Abstract

The behaviour and function of dynamic samples can be investigated using optical imaging approaches with high temporal resolution and multidimensional acquisition. Snapshot techniques have been developed in order to meet these demands, however they are often designed to study a specific parameter, such as spectral properties, limiting their applicability. Here we present and demonstrate a frequency recognition algorithm for multiple exposures (FRAME) snapshot imaging approach, which can be reconfigured to capture polarization, temporal, depth-of-focus and spectral information by simply changing the filters used. FRAME is implemented by splitting the emitted light from a sample into four channels, filtering the light and then applying a unique spatial modulation encoding before recombining all the channels. The multiplexed information is collected in a single exposure using a single detector and extracted in post processing of the Fourier transform of the collected image, where each channel image is located in a distinct region of the Fourier domain. The approach allows for individual intensity control in each channel, has easily interchangeable filters and can be used in conjunction with, in principle, all 2D detectors, making it a low cost and versatile snapshot multidimensional imaging technique.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Implementation of a multiplexed structured illumination method to achieve snapshot multispectral imaging

Karolina Dorozynska and Elias Kristensson
Opt. Express 25(15) 17211-17226 (2017)

Light-guide snapshot imaging spectrometer for remote sensing applications

Ye Wang, Michal E. Pawlowski, Shuna Cheng, Jason G. Dwight, Razvan I. Stoian, Jiawei Lu, David Alexander, and Tomasz S. Tkaczyk
Opt. Express 27(11) 15701-15725 (2019)

Design and fabrication of a low-cost, multispectral imaging system

Scott A. Mathews
Appl. Opt. 47(28) F71-F76 (2008)

References

  • View by:
  • |
  • |
  • |

  1. L. Gao and L. V. Wang, “A review of snapshot multidimensional optical imaging: measuring photon tags in parallel,” Phys. Rep. 616, 1–37 (2016).
    [Crossref]
  2. A. Manakov, J. Restrepo, O. Klehm, R. Hegedus, E. Eisemann, H.-P. Seidel, and I. Ihrke, “A Reconfigurable Camera Add-On for High Dynamic Range, Multispectral, Polarization, and Light-Field Imaging,” ACM Trans. Graph. 32(4), 1 (2013).
    [Crossref]
  3. J. T. Fredrich, “3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes,” Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 24(7), 551–561 (1999).
    [Crossref]
  4. J. Kim and A. Ghosh, “Polarized Light Field Imaging for Single-Shot Reflectance Separation,” Sensors 18(11), 3803 (2018).
    [Crossref]
  5. S. G. Demos and R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36(1), 150–155 (1997).
    [Crossref]
  6. X. Xu, Y. Qiao, and B. Qiu, “Reconstructing the surface of transparent objects by polarized light measurements,” Opt. Express 25(21), 26296–26309 (2017).
    [Crossref]
  7. J. Hunicz and D. Piernikarski, “Investigation of combustion in a gasoline engine using spectrophotometric methods,” Proc. SPIE 4516, 307–314 (2001).
    [Crossref]
  8. P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B: Photophys. Laser Chem. 53(4), 260–264 (1991).
    [Crossref]
  9. P. S. Hsu, D. Lauriola, N. Jiang, J. D. Miller, J. R. Gord, and S. Roy, “Fiber-coupled, UV–SWIR hyperspectral imaging sensor for combustion diagnostics,” Appl. Opt. 56(21), 6029–6034 (2017).
    [Crossref]
  10. J. W. Lichtman and J.-A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
    [Crossref]
  11. D. M. Chudakov, S. Lukyanov, and K. A. Lukyanov, “Fluorescent proteins as a toolkit for in vivo imaging,” Trends Biotechnol. 23(12), 605–613 (2005).
    [Crossref]
  12. C. E. Volin, B. K. Ford, M. R. Descour, J. P. Garcia, D. W. Wilson, P. D. Maker, and G. H. Bearman, “High-speed spectral imager for imaging transient fluorescence phenomena,” Appl. Opt. 37(34), 8112–8119 (1998).
    [Crossref]
  13. T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
    [Crossref]
  14. A. Jung, R. Michels, and G. Rainer, “Portable snapshot spectral imaging for agriculture,” Acta agrar. Debr. 150, 221–225 (2018).
    [Crossref]
  15. N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
    [Crossref]
  16. A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47, B44–B51 (2008).
  17. J. G. Dwight and T. S. Tkaczyk, “Lenslet array tunable snapshot imaging spectrometer (LATIS) for hyperspectral fluorescence microscopy,” Biomed. Opt. Express 8(3), 1950–1964 (2017).
    [Crossref]
  18. A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Video rate spectral imaging using a coded aperture snapshot spectral imager,” Opt. Express 17(8), 6368–6388 (2009).
    [Crossref]
  19. E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Aldén, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst. 36(3), 4585–4591 (2017).
    [Crossref]
  20. A. Ehn, J. Bood, Z. Li, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light: Sci. Appl. 6(9), e17045 (2017).
    [Crossref]
  21. K. Dorozynska and E. Kristensson, “Implementation of a multiplexed structured illumination method to achieve snapshot multispectral imaging,” Opt. Express 25(15), 17211–17226 (2017).
    [Crossref]
  22. Z. Li, J. Borggren, E. Berrocal, A. Ehn, M. Aldén, M. Richter, and E. Kristensson, “Simultaneous multispectral imaging of flame species using Frequency Recognition Algorithm for Multiple Exposures (FRAME),” Combust. Flame 192, 160–169 (2018).
    [Crossref]
  23. J. Liang and L. V. Wang, “Single-shot ultrafast optical imaging,” Optica 5(9), 1113–1127 (2018).
    [Crossref]
  24. S. R. Khan, M. Feldman, and B. K. Gunturk, “Extracting sub-exposure images from a single capture through Fourier-based optical modulation,” Signal Process. Image Commun. 60, 107–115 (2018).
    [Crossref]
  25. M. Gragston, C. D. Smith, and Z. Zhang, “High-speed flame chemiluminescence imaging using time-multiplexed structured detection,” Appl. Opt. 57(11), 2923–2929 (2018).
    [Crossref]
  26. X. Liu, J. Liu, C. Jiang, F. Vetrone, and J. Liang, “Single-shot compressed optical-streaking ultra-high-speed photography,” Opt. Lett. 44(6), 1387–1390 (2019).
    [Crossref]
  27. J. Liang, L. Zhu, and L. V. Want, “Single-shot real-time femtosecond imaging of temporal focusing,” Light: Sci. Appl. 7(1), 42 (2018).
    [Crossref]
  28. M. Gragston, C. Smith, D. Kartashov, M. N. Shneider, and Z. Shang, “Single-shot nanosecond-resolution multiframe passive imaging by multiplexed structured image capture,” Opt. Express 26(22), 28441–28452 (2018).
    [Crossref]
  29. K. Nakagawa and A. Iwasaki, “Sequentially timed all-optical all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
    [Crossref]
  30. T. Suzuki and R. Hida, “Single-shot 25-frame burst imaging of ultrafast phase transition of Ge2Sb2Te5 with a sub-picosecond resolution,” Appl. Phys. Express 10(9), 092502 (2017).
    [Crossref]
  31. B. K. Gunturk and M. Feldman, “Frequency division multiplexed imaging,” Proc. SPIE 8660, 86600P (2013).
    [Crossref]
  32. M. Gragston, C. D. Smith, J. Harrold, and Z. Zhang, “Multiplexed structured image capture to increase the field of view for a single exposure,” OSA Continuum 2(1), 225–235 (2019).
    [Crossref]
  33. E. Kristensson, A. Ehn, and E. Berrocal, “High dynamic spectroscopy using a digital micromirror device and periodic shadowing,” Opt. Express 25(1), 212–222 (2017).
    [Crossref]
  34. E. Berrocal, J. Johnsson, E. Kristensson, and M. Aldén, “Single scattering detection in turbid media using single-phase structured illumination filtering,” J. Europ. Opt. Soc. Rap. Public. 7, 12015 (2012).
    [Crossref]
  35. T. Zimmermann, “Spectral imaging and linear unmixing in light microscopy,” Adv. Biochem. Eng./Biotechnol. 95, 245–265 (2005).
    [Crossref]

2019 (2)

2018 (8)

J. Liang, L. Zhu, and L. V. Want, “Single-shot real-time femtosecond imaging of temporal focusing,” Light: Sci. Appl. 7(1), 42 (2018).
[Crossref]

M. Gragston, C. Smith, D. Kartashov, M. N. Shneider, and Z. Shang, “Single-shot nanosecond-resolution multiframe passive imaging by multiplexed structured image capture,” Opt. Express 26(22), 28441–28452 (2018).
[Crossref]

Z. Li, J. Borggren, E. Berrocal, A. Ehn, M. Aldén, M. Richter, and E. Kristensson, “Simultaneous multispectral imaging of flame species using Frequency Recognition Algorithm for Multiple Exposures (FRAME),” Combust. Flame 192, 160–169 (2018).
[Crossref]

J. Liang and L. V. Wang, “Single-shot ultrafast optical imaging,” Optica 5(9), 1113–1127 (2018).
[Crossref]

S. R. Khan, M. Feldman, and B. K. Gunturk, “Extracting sub-exposure images from a single capture through Fourier-based optical modulation,” Signal Process. Image Commun. 60, 107–115 (2018).
[Crossref]

M. Gragston, C. D. Smith, and Z. Zhang, “High-speed flame chemiluminescence imaging using time-multiplexed structured detection,” Appl. Opt. 57(11), 2923–2929 (2018).
[Crossref]

J. Kim and A. Ghosh, “Polarized Light Field Imaging for Single-Shot Reflectance Separation,” Sensors 18(11), 3803 (2018).
[Crossref]

A. Jung, R. Michels, and G. Rainer, “Portable snapshot spectral imaging for agriculture,” Acta agrar. Debr. 150, 221–225 (2018).
[Crossref]

2017 (8)

X. Xu, Y. Qiao, and B. Qiu, “Reconstructing the surface of transparent objects by polarized light measurements,” Opt. Express 25(21), 26296–26309 (2017).
[Crossref]

J. G. Dwight and T. S. Tkaczyk, “Lenslet array tunable snapshot imaging spectrometer (LATIS) for hyperspectral fluorescence microscopy,” Biomed. Opt. Express 8(3), 1950–1964 (2017).
[Crossref]

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Aldén, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst. 36(3), 4585–4591 (2017).
[Crossref]

A. Ehn, J. Bood, Z. Li, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light: Sci. Appl. 6(9), e17045 (2017).
[Crossref]

K. Dorozynska and E. Kristensson, “Implementation of a multiplexed structured illumination method to achieve snapshot multispectral imaging,” Opt. Express 25(15), 17211–17226 (2017).
[Crossref]

P. S. Hsu, D. Lauriola, N. Jiang, J. D. Miller, J. R. Gord, and S. Roy, “Fiber-coupled, UV–SWIR hyperspectral imaging sensor for combustion diagnostics,” Appl. Opt. 56(21), 6029–6034 (2017).
[Crossref]

E. Kristensson, A. Ehn, and E. Berrocal, “High dynamic spectroscopy using a digital micromirror device and periodic shadowing,” Opt. Express 25(1), 212–222 (2017).
[Crossref]

T. Suzuki and R. Hida, “Single-shot 25-frame burst imaging of ultrafast phase transition of Ge2Sb2Te5 with a sub-picosecond resolution,” Appl. Phys. Express 10(9), 092502 (2017).
[Crossref]

2016 (1)

L. Gao and L. V. Wang, “A review of snapshot multidimensional optical imaging: measuring photon tags in parallel,” Phys. Rep. 616, 1–37 (2016).
[Crossref]

2014 (1)

K. Nakagawa and A. Iwasaki, “Sequentially timed all-optical all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

2013 (3)

B. K. Gunturk and M. Feldman, “Frequency division multiplexed imaging,” Proc. SPIE 8660, 86600P (2013).
[Crossref]

A. Manakov, J. Restrepo, O. Klehm, R. Hegedus, E. Eisemann, H.-P. Seidel, and I. Ihrke, “A Reconfigurable Camera Add-On for High Dynamic Range, Multispectral, Polarization, and Light-Field Imaging,” ACM Trans. Graph. 32(4), 1 (2013).
[Crossref]

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

2012 (1)

E. Berrocal, J. Johnsson, E. Kristensson, and M. Aldén, “Single scattering detection in turbid media using single-phase structured illumination filtering,” J. Europ. Opt. Soc. Rap. Public. 7, 12015 (2012).
[Crossref]

2009 (1)

2008 (1)

2005 (3)

J. W. Lichtman and J.-A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
[Crossref]

D. M. Chudakov, S. Lukyanov, and K. A. Lukyanov, “Fluorescent proteins as a toolkit for in vivo imaging,” Trends Biotechnol. 23(12), 605–613 (2005).
[Crossref]

T. Zimmermann, “Spectral imaging and linear unmixing in light microscopy,” Adv. Biochem. Eng./Biotechnol. 95, 245–265 (2005).
[Crossref]

2003 (1)

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[Crossref]

2001 (1)

J. Hunicz and D. Piernikarski, “Investigation of combustion in a gasoline engine using spectrophotometric methods,” Proc. SPIE 4516, 307–314 (2001).
[Crossref]

1999 (1)

J. T. Fredrich, “3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes,” Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 24(7), 551–561 (1999).
[Crossref]

1998 (1)

1997 (1)

1991 (1)

P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B: Photophys. Laser Chem. 53(4), 260–264 (1991).
[Crossref]

Aldén, M.

Z. Li, J. Borggren, E. Berrocal, A. Ehn, M. Aldén, M. Richter, and E. Kristensson, “Simultaneous multispectral imaging of flame species using Frequency Recognition Algorithm for Multiple Exposures (FRAME),” Combust. Flame 192, 160–169 (2018).
[Crossref]

A. Ehn, J. Bood, Z. Li, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light: Sci. Appl. 6(9), e17045 (2017).
[Crossref]

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Aldén, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst. 36(3), 4585–4591 (2017).
[Crossref]

E. Berrocal, J. Johnsson, E. Kristensson, and M. Aldén, “Single scattering detection in turbid media using single-phase structured illumination filtering,” J. Europ. Opt. Soc. Rap. Public. 7, 12015 (2012).
[Crossref]

Alfano, R. R.

Andersson-Engels, S.

P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B: Photophys. Laser Chem. 53(4), 260–264 (1991).
[Crossref]

Bearman, G. H.

Berrocal, E.

Z. Li, J. Borggren, E. Berrocal, A. Ehn, M. Aldén, M. Richter, and E. Kristensson, “Simultaneous multispectral imaging of flame species using Frequency Recognition Algorithm for Multiple Exposures (FRAME),” Combust. Flame 192, 160–169 (2018).
[Crossref]

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Aldén, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst. 36(3), 4585–4591 (2017).
[Crossref]

E. Kristensson, A. Ehn, and E. Berrocal, “High dynamic spectroscopy using a digital micromirror device and periodic shadowing,” Opt. Express 25(1), 212–222 (2017).
[Crossref]

E. Berrocal, J. Johnsson, E. Kristensson, and M. Aldén, “Single scattering detection in turbid media using single-phase structured illumination filtering,” J. Europ. Opt. Soc. Rap. Public. 7, 12015 (2012).
[Crossref]

Bood, J.

A. Ehn, J. Bood, Z. Li, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light: Sci. Appl. 6(9), e17045 (2017).
[Crossref]

Borggren, J.

Z. Li, J. Borggren, E. Berrocal, A. Ehn, M. Aldén, M. Richter, and E. Kristensson, “Simultaneous multispectral imaging of flame species using Frequency Recognition Algorithm for Multiple Exposures (FRAME),” Combust. Flame 192, 160–169 (2018).
[Crossref]

Brady, D.

Brady, D. J.

Chudakov, D. M.

D. M. Chudakov, S. Lukyanov, and K. A. Lukyanov, “Fluorescent proteins as a toolkit for in vivo imaging,” Trends Biotechnol. 23(12), 605–613 (2005).
[Crossref]

Conchello, J.-A.

J. W. Lichtman and J.-A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
[Crossref]

Demos, S. G.

Descour, M. R.

Dorozynska, K.

Dwight, J. G.

Ehn, A.

Z. Li, J. Borggren, E. Berrocal, A. Ehn, M. Aldén, M. Richter, and E. Kristensson, “Simultaneous multispectral imaging of flame species using Frequency Recognition Algorithm for Multiple Exposures (FRAME),” Combust. Flame 192, 160–169 (2018).
[Crossref]

E. Kristensson, A. Ehn, and E. Berrocal, “High dynamic spectroscopy using a digital micromirror device and periodic shadowing,” Opt. Express 25(1), 212–222 (2017).
[Crossref]

A. Ehn, J. Bood, Z. Li, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light: Sci. Appl. 6(9), e17045 (2017).
[Crossref]

Eisemann, E.

A. Manakov, J. Restrepo, O. Klehm, R. Hegedus, E. Eisemann, H.-P. Seidel, and I. Ihrke, “A Reconfigurable Camera Add-On for High Dynamic Range, Multispectral, Polarization, and Light-Field Imaging,” ACM Trans. Graph. 32(4), 1 (2013).
[Crossref]

Feldman, M.

S. R. Khan, M. Feldman, and B. K. Gunturk, “Extracting sub-exposure images from a single capture through Fourier-based optical modulation,” Signal Process. Image Commun. 60, 107–115 (2018).
[Crossref]

B. K. Gunturk and M. Feldman, “Frequency division multiplexed imaging,” Proc. SPIE 8660, 86600P (2013).
[Crossref]

Ford, B. K.

Fredrich, J. T.

J. T. Fredrich, “3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes,” Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 24(7), 551–561 (1999).
[Crossref]

Gao, L.

L. Gao and L. V. Wang, “A review of snapshot multidimensional optical imaging: measuring photon tags in parallel,” Phys. Rep. 616, 1–37 (2016).
[Crossref]

Garcia, J. P.

Ghosh, A.

J. Kim and A. Ghosh, “Polarized Light Field Imaging for Single-Shot Reflectance Separation,” Sensors 18(11), 3803 (2018).
[Crossref]

Gord, J. R.

Gragston, M.

Gunturk, B. K.

S. R. Khan, M. Feldman, and B. K. Gunturk, “Extracting sub-exposure images from a single capture through Fourier-based optical modulation,” Signal Process. Image Commun. 60, 107–115 (2018).
[Crossref]

B. K. Gunturk and M. Feldman, “Frequency division multiplexed imaging,” Proc. SPIE 8660, 86600P (2013).
[Crossref]

Hagen, N.

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Harrold, J.

Hegedus, R.

A. Manakov, J. Restrepo, O. Klehm, R. Hegedus, E. Eisemann, H.-P. Seidel, and I. Ihrke, “A Reconfigurable Camera Add-On for High Dynamic Range, Multispectral, Polarization, and Light-Field Imaging,” ACM Trans. Graph. 32(4), 1 (2013).
[Crossref]

Hida, R.

T. Suzuki and R. Hida, “Single-shot 25-frame burst imaging of ultrafast phase transition of Ge2Sb2Te5 with a sub-picosecond resolution,” Appl. Phys. Express 10(9), 092502 (2017).
[Crossref]

Hsu, P. S.

Hunicz, J.

J. Hunicz and D. Piernikarski, “Investigation of combustion in a gasoline engine using spectrophotometric methods,” Proc. SPIE 4516, 307–314 (2001).
[Crossref]

Ihrke, I.

A. Manakov, J. Restrepo, O. Klehm, R. Hegedus, E. Eisemann, H.-P. Seidel, and I. Ihrke, “A Reconfigurable Camera Add-On for High Dynamic Range, Multispectral, Polarization, and Light-Field Imaging,” ACM Trans. Graph. 32(4), 1 (2013).
[Crossref]

Iwasaki, A.

K. Nakagawa and A. Iwasaki, “Sequentially timed all-optical all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Jiang, C.

Jiang, N.

John, R.

Johnsson, J.

E. Berrocal, J. Johnsson, E. Kristensson, and M. Aldén, “Single scattering detection in turbid media using single-phase structured illumination filtering,” J. Europ. Opt. Soc. Rap. Public. 7, 12015 (2012).
[Crossref]

Jung, A.

A. Jung, R. Michels, and G. Rainer, “Portable snapshot spectral imaging for agriculture,” Acta agrar. Debr. 150, 221–225 (2018).
[Crossref]

Kartashov, D.

Kauranen, P.

P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B: Photophys. Laser Chem. 53(4), 260–264 (1991).
[Crossref]

Khan, S. R.

S. R. Khan, M. Feldman, and B. K. Gunturk, “Extracting sub-exposure images from a single capture through Fourier-based optical modulation,” Signal Process. Image Commun. 60, 107–115 (2018).
[Crossref]

Kim, J.

J. Kim and A. Ghosh, “Polarized Light Field Imaging for Single-Shot Reflectance Separation,” Sensors 18(11), 3803 (2018).
[Crossref]

Klehm, O.

A. Manakov, J. Restrepo, O. Klehm, R. Hegedus, E. Eisemann, H.-P. Seidel, and I. Ihrke, “A Reconfigurable Camera Add-On for High Dynamic Range, Multispectral, Polarization, and Light-Field Imaging,” ACM Trans. Graph. 32(4), 1 (2013).
[Crossref]

Kristensson, E.

Z. Li, J. Borggren, E. Berrocal, A. Ehn, M. Aldén, M. Richter, and E. Kristensson, “Simultaneous multispectral imaging of flame species using Frequency Recognition Algorithm for Multiple Exposures (FRAME),” Combust. Flame 192, 160–169 (2018).
[Crossref]

K. Dorozynska and E. Kristensson, “Implementation of a multiplexed structured illumination method to achieve snapshot multispectral imaging,” Opt. Express 25(15), 17211–17226 (2017).
[Crossref]

E. Kristensson, A. Ehn, and E. Berrocal, “High dynamic spectroscopy using a digital micromirror device and periodic shadowing,” Opt. Express 25(1), 212–222 (2017).
[Crossref]

A. Ehn, J. Bood, Z. Li, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light: Sci. Appl. 6(9), e17045 (2017).
[Crossref]

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Aldén, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst. 36(3), 4585–4591 (2017).
[Crossref]

E. Berrocal, J. Johnsson, E. Kristensson, and M. Aldén, “Single scattering detection in turbid media using single-phase structured illumination filtering,” J. Europ. Opt. Soc. Rap. Public. 7, 12015 (2012).
[Crossref]

Kudenov, M. W.

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Lauriola, D.

Li, Z.

Z. Li, J. Borggren, E. Berrocal, A. Ehn, M. Aldén, M. Richter, and E. Kristensson, “Simultaneous multispectral imaging of flame species using Frequency Recognition Algorithm for Multiple Exposures (FRAME),” Combust. Flame 192, 160–169 (2018).
[Crossref]

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Aldén, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst. 36(3), 4585–4591 (2017).
[Crossref]

A. Ehn, J. Bood, Z. Li, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light: Sci. Appl. 6(9), e17045 (2017).
[Crossref]

Liang, J.

Lichtman, J. W.

J. W. Lichtman and J.-A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
[Crossref]

Liu, J.

Liu, X.

Lukyanov, K. A.

D. M. Chudakov, S. Lukyanov, and K. A. Lukyanov, “Fluorescent proteins as a toolkit for in vivo imaging,” Trends Biotechnol. 23(12), 605–613 (2005).
[Crossref]

Lukyanov, S.

D. M. Chudakov, S. Lukyanov, and K. A. Lukyanov, “Fluorescent proteins as a toolkit for in vivo imaging,” Trends Biotechnol. 23(12), 605–613 (2005).
[Crossref]

Maker, P. D.

Manakov, A.

A. Manakov, J. Restrepo, O. Klehm, R. Hegedus, E. Eisemann, H.-P. Seidel, and I. Ihrke, “A Reconfigurable Camera Add-On for High Dynamic Range, Multispectral, Polarization, and Light-Field Imaging,” ACM Trans. Graph. 32(4), 1 (2013).
[Crossref]

Michels, R.

A. Jung, R. Michels, and G. Rainer, “Portable snapshot spectral imaging for agriculture,” Acta agrar. Debr. 150, 221–225 (2018).
[Crossref]

Miller, J. D.

Nakagawa, K.

K. Nakagawa and A. Iwasaki, “Sequentially timed all-optical all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Pepperkok, R.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[Crossref]

Piernikarski, D.

J. Hunicz and D. Piernikarski, “Investigation of combustion in a gasoline engine using spectrophotometric methods,” Proc. SPIE 4516, 307–314 (2001).
[Crossref]

Pitsianis, N. P.

Qiao, Y.

Qiu, B.

Rainer, G.

A. Jung, R. Michels, and G. Rainer, “Portable snapshot spectral imaging for agriculture,” Acta agrar. Debr. 150, 221–225 (2018).
[Crossref]

Restrepo, J.

A. Manakov, J. Restrepo, O. Klehm, R. Hegedus, E. Eisemann, H.-P. Seidel, and I. Ihrke, “A Reconfigurable Camera Add-On for High Dynamic Range, Multispectral, Polarization, and Light-Field Imaging,” ACM Trans. Graph. 32(4), 1 (2013).
[Crossref]

Richter, M.

Z. Li, J. Borggren, E. Berrocal, A. Ehn, M. Aldén, M. Richter, and E. Kristensson, “Simultaneous multispectral imaging of flame species using Frequency Recognition Algorithm for Multiple Exposures (FRAME),” Combust. Flame 192, 160–169 (2018).
[Crossref]

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Aldén, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst. 36(3), 4585–4591 (2017).
[Crossref]

Rietdorf, J.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[Crossref]

Roy, S.

Seidel, H.-P.

A. Manakov, J. Restrepo, O. Klehm, R. Hegedus, E. Eisemann, H.-P. Seidel, and I. Ihrke, “A Reconfigurable Camera Add-On for High Dynamic Range, Multispectral, Polarization, and Light-Field Imaging,” ACM Trans. Graph. 32(4), 1 (2013).
[Crossref]

Shang, Z.

Shneider, M. N.

Smith, C.

Smith, C. D.

Sun, X.

Suzuki, T.

T. Suzuki and R. Hida, “Single-shot 25-frame burst imaging of ultrafast phase transition of Ge2Sb2Te5 with a sub-picosecond resolution,” Appl. Phys. Express 10(9), 092502 (2017).
[Crossref]

Svanberg, S.

P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B: Photophys. Laser Chem. 53(4), 260–264 (1991).
[Crossref]

Tkaczyk, T. S.

Vetrone, F.

Volin, C. E.

Wagadarikar, A.

Wagadarikar, A. A.

Wang, L. V.

J. Liang and L. V. Wang, “Single-shot ultrafast optical imaging,” Optica 5(9), 1113–1127 (2018).
[Crossref]

L. Gao and L. V. Wang, “A review of snapshot multidimensional optical imaging: measuring photon tags in parallel,” Phys. Rep. 616, 1–37 (2016).
[Crossref]

Want, L. V.

J. Liang, L. Zhu, and L. V. Want, “Single-shot real-time femtosecond imaging of temporal focusing,” Light: Sci. Appl. 7(1), 42 (2018).
[Crossref]

Willett, R.

Wilson, D. W.

Xu, X.

Zhang, Z.

Zhu, L.

J. Liang, L. Zhu, and L. V. Want, “Single-shot real-time femtosecond imaging of temporal focusing,” Light: Sci. Appl. 7(1), 42 (2018).
[Crossref]

Zimmermann, T.

T. Zimmermann, “Spectral imaging and linear unmixing in light microscopy,” Adv. Biochem. Eng./Biotechnol. 95, 245–265 (2005).
[Crossref]

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[Crossref]

ACM Trans. Graph. (1)

A. Manakov, J. Restrepo, O. Klehm, R. Hegedus, E. Eisemann, H.-P. Seidel, and I. Ihrke, “A Reconfigurable Camera Add-On for High Dynamic Range, Multispectral, Polarization, and Light-Field Imaging,” ACM Trans. Graph. 32(4), 1 (2013).
[Crossref]

Acta agrar. Debr. (1)

A. Jung, R. Michels, and G. Rainer, “Portable snapshot spectral imaging for agriculture,” Acta agrar. Debr. 150, 221–225 (2018).
[Crossref]

Adv. Biochem. Eng./Biotechnol. (1)

T. Zimmermann, “Spectral imaging and linear unmixing in light microscopy,” Adv. Biochem. Eng./Biotechnol. 95, 245–265 (2005).
[Crossref]

Appl. Opt. (5)

Appl. Phys. B: Photophys. Laser Chem. (1)

P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B: Photophys. Laser Chem. 53(4), 260–264 (1991).
[Crossref]

Appl. Phys. Express (1)

T. Suzuki and R. Hida, “Single-shot 25-frame burst imaging of ultrafast phase transition of Ge2Sb2Te5 with a sub-picosecond resolution,” Appl. Phys. Express 10(9), 092502 (2017).
[Crossref]

Biomed. Opt. Express (1)

Combust. Flame (1)

Z. Li, J. Borggren, E. Berrocal, A. Ehn, M. Aldén, M. Richter, and E. Kristensson, “Simultaneous multispectral imaging of flame species using Frequency Recognition Algorithm for Multiple Exposures (FRAME),” Combust. Flame 192, 160–169 (2018).
[Crossref]

FEBS Lett. (1)

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[Crossref]

J. Europ. Opt. Soc. Rap. Public. (1)

E. Berrocal, J. Johnsson, E. Kristensson, and M. Aldén, “Single scattering detection in turbid media using single-phase structured illumination filtering,” J. Europ. Opt. Soc. Rap. Public. 7, 12015 (2012).
[Crossref]

Light: Sci. Appl. (2)

A. Ehn, J. Bood, Z. Li, M. Aldén, and E. Kristensson, “FRAME: femtosecond videography for atomic and molecular dynamics,” Light: Sci. Appl. 6(9), e17045 (2017).
[Crossref]

J. Liang, L. Zhu, and L. V. Want, “Single-shot real-time femtosecond imaging of temporal focusing,” Light: Sci. Appl. 7(1), 42 (2018).
[Crossref]

Nat. Methods (1)

J. W. Lichtman and J.-A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
[Crossref]

Nat. Photonics (1)

K. Nakagawa and A. Iwasaki, “Sequentially timed all-optical all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Opt. Eng. (1)

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Optica (1)

OSA Continuum (1)

Phys. Rep. (1)

L. Gao and L. V. Wang, “A review of snapshot multidimensional optical imaging: measuring photon tags in parallel,” Phys. Rep. 616, 1–37 (2016).
[Crossref]

Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy (1)

J. T. Fredrich, “3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes,” Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 24(7), 551–561 (1999).
[Crossref]

Proc. Combust. Inst. (1)

E. Kristensson, Z. Li, E. Berrocal, M. Richter, and M. Aldén, “Instantaneous 3D imaging of flame species using coded laser illumination,” Proc. Combust. Inst. 36(3), 4585–4591 (2017).
[Crossref]

Proc. SPIE (2)

J. Hunicz and D. Piernikarski, “Investigation of combustion in a gasoline engine using spectrophotometric methods,” Proc. SPIE 4516, 307–314 (2001).
[Crossref]

B. K. Gunturk and M. Feldman, “Frequency division multiplexed imaging,” Proc. SPIE 8660, 86600P (2013).
[Crossref]

Sensors (1)

J. Kim and A. Ghosh, “Polarized Light Field Imaging for Single-Shot Reflectance Separation,” Sensors 18(11), 3803 (2018).
[Crossref]

Signal Process. Image Commun. (1)

S. R. Khan, M. Feldman, and B. K. Gunturk, “Extracting sub-exposure images from a single capture through Fourier-based optical modulation,” Signal Process. Image Commun. 60, 107–115 (2018).
[Crossref]

Trends Biotechnol. (1)

D. M. Chudakov, S. Lukyanov, and K. A. Lukyanov, “Fluorescent proteins as a toolkit for in vivo imaging,” Trends Biotechnol. 23(12), 605–613 (2005).
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1       Three fluorescent dyes are dropped into a cuvette of water and their dynamic motion as they fall is captured in a series of multiplexed, multispectral snapshot images (side view). The images are computationally separated and linearly unmixed before f
» Visualization 2       Three fluorescent dyes are dropped into shallow water and captured from above. A series of multiplexed, multispectral snapshot images capture the first two dyes spreading through, and the droplet of the third dye exploding across, the water. The imag

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Passive FRAME image encoding. The unique modulation and corresponding sample information in each channel (1-4) is illustrated in both the spatial and Fourier domains. Copies of the sample information are located in the centre of the Fourier domain as well as at the higher frequency regions corresponding to the applied modulation. The first image pair in the figure illustrates the camera view in a single exposure where all four channels are recorded in a snapshot, and its corresponding Fourier domain. Copies of all the channels can be found overlapping in the centre of the Fourier domain as well as non-overlapping copies in each higher frequency region and rotation angle (indicated by matching colors) corresponding to the unique spatial encoding of each channel (1-4).
Fig. 2.
Fig. 2. Passive FRAME experimental setup. Schematic showing the four uniquely modulated and filtered (color, polarization or glass plate) channels through which light from the sample is recorded in the experimental setup. BS = Beam splitter, F = Filter (Color filter/Polarization filter/Glass Plate), M = Mirror, G = Grating, L = Imaging lens.
Fig. 3.
Fig. 3. Snapshot imaging of multiple depths-of-focus. An arrangement of optical components, the object, are illuminated with white light and imaged with each channel, 1-4, corresponding to a different z plane. (a) Raw data image comprised of all four modulated channels. (b) Extracted image corresponding to a z = 0 cm imaging plane. (c) Extracted image corresponding to a z = 3 cm imaging plane. (d) Extracted image corresponding to a z = 5 cm imaging plane. (e) Extracted image corresponding to a z = 10 cm imaging plane.
Fig. 4.
Fig. 4. Transmission polarization images of layered transparent tape shapes. Sample transmission illuminated by linearly polarized (0°) white light. A raw data image captured from all four modulated channels. The Fourier Transform of the raw data image. Magnified regions of the raw data image where the modulations from the different channels are visible. The demodulated images of channels 1, 2, 3 and 4, extracted from the raw data image, corresponding to linear polarizations of 0°, 45°, 90° and 135° respectively. Ground truth images for each polarization channel.
Fig. 5.
Fig. 5. 40x increase in camera speed using passive FRAME. (a) A single-exposure transmission mode image of a rotating computer fan, illuminated by a multi-color pulse train. The dotted lines show the leading edge of the fan blade moving in the direction of the arrow as it is captured at four different points in time. (b) A magnification of the raw data. Four regions are visible corresponding to different combinations of the modulations. (c) The Fourier transform of the raw image where each cluster pair corresponds to a temporally separated snapshot image of the rotating fan blade. Upon demultiplexing, a 2 kHz time series of a rotating fan blade is shown in the lower panel. Each frame corresponds to the transmission of a pulse of given wavelength separated in time.
Fig. 6.
Fig. 6. Signal intensity balancing. An X-rite Color Checker imaged using white light illumination and four different spectral filters, one in each channel. The raw image of the target with all four modulated channels. The applied modulation patterns are visible in the magnified region. Regions of interest showing the spectral information of four regions of interest corresponding to four unique colors in the sample. Signal intensities for each of the channels are shown for both the unbalanced and balanced cases for the extracted and ground truth images. Demodulated channel images which are false colored images for channels 1 to 4 for the balanced and unbalanced extracted FRAME images compared with their corresponding ground truth images. R2 values are given for the balanced and unbalanced cases.
Fig. 7.
Fig. 7. Three fluorescent letters linearly unmixed. A sample of three fluorescent dyes illuminated with a blue LED (450 nm). The raw image of the dye letters L, T and H, captured using all four modulated channels with spectral filters. The inserts show the four channel intensities for each dye are shown in the bar plots, i.e. the spectral intensity profile of each dye. Multispectral image of the linearly unmixed dyes which are false colored red, green or blue.
Fig. 8.
Fig. 8. Linearly unmixed dynamic sample. An image of a dynamic sample of three fluorescent dyes dropped into water (side view). Two of the three dyes are visible in the selected image from the time series. (a) A raw data image captured from all four modulated channels. (b) A multispectral image of the demodulated and linearly unmixed data. (c) The demodulated image from channel 1 only. (d) The demodulated image from channel 2 only. (e) The demodulated image from channel 3 only. (f) The demodulated image from channel 4 only.
Fig. 9.
Fig. 9. Fluorescent dyes falling through water. An image of a dynamic sample of three fluorescent dyes dropped into water (side view). Only two dyes are visible in the selected image from the time series. (a) A raw data image captured from all four modulated channels. (b) A multispectral image of the demodulated and linearly unmixed data. (c) The demodulated image from channel 1 only. (d) The demodulated image from channel 2 only. (e) The demodulated image from channel 3 only. (f) The demodulated image from channel 4 only.
Fig. 10.
Fig. 10. Time series of linearly unmixed dynamic sample. A time series of multispectral snapshot images of a dynamic sample of three fluorescent dyes dropped into water (side view). At time 0s only one dye is present whereas at time 0.3s two are present and then at time 1.5s the first dye has passed and the latter two dyes are present. A video animating the data set is available online (Visualization 1).
Fig. 11.
Fig. 11. Fluorescent dye droplet and two dispersed dyes. An image of a dynamic sample of three fluorescent dyes, two dropped and dispersed into water and one as a droplet on the water (top view). All three dyes are visible in the selected image from the time series. (a) A raw data image captured from all four modulated channels. (b) A multispectral image of the demodulated and linearly unmixed data. (c) The demodulated image from channel 1 only. (d) The demodulated image from channel 2 only. (e) The demodulated image from channel 3 only. (f) The demodulated image from channel 4 only. A video animating the data set is available online (Visualization 2).
Fig. 12.
Fig. 12. Spatial resolution and field of view. Resolution target imaged using the passive FRAME setup. The demodulated image from channel 1 of the setup (left) along with magnified regions of the higher resolution area of the target (right).
Fig. 13.
Fig. 13. Pulse Train Characteristics. Four individual, color coded pulses incident on the computer fan measured using a Thorlabs DET10A\M photodetector. The long fall time, calculated by finding the intersection between the pulse and the half the maximum intensity line, is on average 370µs for all the four laser diodes.