), 083002 (2018).
[Crossref]

Xuan, Y.

Yan, M.

Z. Chen, M. Yan, T. W. Hänsch, and N. Picqué, “A phase-stable dual-comb interferometer,” Nat. Commun. 9(1), 3035 (2018).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Yang, K. Y.

M. Suh, Q. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref]

Yang, Q.

M. Suh, Q. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref]

X. Xiao, M. Li, L. Wang, D. Chen, Q. Yang, and S. Yu, “High speed silicon photonic modulators,” In Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, March 19-23, 2017; IEEE, 2017, pp. 1–3 (2017).

Yasaka, H.

N. Yokota and H. Yasaka, “Operation strategy of InP Mach–Zehnder modulators for flat optical frequency comb generation,” IEEE J. Quantum Electron. 52(8), 1–7 (2016).
[Crossref]

Ye, J.

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72(10), 3749–3771 (2001).
[Crossref]

Yi, X.

M. Suh, Q. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref]

Yim, K.

Z. Wang, M. Ma, H. Sun, M. Khalil, R. Adams, K. Yim, X. Jin, and L. R. Chen, “Optical frequency comb generation using CMOS compatible cascaded Mach–Zehnder modulators,” IEEE J. Quantum Electron. 55(6), 1–6 (2019).
[Crossref]

Yokota, N.

N. Yokota and H. Yasaka, “Operation strategy of InP Mach–Zehnder modulators for flat optical frequency comb generation,” IEEE J. Quantum Electron. 52(8), 1–7 (2016).
[Crossref]

Yu, H.

Yu, M.

C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10(1), 978 (2019).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9(1), 1869 (2018).
[Crossref]

M. Yu, Y. Okawachi, C. Joshi, X. Ji, M. Lipson, and A. L. Gaeta, “Gas-Phase Microresonator-Based Comb Spectroscopy without an External Pump Laser,” ACS Photonics 5(7), 2780–2785 (2018).
[Crossref]

A. Shams-Ansari, M. Yu, Z. Chen, C. Reimer, M. Zhang, N. Picqué, and M. Loncar, “Microring Electro-optic Frequency Comb Sources for Dual-Comb Spectroscopy,” In Conference on Lasers and Electro-Optics (CLEO), San Jose, USA, May 5-10, 2019; OSA Technical Digest, JTh5B.8 (2019).

Yu, S.

X. Xiao, M. Li, L. Wang, D. Chen, Q. Yang, and S. Yu, “High speed silicon photonic modulators,” In Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, March 19-23, 2017; IEEE, 2017, pp. 1–3 (2017).

Zhang, L.

Zhang, M.

C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10(1), 978 (2019).
[Crossref]

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Loncar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

A. Shams-Ansari, M. Yu, Z. Chen, C. Reimer, M. Zhang, N. Picqué, and M. Loncar, “Microring Electro-optic Frequency Comb Sources for Dual-Comb Spectroscopy,” In Conference on Lasers and Electro-Optics (CLEO), San Jose, USA, May 5-10, 2019; OSA Technical Digest, JTh5B.8 (2019).

Zhang, Y.

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Loncar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
[Crossref]

Zhu, R.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10(1), 978 (2019).
[Crossref]

Zhu, Z.

Z. Zhu and G. Wu, “Dual-Comb Ranging,” Engineering 4(6), 772–778 (2018).
[Crossref]

ACS Photonics (1)

M. Yu, Y. Okawachi, C. Joshi, X. Ji, M. Lipson, and A. L. Gaeta, “Gas-Phase Microresonator-Based Comb Spectroscopy without an External Pump Laser,” ACS Photonics 5(7), 2780–2785 (2018).
[Crossref]

Appl. Phys. Express (1)

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Appl. Phys. Lett. (1)

G. Scalari, J. Faist, and N. Picqué, “On-chip mid-infrared and THz frequency combs for spectroscopy,” Appl. Phys. Lett. 114(15), 150401 (2019).
[Crossref]

Engineering (1)

Z. Zhu and G. Wu, “Dual-Comb Ranging,” Engineering 4(6), 772–778 (2018).
[Crossref]

IEEE J. Quantum Electron. (2)

N. Yokota and H. Yasaka, “Operation strategy of InP Mach–Zehnder modulators for flat optical frequency comb generation,” IEEE J. Quantum Electron. 52(8), 1–7 (2016).
[Crossref]

Z. Wang, M. Ma, H. Sun, M. Khalil, R. Adams, K. Yim, X. Jin, and L. R. Chen, “Optical frequency comb generation using CMOS compatible cascaded Mach–Zehnder modulators,” IEEE J. Quantum Electron. 55(6), 1–6 (2019).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-Power Broadly Tunable Electrooptic Frequency Comb Generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231–236 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Loncar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
[Crossref]

J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch, and W. Shi, “Frequency Comb Generation using a CMOS Compatible SiP DD-MZM for Flexible Networks,” IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. (1)

W. Shi, Y. Xu, H. Sepehrian, S. LaRochelle, and L. A. Rusch, “Silicon photonic modulators for PAM transmissions,” J. Opt. 20(8), 083002 (2018).
[Crossref]

J. Opt. Technol. (1)

Jpn. J. Appl. Phys. (1)

T. Tanabe, S. Fujii, and R. Suzuki, “Review on microresonator frequency combs,” Jpn. J. Appl. Phys. 58(SJ), SJ0801 (2019).
[Crossref]

Laser Photonics Rev. (1)

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8(3), 368–393 (2014).
[Crossref]

Nat. Commun. (4)

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5(1), 5192 (2014).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9(1), 1869 (2018).
[Crossref]

Z. Chen, M. Yan, T. W. Hänsch, and N. Picqué, “A phase-stable dual-comb interferometer,” Nat. Commun. 9(1), 3035 (2018).
[Crossref]

C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10(1), 978 (2019).
[Crossref]

Nat. Photonics (5)

A. L. Gaeta, M. Lipson, and T. J. Kippenberg, “Photonic-chip-based frequency combs,” Nat. Photonics 13(3), 158–169 (2019).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, “A microphotonic astrocomb,” Nat. Photonics 13(1), 31–35 (2019).
[Crossref]

N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nat. Photonics 13(3), 146–157 (2019).
[Crossref]

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[Crossref]

Nature (2)

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568(7752), 373–377 (2019).
[Crossref]

Opt. Express (10)

E. L. Teleanu, V. Durán, and V. Torres-Company, “Electro-optic dual-comb interferometer for high-speed vibrometry,” Opt. Express 25(14), 16427–16436 (2017).
[Crossref]

A. Fülöp, M. Mazur, A. Lorences-Riesgo, T. A. Eriksson, P. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, and V. Torres-Company, “Long-haul coherent communications using microresonator-based frequency combs,” Opt. Express 25(22), 26678–26688 (2017).
[Crossref]

C. Weimann, M. Lauermann, F. Hoeller, W. Freude, and C. Koos, “Silicon photonic integrated circuit for fast and precise dual-comb distance metrology,” Opt. Express 25(24), 30091–30104 (2017).
[Crossref]

I. Demirtzioglou, C. Lacava, K. R. H. Bottrill, D. J. Thomson, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Frequency comb generation in a silicon ring resonator modulator,” Opt. Express 26(2), 790–796 (2018).
[Crossref]

P. Martín-Mateos, B. Jerez, P. Largo-Izquierdo, and P. Acedo, “Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time,” Opt. Express 26(8), 9700–9713 (2018).
[Crossref]

K. P. Nagarjun, V. Jeyaselvan, S. K. Selvaraja, and V. R. Supradeepa, “Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators,” Opt. Express 26(8), 10744–10753 (2018).
[Crossref]

E. L. Teleanu, S. Tainta, and V. Torres-Company, “Ultrafast electrooptic dual-comb interferometry,” Opt. Express 23(23), 30557–30569 (2015).
[Crossref]

C. Weimann, P. C. Schindler, R. Palmer, S. Wolf, D. Bekele, D. Korn, J. Pfeifle, S. Koeber, R. Schmogrow, L. Alloatti, D. Elder, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission,” Opt. Express 22(3), 3629–3637 (2014).
[Crossref]

N. B. Hébert, J. Genest, J. Deschênes, H. Bergeron, G. Y. Chen, C. Khurmi, and D. G. Lancaster, “Self-corrected chip-based dual-comb spectrometer,” Opt. Express 25(7), 8168–8179 (2017).
[Crossref]

M. Gianella, A. Nataraj, B. Tuzson, P. Jouy, F. Kapsalidis, M. Beck, M. Mangold, A. Hugi, J. Faist, and L. Emmenegger, “High-resolution and gapless dual comb spectroscopy with current-tuned quantum cascade lasers,” Opt. Express 28(5), 6197–6208 (2020).
[Crossref]

Opt. Lett. (7)

D. A. Long, A. J. Fleisher, K. O. Douglass, D. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39(9), 2688–2690 (2014).
[Crossref]

N. G. Pavlov, G. Lihachev, S. Koptyaev, E. Lucas, M. Karpov, N. M. Kondratiev, I. A. Bilenko, T. J. Kippenberg, and M. L. Gorodetsky, “Soliton dual frequency combs in crystalline microresonators,” Opt. Lett. 42(3), 514–517 (2017).
[Crossref]

Y. Xu, J. Lin, R. Dubé-Demers, S. LaRochelle, L. Rusch, and W. Shi, “Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators,” Opt. Lett. 43(7), 1554–1557 (2018).
[Crossref]

S. A. Diddams, D. J. Jones, L. S. Ma, S. T. Cundiff, and J. L. Hall, “Optical frequency measurement across a 104-THz gap with a femtosecond laser frequency comb,” Opt. Lett. 25(3), 186–188 (2000).
[Crossref]

T. Sakamoto, T. Kawanishi, and M. Tsuchiya, “10 GHz, 24 ps pulse generation using a single-stage dual-drive Mach-Zehnder modulator,” Opt. Lett. 33(8), 890–892 (2008).
[Crossref]

V. Torres-Company, J. Lancis, and P. Andrés, “Lossless equalization of frequency combs,” Opt. Lett. 33(16), 1822–1824 (2008).
[Crossref]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35(19), 3234–3236 (2010).
[Crossref]

Optica (3)

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref]

Proc. SPIE (1)

C. Baudot, A. Fincato, D. Fowler, D. Perez-Galacho, A. Souhaité, S. Messaoudène, R. Blanc, C. Richard, J. Planchot, C. De-Buttet, B. Orlando, F. Gays, C. Mezzomo, B. Bernard, D. Marris-Morini, L. Vivien, C. Kopp, and F. Boeuf, “Daphne silicon photonics technological platform for research and development on WDM applications,” Proc. SPIE 9891, 98911D (2016).
[Crossref]

Rev. Sci. Instrum. (1)

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72(10), 3749–3771 (2001).
[Crossref]

Sci. Adv. (1)

A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb source for spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
[Crossref]

Science (2)

M. Suh, Q. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354(6312), 600–603 (2016).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

Other (5)

A. Shams-Ansari, M. Yu, Z. Chen, C. Reimer, M. Zhang, N. Picqué, and M. Loncar, “Microring Electro-optic Frequency Comb Sources for Dual-Comb Spectroscopy,” In Conference on Lasers and Electro-Optics (CLEO), San Jose, USA, May 5-10, 2019; OSA Technical Digest, JTh5B.8 (2019).

H. Kim, A. J. Metcalf, O. E. Sandoval, D. E. Leaird, and A. M. Weiner, “Broadband and ultra-flat optical comb generation using an EO comb source and a programmable pulse shaper,” In Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications, San Jose, USA, June 8-13, 2014; IEEE, pp. 1–2 (2014).

X Wu and H. K. Tsang, “Flat-top Frequency Comb Generation with Silicon Microring Modulator and Filter,” In Conference on Lasers and Electro-Optics (CLEO), San Jose, USA, May 14-19, 2017; OSA Technical Digest, SM4O.6 (2017).

A. J. Fleisher, D. A. Long, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne Infrared Spectroscopy with Pitch-agile Optical Frequency Comb Generators,” In Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment, Lake Arrowhead, USA, March 1-4, 2015; OSA Technical Digest, FT2A.2 (2015).

X. Xiao, M. Li, L. Wang, D. Chen, Q. Yang, and S. Yu, “High speed silicon photonic modulators,” In Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, March 19-23, 2017; IEEE, 2017, pp. 1–3 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Cut view of the waveguide phase shifter. (b) The Si modulator equivalent electrical scheme and driving configuration.
Fig. 2.
Fig. 2. (a) Generic schematic for EOFC generation, Si MZM: silicon Mach-Zehnder modulator. (b) Example of a simulated Si EOFC spectrum. The repetition rate (fREP) is 2 GHz and the laser wavelength is 1550 nm. The MZM is biased with a 1.1×π phase difference between both arms. Each line is labeled by its frequency fn, with n being the line number; the carrier frequency is f0. (c) Generic schematic for heterodyne detection of an EOFC. AOM: acousto-optic modulator. (d) Simulated heterodyne detection of a Si EOFC. The applied RF power is 24 dBm, the acousto-optic frequency (fAOM) is 40 MHz. A zoom near the successive beatings at n × fREP provides an image of the optical comb in the RF domain. The beating between each optical line fn and the shifted laser line is labeled with its frequency f=|fn-(f0+fAOM)|.
Fig. 3.
Fig. 3. Experimentally measured heterodyne beating of the Si EOFC with a laser line shifted by 40 MHz from the comb center.
Fig. 4.
Fig. 4. (a) Experimental setup for the dual Si-EOFC generation and measurement. Si MZM: silicon Mach-Zehnder modulator, AOM: acousto-optic modulator, PD: photodiode, OBPF: optical band-pass filter, used to illustrate the proposed scanning method: the transfer function of the OBPF will be recovered by the dual EOFC measurement. (b) Example of a dual Si-EOFC beat signal measured experimentally for a repetition rate (fREP,1) of 500 MHz, a repetition rate offset (ΔfREP) of 4 MHz, using 24 dBm RF power on each synthetizer, and an acousto-optic frequency (fAOM) of 40 MHz. Each beat note is identified by a capital letter B and an index number. B3 corresponds to the beating between the two EOFC central lines.
Fig. 5.
Fig. 5. (a) Superposed beat notes B3 to B6, around their relative frequencies. (b) Power of the B1 to B5 beat-notes for applied frequencies of 1 GHz to 12 GHz.
Fig. 6.
Fig. 6. (a) Optical transfer function of an optical filter, recovered by FT-DCS (red points), laser sweep (blue curve), the grey dashed line is the optical noise floor of the dual-comb scanning method. (b) The residuals from the dual-comb scanning method, compared to the sweep laser measurement, show a 2.69% standard deviation.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E I N = E 0 × exp ( j ω 0 t )
E O U T = E I N × exp ( j [ A × sin ( ω REP t ) ] )
E O U T = E I N × n = J n ( A ) exp ( j [ n × ω R E P t ] )
E T O T = E O U T , 1 + E O U T , 2 × exp ( j φ H ) 2

Metrics