Abstract

Polarization imaging is key for various applications ranging from biology to machine vision because it can capture valuable optical information about imaged environments, which is usually absent in intensity and spectral content. Conventional polarization cameras rely on a traditional single-eye imaging system with rotating polarizers, cascaded optics, or micropolarizer-patterned image sensors. These cameras, however, have two common issues. The first is low sensitivity resulting from the limited light utilization efficiency of absorptive polarizers or cascaded optics. The other is the difficulty in device miniaturization due to the fact that these devices require at least an optical-path length equivalent to the lens’s focal length. Here, we propose a polarization imaging system based on compound-eye metasurface optics and show how it enables the creation of a high-sensitivity, ultra-thin polarization camera. Our imaging system is composed of a typical image sensor and single metasurface layer for forming a vast number of images while sorting the polarization bases. Since this system is based on a filter-free, computational imaging scheme while dramatically reducing the optical-path length required for imaging, it overcomes both efficiency and size limitations of conventional polarization cameras. As a proof of concept, we demonstrated that our system improves the amount of detected light by a factor of ∼2, while reducing device thickness to ∼1/10 that of the most prevalent polarization cameras. Such a sensitive, compact, and passive device could pave the way toward the widespread adoption of polarization imaging in applications in which available light is limited and strict size constraints exist.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multispectral curved compound eye camera

Xiaodan Yu, Chenyang Liu, Yuanjie Zhang, Huangrong Xu, Yuanyuan Wang, and Weixing Yu
Opt. Express 28(7) 9216-9231 (2020)

Thin compound-eye camera

Jacques Duparré, Peter Dannberg, Peter Schreiber, Andreas Bräuer, and Andreas Tünnermann
Appl. Opt. 44(15) 2949-2956 (2005)

Thin wafer-level camera lenses inspired by insect compound eyes

Andreas Brückner, Jacques Duparré, Robert Leitel, Peter Dannberg, Andreas Bräuer, and Andreas Tünnermann
Opt. Express 18(24) 24379-24394 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [Crossref]
  2. N. M. Garcia, I. De Erausquin, C. Edmiston, and V. Gruev, “Surface normal reconstruction using circularly polarized light,” Opt. Express 23(11), 14391–14406 (2015).
    [Crossref]
  3. L. B. Wolff and T. E. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Machine Intell. 13(7), 635–657 (1991).
    [Crossref]
  4. J. S. Tyo, M. P. Rowe, E. N. Pugh, and N. Engheta, “Target detection in optically scattering media by polarization-difference imaging,” Appl. Opt. 35(11), 1855–1870 (1996).
    [Crossref]
  5. S. G. Demos and R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36(1), 150–155 (1997).
    [Crossref]
  6. Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, “Polarization-based vision through haze,” Appl. Opt. 42(3), 511–525 (2003).
    [Crossref]
  7. S. Tominaga and A. Kimachi, “Polarization imaging for material classification,” Opt. Eng. 47(12), 123201 (2008).
    [Crossref]
  8. E. Salomatina-Motts, V. A. Neel, and A. N. Yaroslavskaya, “Multimodal Polarization System for Imaging Skin Cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
    [Crossref]
  9. T. York, L. Kahan, S. P. Lake, and V. Gruev, “Real-time high-resolution measurement of collagen alignment in dynamically loaded soft tissue,” J. Biomed. Opt. 19(6), 066011 (2014).
    [Crossref]
  10. T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence- polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19(12), 126002 (2014).
    [Crossref]
  11. D. Wang, H. Liang, H. Zhu, and S. Zhang, “A Bionic Camera-Based Polarization Navigation Sensor,” Sensors 14(7), 13006–13023 (2014).
    [Crossref]
  12. S. B. Powell, R. Garnett, J. Marshall, C. Rizk, and V. Gruev, “Bioinspired polarization vision enables underwater geolocalization,” Sci. Adv. 4(4), eaao6841 (2018).
    [Crossref]
  13. R. Walraven, “Polarization imagery,” Opt. Eng. 20(1), 14–18 (1981).
    [Crossref]
  14. W. G. Egan, W. R. Johnson, and V. S. Whitehead, “Terrestrial polarization imagery obtained from the Space Shuttle: characterization and interpretation,” Appl. Opt. 30(4), 435–442 (1991).
    [Crossref]
  15. C. A. Farlow, D. B. Chenault, J. L. Pezzaniti, K. D. Spradley, and M. G. Gulley, “Imaging polarimeter development and applications,” Proc. SPIE 4481, 118 (2002).
    [Crossref]
  16. J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 58880V (2005).
    [Crossref]
  17. A. G. Andreou and Z. K. Kalayjian, “Polarization Imaging: Principles and Integrated Polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
    [Crossref]
  18. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
    [Crossref]
  19. M. Garcia, C. Edmiston, R. Marinov, A. Vail, and V. Gruev, “Bio-inspired color-polarization imager for real-time in situ imaging,” Optica 4(10), 1263–1271 (2017).
    [Crossref]
  20. M. Garcia, T. Davis, S. Blair, N. Cui, and V. Gruev, “Bioinspired polarization imager with high dynamic range,” Optica 5(10), 1240–1246 (2018).
    [Crossref]
  21. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref]
  22. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref]
  23. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
    [Crossref]
  24. M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
    [Crossref]
  25. S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, “A review of dielectric optical metasurfaces for wavefront control,” Nanophotonics 7(6), 1041–1068 (2018).
    [Crossref]
  26. M. Song, D. Wang, S. Peana, S. Choudhury, P. Nyga, Z. A. Kudyshev, H. Yu, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Colors with plasmonic nanostructures: A full- spectrum review,” Appl. Phys. Rev. 6(4), 041308 (2019).
    [Crossref]
  27. P. Lalanne, S. Astilean, and P. Chavel, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A 16(5), 1143–1156 (1999).
    [Crossref]
  28. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam – Berry phase optical elements with computer-generated subwavelength gratings,” Opt. Lett. 27(13), 1141–1143 (2002).
    [Crossref]
  29. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
    [Crossref]
  30. K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
    [Crossref]
  31. S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic Color Filters for CMOS Image Sensor Applications,” Nano Lett. 12(8), 4349–4354 (2012).
    [Crossref]
  32. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
    [Crossref]
  33. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [Crossref]
  34. M. Miyata, H. Hatada, and J. Takahara, “Full-Color Subwavelength Printing with Gap-Plasmonic Optical Antennas,” Nano Lett. 16(5), 3166–3172 (2016).
    [Crossref]
  35. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
    [Crossref]
  36. M. Miyata, M. Nakajima, and T. Hashimoto, “Impedance-matched dielectric metasurfaces for non-discrete wavefront engineering,” J. Appl. Phys. 125(10), 103106 (2019).
    [Crossref]
  37. M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
    [Crossref]
  38. A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7(1), 13682 (2016).
    [Crossref]
  39. B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
    [Crossref]
  40. S. Colburn, A. Zhan, and A. Majumdar, “Metasurface optics for full-color computational imaging,” Sci. Adv. 4(2), eaar2114 (2018).
    [Crossref]
  41. Z. Yang, Z. Wang, Y. Wang, X. Feng, M. Zhao, Z. Wan, L. Zhu, J. Liu, Y. Huang, J. Xia, and M. Wegener, “Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling,” Nat. Commun. 9(1), 4607 (2018).
    [Crossref]
  42. H. Kwon, E. Arbabi, S. M. Kamali, S. Faraji-Dana, and A. Faraon, “Computational complex optical field imaging using a designed metasurface diffuser,” Optica 5(8), 924–931 (2018).
    [Crossref]
  43. E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces,” ACS Photonics 5(8), 3132–3140 (2018).
    [Crossref]
  44. N. A. Rubin, G. D’Aversa, P. Chevalier, Z. Shi, W. T. Chen, and F. Capasso, “Matrix Fourier optics enables a compact full-Stokes polarization camera,” Science 365(6448), eaax1839 (2019).
    [Crossref]
  45. R. J. Lin, V. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
    [Crossref]
  46. M. Miyata, M. Nakajima, and T. Hashimoto, “High-Sensitivity Color Imaging Using Pixel-Scale Color Splitters Based on Dielectric Metasurfaces,” ACS Photonics 6(6), 1442–1450 (2019).
    [Crossref]
  47. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40(11), 1806–1813 (2001).
    [Crossref]
  48. A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express 18(24), 24379–24394 (2010).
    [Crossref]
  49. Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
    [Crossref]
  50. S. Colburn, A. Zhan, E. Bayati, J. Whitehead, A. Ryou, L. Huang, and A. Majumdar, “Broadband transparent and CMOS-compatible flat optics with silicon nitride metasurfaces,” Opt. Mater. Express 8(8), 2330–2344 (2018).
    [Crossref]
  51. K. Sasagawa, S. Shishido, K. Ando, H. Matsuoka, T. Noda, T. Tokuda, K. Kakiuchi, and J. Ohta, “Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology,” Opt. Express 21(9), 11132–11140 (2013).
    [Crossref]
  52. W. Hsu, G. Myhre, K. Balakrishnan, N. Brock, M. Ibn-elhaj, and S. Pau, “Full-Stokes imaging polarimeter using an array of elliptical polarizer,” Opt. Express 22(3), 3063–3074 (2014).
    [Crossref]
  53. Z. Wang, J. Chu, Q. Wang, and R. Zhang, “Single-Layer Nanowire Polarizer Integrated With Photodetector and Its Application for Polarization Navigation,” IEEE Sens. J. 16(17), 6579–6585 (2016).
    [Crossref]
  54. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4(6), 625–632 (2017).
    [Crossref]
  55. D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
    [Crossref]
  56. R. Horisaki, S. Irie, Y. Ogura, and J. Tanida, “Three-Dimensional Information Acquisition Using a Compound Imaging System,” Opt. Rev. 14(5), 347–350 (2007).
    [Crossref]
  57. T. York and V. Gruev, “Characterization of a visible spectrum division-of-focal-plane polarimeter,” Appl. Opt. 51(22), 5392–5400 (2012).
    [Crossref]
  58. R. Horisaki, K. Choi, J. Hahn, J. Tanida, and D. J. Brady, “Generalized sampling using a compound-eye imaging system for multi-dimensional object acquisition Abstract:,” Opt. Express 18(18), 19367–19378 (2010).
    [Crossref]
  59. R. Horisaki, X. Xiao, J. Tanida, and B. Javidi, “Feasibility study for compressive multi-dimensional integral imaging,” Opt. Express 21(4), 4263–4279 (2013).
    [Crossref]

2019 (5)

M. Song, D. Wang, S. Peana, S. Choudhury, P. Nyga, Z. A. Kudyshev, H. Yu, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Colors with plasmonic nanostructures: A full- spectrum review,” Appl. Phys. Rev. 6(4), 041308 (2019).
[Crossref]

M. Miyata, M. Nakajima, and T. Hashimoto, “Impedance-matched dielectric metasurfaces for non-discrete wavefront engineering,” J. Appl. Phys. 125(10), 103106 (2019).
[Crossref]

N. A. Rubin, G. D’Aversa, P. Chevalier, Z. Shi, W. T. Chen, and F. Capasso, “Matrix Fourier optics enables a compact full-Stokes polarization camera,” Science 365(6448), eaax1839 (2019).
[Crossref]

R. J. Lin, V. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

M. Miyata, M. Nakajima, and T. Hashimoto, “High-Sensitivity Color Imaging Using Pixel-Scale Color Splitters Based on Dielectric Metasurfaces,” ACS Photonics 6(6), 1442–1450 (2019).
[Crossref]

2018 (9)

S. Colburn, A. Zhan, E. Bayati, J. Whitehead, A. Ryou, L. Huang, and A. Majumdar, “Broadband transparent and CMOS-compatible flat optics with silicon nitride metasurfaces,” Opt. Mater. Express 8(8), 2330–2344 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

S. Colburn, A. Zhan, and A. Majumdar, “Metasurface optics for full-color computational imaging,” Sci. Adv. 4(2), eaar2114 (2018).
[Crossref]

Z. Yang, Z. Wang, Y. Wang, X. Feng, M. Zhao, Z. Wan, L. Zhu, J. Liu, Y. Huang, J. Xia, and M. Wegener, “Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling,” Nat. Commun. 9(1), 4607 (2018).
[Crossref]

H. Kwon, E. Arbabi, S. M. Kamali, S. Faraji-Dana, and A. Faraon, “Computational complex optical field imaging using a designed metasurface diffuser,” Optica 5(8), 924–931 (2018).
[Crossref]

E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces,” ACS Photonics 5(8), 3132–3140 (2018).
[Crossref]

M. Garcia, T. Davis, S. Blair, N. Cui, and V. Gruev, “Bioinspired polarization imager with high dynamic range,” Optica 5(10), 1240–1246 (2018).
[Crossref]

S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, “A review of dielectric optical metasurfaces for wavefront control,” Nanophotonics 7(6), 1041–1068 (2018).
[Crossref]

S. B. Powell, R. Garnett, J. Marshall, C. Rizk, and V. Gruev, “Bioinspired polarization vision enables underwater geolocalization,” Sci. Adv. 4(4), eaao6841 (2018).
[Crossref]

2017 (5)

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref]

M. Garcia, C. Edmiston, R. Marinov, A. Vail, and V. Gruev, “Bio-inspired color-polarization imager for real-time in situ imaging,” Optica 4(10), 1263–1271 (2017).
[Crossref]

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4(6), 625–632 (2017).
[Crossref]

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref]

2016 (5)

Z. Wang, J. Chu, Q. Wang, and R. Zhang, “Single-Layer Nanowire Polarizer Integrated With Photodetector and Its Application for Polarization Navigation,” IEEE Sens. J. 16(17), 6579–6585 (2016).
[Crossref]

M. Miyata, H. Hatada, and J. Takahara, “Full-Color Subwavelength Printing with Gap-Plasmonic Optical Antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7(1), 13682 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

2015 (2)

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

N. M. Garcia, I. De Erausquin, C. Edmiston, and V. Gruev, “Surface normal reconstruction using circularly polarized light,” Opt. Express 23(11), 14391–14406 (2015).
[Crossref]

2014 (6)

T. York, L. Kahan, S. P. Lake, and V. Gruev, “Real-time high-resolution measurement of collagen alignment in dynamically loaded soft tissue,” J. Biomed. Opt. 19(6), 066011 (2014).
[Crossref]

T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence- polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19(12), 126002 (2014).
[Crossref]

D. Wang, H. Liang, H. Zhu, and S. Zhang, “A Bionic Camera-Based Polarization Navigation Sensor,” Sensors 14(7), 13006–13023 (2014).
[Crossref]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

W. Hsu, G. Myhre, K. Balakrishnan, N. Brock, M. Ibn-elhaj, and S. Pau, “Full-Stokes imaging polarimeter using an array of elliptical polarizer,” Opt. Express 22(3), 3063–3074 (2014).
[Crossref]

2013 (3)

2012 (4)

T. York and V. Gruev, “Characterization of a visible spectrum division-of-focal-plane polarimeter,” Appl. Opt. 51(22), 5392–5400 (2012).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref]

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic Color Filters for CMOS Image Sensor Applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref]

2010 (4)

2009 (1)

E. Salomatina-Motts, V. A. Neel, and A. N. Yaroslavskaya, “Multimodal Polarization System for Imaging Skin Cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[Crossref]

2008 (1)

S. Tominaga and A. Kimachi, “Polarization imaging for material classification,” Opt. Eng. 47(12), 123201 (2008).
[Crossref]

2007 (1)

R. Horisaki, S. Irie, Y. Ogura, and J. Tanida, “Three-Dimensional Information Acquisition Using a Compound Imaging System,” Opt. Rev. 14(5), 347–350 (2007).
[Crossref]

2006 (1)

2005 (1)

J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 58880V (2005).
[Crossref]

2003 (1)

2002 (3)

A. G. Andreou and Z. K. Kalayjian, “Polarization Imaging: Principles and Integrated Polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
[Crossref]

C. A. Farlow, D. B. Chenault, J. L. Pezzaniti, K. D. Spradley, and M. G. Gulley, “Imaging polarimeter development and applications,” Proc. SPIE 4481, 118 (2002).
[Crossref]

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam – Berry phase optical elements with computer-generated subwavelength gratings,” Opt. Lett. 27(13), 1141–1143 (2002).
[Crossref]

2001 (1)

1999 (1)

1997 (1)

1996 (1)

1991 (2)

L. B. Wolff and T. E. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Machine Intell. 13(7), 635–657 (1991).
[Crossref]

W. G. Egan, W. R. Johnson, and V. S. Whitehead, “Terrestrial polarization imagery obtained from the Space Shuttle: characterization and interpretation,” Appl. Opt. 30(4), 435–442 (1991).
[Crossref]

1981 (1)

R. Walraven, “Polarization imagery,” Opt. Eng. 20(1), 14–18 (1981).
[Crossref]

Achilefu, S.

T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence- polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19(12), 126002 (2014).
[Crossref]

Akers, W. J.

T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence- polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19(12), 126002 (2014).
[Crossref]

Alfano, R. R.

Ando, K.

Andreou, A. G.

A. G. Andreou and Z. K. Kalayjian, “Polarization Imaging: Principles and Integrated Polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
[Crossref]

Arbabi, A.

S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, “A review of dielectric optical metasurfaces for wavefront control,” Nanophotonics 7(6), 1041–1068 (2018).
[Crossref]

E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces,” ACS Photonics 5(8), 3132–3140 (2018).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4(6), 625–632 (2017).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7(1), 13682 (2016).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Arbabi, E.

S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, “A review of dielectric optical metasurfaces for wavefront control,” Nanophotonics 7(6), 1041–1068 (2018).
[Crossref]

H. Kwon, E. Arbabi, S. M. Kamali, S. Faraji-Dana, and A. Faraon, “Computational complex optical field imaging using a designed metasurface diffuser,” Optica 5(8), 924–931 (2018).
[Crossref]

E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces,” ACS Photonics 5(8), 3132–3140 (2018).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4(6), 625–632 (2017).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7(1), 13682 (2016).
[Crossref]

Astilean, S.

Atwater, H. A.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic Color Filters for CMOS Image Sensor Applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref]

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Balakrishnan, K.

Bayati, E.

Beausoleil, R. G.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Biener, G.

Blair, S.

Bloch, S.

T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence- polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19(12), 126002 (2014).
[Crossref]

Boltasseva, A.

M. Song, D. Wang, S. Peana, S. Choudhury, P. Nyga, Z. A. Kudyshev, H. Yu, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Colors with plasmonic nanostructures: A full- spectrum review,” Appl. Phys. Rev. 6(4), 041308 (2019).
[Crossref]

Bomzon, Z.

Boult, T. E.

L. B. Wolff and T. E. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Machine Intell. 13(7), 635–657 (1991).
[Crossref]

Brady, D. J.

Bräuer, A.

Brock, N.

Brongersma, M. L.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref]

Brückner, A.

Burgos, S. P.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic Color Filters for CMOS Image Sensor Applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref]

Capasso, F.

N. A. Rubin, G. D’Aversa, P. Chevalier, Z. Shi, W. T. Chen, and F. Capasso, “Matrix Fourier optics enables a compact full-Stokes polarization camera,” Science 365(6448), eaax1839 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

Charanya, T.

T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence- polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19(12), 126002 (2014).
[Crossref]

Chavel, P.

Chen, B. H.

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref]

Chen, J.

R. J. Lin, V. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

R. J. Lin, V. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Chen, J.-W.

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref]

Chen, M. K.

R. J. Lin, V. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Chen, W. T.

N. A. Rubin, G. D’Aversa, P. Chevalier, Z. Shi, W. T. Chen, and F. Capasso, “Matrix Fourier optics enables a compact full-Stokes polarization camera,” Science 365(6448), eaax1839 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref]

Chen, Y. H.

R. J. Lin, V. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref]

Chenault, D. B.

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
[Crossref]

J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 58880V (2005).
[Crossref]

C. A. Farlow, D. B. Chenault, J. L. Pezzaniti, K. D. Spradley, and M. G. Gulley, “Imaging polarimeter development and applications,” Proc. SPIE 4481, 118 (2002).
[Crossref]

Chevalier, P.

N. A. Rubin, G. D’Aversa, P. Chevalier, Z. Shi, W. T. Chen, and F. Capasso, “Matrix Fourier optics enables a compact full-Stokes polarization camera,” Science 365(6448), eaax1839 (2019).
[Crossref]

Choi, K.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

R. Horisaki, K. Choi, J. Hahn, J. Tanida, and D. J. Brady, “Generalized sampling using a compound-eye imaging system for multi-dimensional object acquisition Abstract:,” Opt. Express 18(18), 19367–19378 (2010).
[Crossref]

Choudhury, S.

M. Song, D. Wang, S. Peana, S. Choudhury, P. Nyga, Z. A. Kudyshev, H. Yu, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Colors with plasmonic nanostructures: A full- spectrum review,” Appl. Phys. Rev. 6(4), 041308 (2019).
[Crossref]

Chu, C. H.

R. J. Lin, V. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref]

Chu, J.

Z. Wang, J. Chu, Q. Wang, and R. Zhang, “Single-Layer Nanowire Polarizer Integrated With Photodetector and Its Application for Polarization Navigation,” IEEE Sens. J. 16(17), 6579–6585 (2016).
[Crossref]

Chung, T. L.

R. J. Lin, V. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Colburn, S.

Crozier, K. B.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Cui, N.

D’Aversa, G.

N. A. Rubin, G. D’Aversa, P. Chevalier, Z. Shi, W. T. Chen, and F. Capasso, “Matrix Fourier optics enables a compact full-Stokes polarization camera,” Science 365(6448), eaax1839 (2019).
[Crossref]

Dannberg, P.

Davis, T.

De Erausquin, I.

Demos, S. G.

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref]

Doshay, S.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref]

Duan, H.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Duparré, J.

Edmiston, C.

Egan, W. G.

Engheta, N.

Fan, J. A.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref]

Fan, P.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref]

Faraji-Dana, S.

Faraon, A.

H. Kwon, E. Arbabi, S. M. Kamali, S. Faraji-Dana, and A. Faraon, “Computational complex optical field imaging using a designed metasurface diffuser,” Optica 5(8), 924–931 (2018).
[Crossref]

E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces,” ACS Photonics 5(8), 3132–3140 (2018).
[Crossref]

S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, “A review of dielectric optical metasurfaces for wavefront control,” Nanophotonics 7(6), 1041–1068 (2018).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4(6), 625–632 (2017).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7(1), 13682 (2016).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Farlow, C. A.

C. A. Farlow, D. B. Chenault, J. L. Pezzaniti, K. D. Spradley, and M. G. Gulley, “Imaging polarimeter development and applications,” Proc. SPIE 4481, 118 (2002).
[Crossref]

Fattal, D.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Feng, X.

Z. Yang, Z. Wang, Y. Wang, X. Feng, M. Zhao, Z. Wan, L. Zhu, J. Liu, Y. Huang, J. Xia, and M. Wegener, “Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling,” Nat. Commun. 9(1), 4607 (2018).
[Crossref]

Fiorentino, M.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Garcia, M.

M. Garcia, T. Davis, S. Blair, N. Cui, and V. Gruev, “Bioinspired polarization imager with high dynamic range,” Optica 5(10), 1240–1246 (2018).
[Crossref]

M. Garcia, C. Edmiston, R. Marinov, A. Vail, and V. Gruev, “Bio-inspired color-polarization imager for real-time in situ imaging,” Optica 4(10), 1263–1271 (2017).
[Crossref]

T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence- polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19(12), 126002 (2014).
[Crossref]

Garcia, N. M.

Garnett, R.

S. B. Powell, R. Garnett, J. Marshall, C. Rizk, and V. Gruev, “Bioinspired polarization vision enables underwater geolocalization,” Sci. Adv. 4(4), eaao6841 (2018).
[Crossref]

Goldstein, D. L.

Gruev, V.

S. B. Powell, R. Garnett, J. Marshall, C. Rizk, and V. Gruev, “Bioinspired polarization vision enables underwater geolocalization,” Sci. Adv. 4(4), eaao6841 (2018).
[Crossref]

M. Garcia, T. Davis, S. Blair, N. Cui, and V. Gruev, “Bioinspired polarization imager with high dynamic range,” Optica 5(10), 1240–1246 (2018).
[Crossref]

M. Garcia, C. Edmiston, R. Marinov, A. Vail, and V. Gruev, “Bio-inspired color-polarization imager for real-time in situ imaging,” Optica 4(10), 1263–1271 (2017).
[Crossref]

N. M. Garcia, I. De Erausquin, C. Edmiston, and V. Gruev, “Surface normal reconstruction using circularly polarized light,” Opt. Express 23(11), 14391–14406 (2015).
[Crossref]

T. York, L. Kahan, S. P. Lake, and V. Gruev, “Real-time high-resolution measurement of collagen alignment in dynamically loaded soft tissue,” J. Biomed. Opt. 19(6), 066011 (2014).
[Crossref]

T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence- polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19(12), 126002 (2014).
[Crossref]

T. York and V. Gruev, “Characterization of a visible spectrum division-of-focal-plane polarimeter,” Appl. Opt. 51(22), 5392–5400 (2012).
[Crossref]

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
[Crossref]

Gulley, M. G.

C. A. Farlow, D. B. Chenault, J. L. Pezzaniti, K. D. Spradley, and M. G. Gulley, “Imaging polarimeter development and applications,” Proc. SPIE 4481, 118 (2002).
[Crossref]

Hahn, J.

Han, S.

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7(1), 13682 (2016).
[Crossref]

Hashimoto, T.

M. Miyata, M. Nakajima, and T. Hashimoto, “High-Sensitivity Color Imaging Using Pixel-Scale Color Splitters Based on Dielectric Metasurfaces,” ACS Photonics 6(6), 1442–1450 (2019).
[Crossref]

M. Miyata, M. Nakajima, and T. Hashimoto, “Impedance-matched dielectric metasurfaces for non-discrete wavefront engineering,” J. Appl. Phys. 125(10), 103106 (2019).
[Crossref]

Hasman, E.

Hatada, H.

M. Miyata, H. Hatada, and J. Takahara, “Full-Color Subwavelength Printing with Gap-Plasmonic Optical Antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref]

Hegde, R. S.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Horie, Y.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4(6), 625–632 (2017).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7(1), 13682 (2016).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Horisaki, R.

Hsu, W.

Huang, L.

Huang, Y.

R. J. Lin, V. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Z. Yang, Z. Wang, Y. Wang, X. Feng, M. Zhao, Z. Wan, L. Zhu, J. Liu, Y. Huang, J. Xia, and M. Wegener, “Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling,” Nat. Commun. 9(1), 4607 (2018).
[Crossref]

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Ibn-elhaj, M.

Ichioka, Y.

Irie, S.

R. Horisaki, S. Irie, Y. Ogura, and J. Tanida, “Three-Dimensional Information Acquisition Using a Compound Imaging System,” Opt. Rev. 14(5), 347–350 (2007).
[Crossref]

Ishida, K.

Javidi, B.

Johnson, W. R.

Jung, I.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Kahan, L.

T. York, L. Kahan, S. P. Lake, and V. Gruev, “Real-time high-resolution measurement of collagen alignment in dynamically loaded soft tissue,” J. Biomed. Opt. 19(6), 066011 (2014).
[Crossref]

Kakiuchi, K.

Kalayjian, Z. K.

A. G. Andreou and Z. K. Kalayjian, “Polarization Imaging: Principles and Integrated Polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
[Crossref]

Kamali, S. M.

S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, “A review of dielectric optical metasurfaces for wavefront control,” Nanophotonics 7(6), 1041–1068 (2018).
[Crossref]

E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces,” ACS Photonics 5(8), 3132–3140 (2018).
[Crossref]

H. Kwon, E. Arbabi, S. M. Kamali, S. Faraji-Dana, and A. Faraon, “Computational complex optical field imaging using a designed metasurface diffuser,” Optica 5(8), 924–931 (2018).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4(6), 625–632 (2017).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7(1), 13682 (2016).
[Crossref]

Khorasaninejad, M.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref]

Kildishev, A. V.

M. Song, D. Wang, S. Peana, S. Choudhury, P. Nyga, Z. A. Kudyshev, H. Yu, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Colors with plasmonic nanostructures: A full- spectrum review,” Appl. Phys. Rev. 6(4), 041308 (2019).
[Crossref]

Kim, R.-H.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Kimachi, A.

S. Tominaga and A. Kimachi, “Polarization imaging for material classification,” Opt. Eng. 47(12), 123201 (2008).
[Crossref]

Kivshar, Y. S.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref]

Kleiner, V.

Koh, S. C. W.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Kondou, N.

Kuan, C.-H.

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref]

Kudyshev, Z. A.

M. Song, D. Wang, S. Peana, S. Choudhury, P. Nyga, Z. A. Kudyshev, H. Yu, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Colors with plasmonic nanostructures: A full- spectrum review,” Appl. Phys. Rev. 6(4), 041308 (2019).
[Crossref]

Kumagai, T.

Kumar, K.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Kuo, H. Y.

R. J. Lin, V. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

Kwon, H.

Lai, Y.-C.

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref]

Lake, S. P.

T. York, L. Kahan, S. P. Lake, and V. Gruev, “Real-time high-resolution measurement of collagen alignment in dynamically loaded soft tissue,” J. Biomed. Opt. 19(6), 066011 (2014).
[Crossref]

Lalanne, P.

Lan, Y.-C.

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref]

Lee, E.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Lee, I. C.

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref]

Leitel, R.

Li, J.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Li, R.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Li, T.

R. J. Lin, V. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Liang, H.

D. Wang, H. Liang, H. Zhu, and S. Zhang, “A Bionic Camera-Based Polarization Navigation Sensor,” Sensors 14(7), 13006–13023 (2014).
[Crossref]

Liang, K.

T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence- polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19(12), 126002 (2014).
[Crossref]

Lin, D.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref]

Lin, R. J.

R. J. Lin, V. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Liu, J.

Z. Yang, Z. Wang, Y. Wang, X. Feng, M. Zhao, Z. Wan, L. Zhu, J. Liu, Y. Huang, J. Xia, and M. Wegener, “Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling,” Nat. Commun. 9(1), 4607 (2018).
[Crossref]

Liu, Z.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Lu, C.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

Majumdar, A.

Malyarchuk, V.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Marinov, R.

Marshall, J.

S. B. Powell, R. Garnett, J. Marshall, C. Rizk, and V. Gruev, “Bioinspired polarization vision enables underwater geolocalization,” Sci. Adv. 4(4), eaao6841 (2018).
[Crossref]

Matsuoka, H.

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

Miyata, M.

M. Miyata, M. Nakajima, and T. Hashimoto, “Impedance-matched dielectric metasurfaces for non-discrete wavefront engineering,” J. Appl. Phys. 125(10), 103106 (2019).
[Crossref]

M. Miyata, M. Nakajima, and T. Hashimoto, “High-Sensitivity Color Imaging Using Pixel-Scale Color Splitters Based on Dielectric Metasurfaces,” ACS Photonics 6(6), 1442–1450 (2019).
[Crossref]

M. Miyata, H. Hatada, and J. Takahara, “Full-Color Subwavelength Printing with Gap-Plasmonic Optical Antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref]

Miyatake, S.

Miyazaki, D.

Morimoto, T.

Myhre, G.

Nakajima, M.

M. Miyata, M. Nakajima, and T. Hashimoto, “High-Sensitivity Color Imaging Using Pixel-Scale Color Splitters Based on Dielectric Metasurfaces,” ACS Photonics 6(6), 1442–1450 (2019).
[Crossref]

M. Miyata, M. Nakajima, and T. Hashimoto, “Impedance-matched dielectric metasurfaces for non-discrete wavefront engineering,” J. Appl. Phys. 125(10), 103106 (2019).
[Crossref]

Narasimhan, S. G.

Nayar, S. K.

Neel, V. A.

E. Salomatina-Motts, V. A. Neel, and A. N. Yaroslavskaya, “Multimodal Polarization System for Imaging Skin Cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[Crossref]

Noda, T.

Nyga, P.

M. Song, D. Wang, S. Peana, S. Choudhury, P. Nyga, Z. A. Kudyshev, H. Yu, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Colors with plasmonic nanostructures: A full- spectrum review,” Appl. Phys. Rev. 6(4), 041308 (2019).
[Crossref]

Ogura, Y.

R. Horisaki, S. Irie, Y. Ogura, and J. Tanida, “Three-Dimensional Information Acquisition Using a Compound Imaging System,” Opt. Rev. 14(5), 347–350 (2007).
[Crossref]

Oh, J.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref]

Ohta, J.

Park, H.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Pau, S.

Peana, S.

M. Song, D. Wang, S. Peana, S. Choudhury, P. Nyga, Z. A. Kudyshev, H. Yu, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Colors with plasmonic nanostructures: A full- spectrum review,” Appl. Phys. Rev. 6(4), 041308 (2019).
[Crossref]

Peng, Z.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Perkins, R.

Pezzaniti, J. L.

J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 58880V (2005).
[Crossref]

C. A. Farlow, D. B. Chenault, J. L. Pezzaniti, K. D. Spradley, and M. G. Gulley, “Imaging polarimeter development and applications,” Proc. SPIE 4481, 118 (2002).
[Crossref]

Powell, S. B.

S. B. Powell, R. Garnett, J. Marshall, C. Rizk, and V. Gruev, “Bioinspired polarization vision enables underwater geolocalization,” Sci. Adv. 4(4), eaao6841 (2018).
[Crossref]

Pugh, E. N.

Rizk, C.

S. B. Powell, R. Garnett, J. Marshall, C. Rizk, and V. Gruev, “Bioinspired polarization vision enables underwater geolocalization,” Sci. Adv. 4(4), eaao6841 (2018).
[Crossref]

Rogers, J. A.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Rousso, D.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref]

Rowe, M. P.

Rubin, D.

T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence- polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19(12), 126002 (2014).
[Crossref]

Rubin, N. A.

N. A. Rubin, G. D’Aversa, P. Chevalier, Z. Shi, W. T. Chen, and F. Capasso, “Matrix Fourier optics enables a compact full-Stokes polarization camera,” Science 365(6448), eaax1839 (2019).
[Crossref]

Ryou, A.

Salomatina-Motts, E.

E. Salomatina-Motts, V. A. Neel, and A. N. Yaroslavskaya, “Multimodal Polarization System for Imaging Skin Cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[Crossref]

Sanjeev, V.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Sasagawa, K.

Schechner, Y. Y.

Sell, D.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref]

Shalaev, V. M.

M. Song, D. Wang, S. Peana, S. Choudhury, P. Nyga, Z. A. Kudyshev, H. Yu, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Colors with plasmonic nanostructures: A full- spectrum review,” Appl. Phys. Rev. 6(4), 041308 (2019).
[Crossref]

Shaw, J. A.

Shi, Z.

N. A. Rubin, G. D’Aversa, P. Chevalier, Z. Shi, W. T. Chen, and F. Capasso, “Matrix Fourier optics enables a compact full-Stokes polarization camera,” Science 365(6448), eaax1839 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Shishido, S.

Song, M.

M. Song, D. Wang, S. Peana, S. Choudhury, P. Nyga, Z. A. Kudyshev, H. Yu, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Colors with plasmonic nanostructures: A full- spectrum review,” Appl. Phys. Rev. 6(4), 041308 (2019).
[Crossref]

Song, Y. M.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Spradley, K. D.

C. A. Farlow, D. B. Chenault, J. L. Pezzaniti, K. D. Spradley, and M. G. Gulley, “Imaging polarimeter development and applications,” Proc. SPIE 4481, 118 (2002).
[Crossref]

Su, V.

R. J. Lin, V. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Su, V.-C.

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref]

Sudlow, G.

T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence- polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19(12), 126002 (2014).
[Crossref]

Takahara, J.

M. Miyata, H. Hatada, and J. Takahara, “Full-Color Subwavelength Printing with Gap-Plasmonic Optical Antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref]

Tanida, J.

Tokuda, T.

Tominaga, S.

S. Tominaga and A. Kimachi, “Polarization imaging for material classification,” Opt. Eng. 47(12), 123201 (2008).
[Crossref]

Tsai, D. P.

R. J. Lin, V. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref]

Tünnermann, A.

Tyo, J. S.

Vail, A.

Walraven, R.

R. Walraven, “Polarization imagery,” Opt. Eng. 20(1), 14–18 (1981).
[Crossref]

Wan, Z.

Z. Yang, Z. Wang, Y. Wang, X. Feng, M. Zhao, Z. Wan, L. Zhu, J. Liu, Y. Huang, J. Xia, and M. Wegener, “Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling,” Nat. Commun. 9(1), 4607 (2018).
[Crossref]

Wang, D.

M. Song, D. Wang, S. Peana, S. Choudhury, P. Nyga, Z. A. Kudyshev, H. Yu, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Colors with plasmonic nanostructures: A full- spectrum review,” Appl. Phys. Rev. 6(4), 041308 (2019).
[Crossref]

D. Wang, H. Liang, H. Zhu, and S. Zhang, “A Bionic Camera-Based Polarization Navigation Sensor,” Sensors 14(7), 13006–13023 (2014).
[Crossref]

Wang, J.

R. J. Lin, V. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Wang, Q.

Z. Wang, J. Chu, Q. Wang, and R. Zhang, “Single-Layer Nanowire Polarizer Integrated With Photodetector and Its Application for Polarization Navigation,” IEEE Sens. J. 16(17), 6579–6585 (2016).
[Crossref]

Wang, S.

R. J. Lin, V. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Wang, Y.

Z. Yang, Z. Wang, Y. Wang, X. Feng, M. Zhao, Z. Wan, L. Zhu, J. Liu, Y. Huang, J. Xia, and M. Wegener, “Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling,” Nat. Commun. 9(1), 4607 (2018).
[Crossref]

Wang, Z.

R. J. Lin, V. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Z. Yang, Z. Wang, Y. Wang, X. Feng, M. Zhao, Z. Wan, L. Zhu, J. Liu, Y. Huang, J. Xia, and M. Wegener, “Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling,” Nat. Commun. 9(1), 4607 (2018).
[Crossref]

Z. Wang, J. Chu, Q. Wang, and R. Zhang, “Single-Layer Nanowire Polarizer Integrated With Photodetector and Its Application for Polarization Navigation,” IEEE Sens. J. 16(17), 6579–6585 (2016).
[Crossref]

Wegener, M.

Z. Yang, Z. Wang, Y. Wang, X. Feng, M. Zhao, Z. Wan, L. Zhu, J. Liu, Y. Huang, J. Xia, and M. Wegener, “Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling,” Nat. Commun. 9(1), 4607 (2018).
[Crossref]

Wei, J. N.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Whitehead, J.

Whitehead, V. S.

Wolff, L. B.

L. B. Wolff and T. E. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Machine Intell. 13(7), 635–657 (1991).
[Crossref]

Wu, P. C.

R. J. Lin, V. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref]

Xia, J.

Z. Yang, Z. Wang, Y. Wang, X. Feng, M. Zhao, Z. Wan, L. Zhu, J. Liu, Y. Huang, J. Xia, and M. Wegener, “Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling,” Nat. Commun. 9(1), 4607 (2018).
[Crossref]

Xiao, J.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Xiao, X.

Xie, Y.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Yamada, K.

Yang, J.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref]

Yang, J. K. W.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Yang, R.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref]

Yang, Z.

Z. Yang, Z. Wang, Y. Wang, X. Feng, M. Zhao, Z. Wan, L. Zhu, J. Liu, Y. Huang, J. Xia, and M. Wegener, “Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling,” Nat. Commun. 9(1), 4607 (2018).
[Crossref]

Yaroslavskaya, A. N.

E. Salomatina-Motts, V. A. Neel, and A. N. Yaroslavskaya, “Multimodal Polarization System for Imaging Skin Cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[Crossref]

Yokogawa, S.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic Color Filters for CMOS Image Sensor Applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref]

York, T.

T. York, L. Kahan, S. P. Lake, and V. Gruev, “Real-time high-resolution measurement of collagen alignment in dynamically loaded soft tissue,” J. Biomed. Opt. 19(6), 066011 (2014).
[Crossref]

T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence- polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19(12), 126002 (2014).
[Crossref]

T. York and V. Gruev, “Characterization of a visible spectrum division-of-focal-plane polarimeter,” Appl. Opt. 51(22), 5392–5400 (2012).
[Crossref]

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
[Crossref]

Yu, H.

M. Song, D. Wang, S. Peana, S. Choudhury, P. Nyga, Z. A. Kudyshev, H. Yu, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Colors with plasmonic nanostructures: A full- spectrum review,” Appl. Phys. Rev. 6(4), 041308 (2019).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

Zhan, A.

Zhang, R.

Z. Wang, J. Chu, Q. Wang, and R. Zhang, “Single-Layer Nanowire Polarizer Integrated With Photodetector and Its Application for Polarization Navigation,” IEEE Sens. J. 16(17), 6579–6585 (2016).
[Crossref]

Zhang, S.

D. Wang, H. Liang, H. Zhu, and S. Zhang, “A Bionic Camera-Based Polarization Navigation Sensor,” Sensors 14(7), 13006–13023 (2014).
[Crossref]

Zhao, M.

Z. Yang, Z. Wang, Y. Wang, X. Feng, M. Zhao, Z. Wan, L. Zhu, J. Liu, Y. Huang, J. Xia, and M. Wegener, “Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling,” Nat. Commun. 9(1), 4607 (2018).
[Crossref]

Zheludev, N. I.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref]

Zhu, A. Y.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref]

Zhu, H.

D. Wang, H. Liang, H. Zhu, and S. Zhang, “A Bionic Camera-Based Polarization Navigation Sensor,” Sensors 14(7), 13006–13023 (2014).
[Crossref]

Zhu, L.

Z. Yang, Z. Wang, Y. Wang, X. Feng, M. Zhao, Z. Wan, L. Zhu, J. Liu, Y. Huang, J. Xia, and M. Wegener, “Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling,” Nat. Commun. 9(1), 4607 (2018).
[Crossref]

Zhu, S.

R. J. Lin, V. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

ACS Photonics (2)

E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, “Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces,” ACS Photonics 5(8), 3132–3140 (2018).
[Crossref]

M. Miyata, M. Nakajima, and T. Hashimoto, “High-Sensitivity Color Imaging Using Pixel-Scale Color Splitters Based on Dielectric Metasurfaces,” ACS Photonics 6(6), 1442–1450 (2019).
[Crossref]

Appl. Opt. (7)

Appl. Phys. Rev. (1)

M. Song, D. Wang, S. Peana, S. Choudhury, P. Nyga, Z. A. Kudyshev, H. Yu, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Colors with plasmonic nanostructures: A full- spectrum review,” Appl. Phys. Rev. 6(4), 041308 (2019).
[Crossref]

IEEE Sens. J. (2)

A. G. Andreou and Z. K. Kalayjian, “Polarization Imaging: Principles and Integrated Polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
[Crossref]

Z. Wang, J. Chu, Q. Wang, and R. Zhang, “Single-Layer Nanowire Polarizer Integrated With Photodetector and Its Application for Polarization Navigation,” IEEE Sens. J. 16(17), 6579–6585 (2016).
[Crossref]

IEEE Trans. Pattern Anal. Machine Intell. (1)

L. B. Wolff and T. E. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Machine Intell. 13(7), 635–657 (1991).
[Crossref]

J. Appl. Phys. (1)

M. Miyata, M. Nakajima, and T. Hashimoto, “Impedance-matched dielectric metasurfaces for non-discrete wavefront engineering,” J. Appl. Phys. 125(10), 103106 (2019).
[Crossref]

J. Biomed. Opt. (2)

T. York, L. Kahan, S. P. Lake, and V. Gruev, “Real-time high-resolution measurement of collagen alignment in dynamically loaded soft tissue,” J. Biomed. Opt. 19(6), 066011 (2014).
[Crossref]

T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence- polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19(12), 126002 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Lett. (5)

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral Chiral Imaging with a Metalens,” Nano Lett. 16(7), 4595–4600 (2016).
[Crossref]

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic Color Filters for CMOS Image Sensor Applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref]

M. Miyata, H. Hatada, and J. Takahara, “Full-Color Subwavelength Printing with Gap-Plasmonic Optical Antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref]

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref]

Nanophotonics (1)

S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, “A review of dielectric optical metasurfaces for wavefront control,” Nanophotonics 7(6), 1041–1068 (2018).
[Crossref]

Nat. Commun. (2)

Z. Yang, Z. Wang, Y. Wang, X. Feng, M. Zhao, Z. Wan, L. Zhu, J. Liu, Y. Huang, J. Xia, and M. Wegener, “Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling,” Nat. Commun. 9(1), 4607 (2018).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7(1), 13682 (2016).
[Crossref]

Nat. Mater. (2)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

Nat. Nanotechnol. (4)

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

R. J. Lin, V. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Nat. Photonics (1)

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Nature (1)

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref]

Opt. Eng. (2)

S. Tominaga and A. Kimachi, “Polarization imaging for material classification,” Opt. Eng. 47(12), 123201 (2008).
[Crossref]

R. Walraven, “Polarization imagery,” Opt. Eng. 20(1), 14–18 (1981).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Opt. Mater. Express (1)

Opt. Rev. (1)

R. Horisaki, S. Irie, Y. Ogura, and J. Tanida, “Three-Dimensional Information Acquisition Using a Compound Imaging System,” Opt. Rev. 14(5), 347–350 (2007).
[Crossref]

Opt. Spectrosc. (1)

E. Salomatina-Motts, V. A. Neel, and A. N. Yaroslavskaya, “Multimodal Polarization System for Imaging Skin Cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[Crossref]

Optica (4)

Proc. SPIE (2)

C. A. Farlow, D. B. Chenault, J. L. Pezzaniti, K. D. Spradley, and M. G. Gulley, “Imaging polarimeter development and applications,” Proc. SPIE 4481, 118 (2002).
[Crossref]

J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 58880V (2005).
[Crossref]

Sci. Adv. (2)

S. B. Powell, R. Garnett, J. Marshall, C. Rizk, and V. Gruev, “Bioinspired polarization vision enables underwater geolocalization,” Sci. Adv. 4(4), eaao6841 (2018).
[Crossref]

S. Colburn, A. Zhan, and A. Majumdar, “Metasurface optics for full-color computational imaging,” Sci. Adv. 4(2), eaar2114 (2018).
[Crossref]

Science (4)

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref]

N. A. Rubin, G. D’Aversa, P. Chevalier, Z. Shi, W. T. Chen, and F. Capasso, “Matrix Fourier optics enables a compact full-Stokes polarization camera,” Science 365(6448), eaax1839 (2019).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref]

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref]

Sensors (1)

D. Wang, H. Liang, H. Zhu, and S. Zhang, “A Bionic Camera-Based Polarization Navigation Sensor,” Sensors 14(7), 13006–13023 (2014).
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       Video showing the evolution of images formed by metalenses as the incident polarization basis changes.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Polarization imaging based on compound-eye metasurface optics. (a, b) Cross-sectional diagrams of (a) conventional division-of-focal-plane (DoFP) polarization camera and (b) metasurface-based polarization camera. (c) Image-formation model of polarization imaging with compound-eye metalens. For clarity, letter color in images represents polarization basis.
Fig. 2.
Fig. 2. Design of polarization-splitting metalenses. (a) Side view and (b) top view of silicon nitride (SiN) nanopost with rectangular cross section on quartz substrate. Nanoposts along orthogonal coordinates were used to split 0°/90° polarization bases, and 45°-rotated nanoposts were used to split -45°/+45° polarization bases. (c) Ideal phase profiles to split two orthogonal bases of polarization and respectively focus them to left (x = -50 µm, y = 0 µm) and right centers (x = +50 µm, y = 0 µm) on focal plane. (d) Designed phase profiles with nanoposts. Only nanopost widths (w1, w2) = 120–280 nm were used to facilitate large-area-fabrication. (e) Optical image of fabricated metalenses. Polarization basis for each metalens is illustrated with colored arrows. Scale bar: 50 µm. (f) Scanning electron microscopy images of fabricated metalenses. Scale bars: 1 µm.
Fig. 3.
Fig. 3. Polarization-dependent focusing with metalenses. (a) Measured intensity profiles on metalenses’ focal plane under plane light illumination (520-nm wavelength) with different linear polarization states. Polarization basis is illustrated with colored arrows. Scale bars: 50 µm. (b) Zoomed-in intensity profiles on focusing spots indicated with dotted squares in (a). Scale bars: 5 µm. (c) Focusing intensity at each focal point as function of incident angle of polarization (AoP).
Fig. 4.
Fig. 4. Polarization-dependent imaging with metalenses. Polarizer-covered mandrill image was formed through metalenses at 520-nm wavelength while rotating polarizer. Polarization basis is illustrated with colored arrows. Scale bars: 50 µm.
Fig. 5.
Fig. 5. Polarization imaging with compound-eye metalens. (a) Optical setup for virtually simulating proposed system by imaging plane where image sensor is assumed to be placed. 1.0 × 1.0 mm2 compound-eye metalens that simultaneously creates 10 × 10 images was used. Printed mandrill image covered with four polarizer films was used as target object. White arrows in image indicate transmission axis of films. (b) Measured raw compound-eye image consisting of 10 × 10 unit images. Image size is 400 × 400 pixels. Scale bar: 200 µm. Its enlarged images are also shown. (c) Intensity, AoP, and degree of linear polarization (DoLP) images reconstructed from raw image. Each image consists of 200 × 200 pixels.
Fig. 6.
Fig. 6. Imaging sensitivity. (a) Test polarization image composed of four polarization bases. (b, c) Raw captured images with image-formation models of (b) compound-eye metalens system and (c) conventional DoFP system based on micropolarizers. (d–f) Simulated errors of reconstructed images with both system models as function of peak signal-to-noise ratio (PSNR) of raw sensor signals. (d) PSNRs of intensity image, (e) root-mean-square (RMS) errors of AoP, and (f) RMS errors of DoLP. (g, h) Examples of images reconstructed with models of (g) compound-eye metalens system and (h) conventional DoFP system with sensor noise of 24 and 48 dB. Their visualized errors (value differences from original image) within dotted squares are also shown in each inset.
Fig. 7.
Fig. 7. Transmission properties of silicon nitride (SiN) nanopost arrays on quartz substrate. (a, b) Phase shifts and intensity transmittances as functions of nanopost widths w1 and w2 under (a) x- and (b) y-polarized light illumination at 520-nm wavelength. White dotted squares indicate geometry-parameter range of w1, w2 = 120–280 nm.
Fig. 8.
Fig. 8. Optical setups for metalens characterizations. (a) Schematic illustration of optical setup used for characterizing polarization-dependent focusing of metalenses. (b) Schematic illustration of optical setup used for characterizing polarization-dependent imaging of metalenses.
Fig. 9.
Fig. 9. Simulated potential performance of dielectric metesurfeces for polarimetry (a) Schematic of polarization splitting from polarization splitter (b) Designs of polarization splitter using SiN nanoposts with nanopost widths of w1, w2 = 80–350 nm or w1, w2 = 120–280 nm. (c) Diffraction efficiencies for two designs under plane light illumination (520 nm wavelength) as function of incident angle of polarization (AoP).
Fig. 10.
Fig. 10. Chromatic aberration of metalenses. (a) Optical setup for metalens characterizations. Bandpass filters are alternatively inserted into setup to extract images corresponding to wavelengths of 450, 520, and 635 nm. (b) Images captured at these wavelengths.
Fig. 11.
Fig. 11. Impact of metalens characteristics on polarimetry accuracy and noise tolerance. (a–c) Impact of extinction ratio (ER) of metalenses. (a) Peak signal-to-noise ratios (PSNRs) of intensity image, (b) root-mean-square (RMS) errors of AoP, and (c) RMS errors of degree of linear polarization (DoLP) as function of PSNR of raw sensor signals. Light utilization efficiency of metalenses was 68.4% for all plots. (d–f) Impact of light utilization efficiency of metalenses. (d) PSNRs of intensity image, (e) RMS errors of AoP, and (f) RMS errors of DoLP as function of PSNR of raw sensor signals. ER of metalenses was 19.2 for all plots. Errors with division-of-focal-plane (DoFP) polarization imaging system are also plotted as black dots in all graphs for reference.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Φ = [ T C 1 T C N ] ,
φ = 2 π λ d ( ( x x f ) 2 + y 2 + z f 2 x f 2 + z f 2 ) ,
E = 1 2 ( | T x e i φ x e i φ x i | 2 + | T y e i φ y e i φ y i | 2 ) ,

Metrics