Abstract

We demonstrate spectrally-tunable Fabry-Perot bandpass filters operating across the MWIR by utilizing the phase-change material GeSbTe (GST) as a tunable cavity medium between two (Ge:Si) distributed Bragg reflectors. The induced refractive index modulation of GST increases the cavity’s optical path length, red-shifting the passband. Our filters have spectral-tunability of ∼300 nm, transmission efficiencies of 60-75% and narrowband FWHMs of 50-65 nm (Q-factor ∼70-90). We further show multispectral thermal imaging and gas sensing. By matching the filter’s initial passband to a CO2 vibrational-absorption mode (∼4.25 µm), tunable atmospheric CO2 sensing and dynamic plume visualization of added CO2 is realized.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Multichannel tunable narrowband mid-infrared optical filter based on phase-change material Ge2Sb2Te5 defect layers

Kun Zhou, Qiang Cheng, Lu Lu, Bowen Li, Jinlin Song, Mengting Si, and Zixue Luo
Appl. Opt. 59(3) 595-600 (2020)

Contra-directional switching enabled by Si-GST grating

Hao Hu, Hanyu Zhang, Linjie Zhou, Jian Xu, Liangjun Lu, Jianping Chen, and B. M. A. Rahman
Opt. Express 28(2) 1574-1584 (2020)

Tunable phase change polaritonic perfect absorber in the mid-infrared region

Chuanyan Peng, Kai Ou, Guanhai Li, Xiaoyan Li, Wenjuan Wang, Zengyue Zhao, Xiaoyan Li, Xiaoshuang Chen, and Wei Lu
Opt. Express 28(8) 11721-11729 (2020)

References

  • View by:
  • |
  • |
  • |

  1. S. Türker-Kaya and C. W. Huck, “A Review of Mid-Infrared and Near-Infrared Imaging: Principles, Concepts and Applications in Plant Tissue Analysis,” Molecules 22(1), 168 (2017).
    [Crossref]
  2. J. Haas and B. Mizaikoff, “Advances in Mid-Infrared Spectroscopy for Chemical Analysis,” Annu. Rev. Anal. Chem. 9(1), 45–68 (2016).
    [Crossref]
  3. C. Mitra, “Mid-Infrared Spectroscopy and Challenges in Industrial Environment,” in Infrared Spectroscopy - Principles, Advances, and Applications, M. El-Azazy, ed. (IntechOpen, 2019), Chap. 4.
  4. J. J. Szymanski and P. G. Weber, “Multispectral thermal imager: mission and applications overview,” IEEE Trans. Geosci. Electron. 43(9), 1943–1949 (2005).
    [Crossref]
  5. R. Bhargava, “Infrared spectroscopic imaging: the next generation,” Appl. Spectrosc. 66(10), 1091–1120 (2012).
    [Crossref]
  6. S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
    [Crossref]
  7. G. J. Tattersall, “Infrared thermography: A non-invasive window into thermal physiology,” Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 202, 78–98 (2016).
    [Crossref]
  8. T. P. Greene, D. M. Kelly, J. Stansberry, J. Leisenring, E. Egami, E. Schlawin, L. Chu, K. W. Hodapp, and M. Rieke, “λ = 2.4 - 5 m spectroscopy with the JWST NIRCam instrument,” J. Astron. Telesc. Instrum. Syst 3(3), 035001 (2017).
    [Crossref]
  9. N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
    [Crossref]
  10. P.-J. Lapray, X. Wang, J.-B. Thomas, and P. Gouton, “Multispectral filter arrays: recent advances and practical implementation,” Sensors 14(11), 21626–21659 (2014).
    [Crossref]
  11. H. Angus Macleod, Thin-Film Optical Filters5 Edition (CRC Press, 2017).
  12. C. Williams, G. S. D. Gordon, T. D. Wilkinson, and S. E. Bohndiek, “Grayscale-to-Color: Scalable Fabrication of Custom Multispectral Filter Arrays,” ACS Photonics 6(12), 3132–3141 (2019).
    [Crossref]
  13. S. J. Orfanidis, Electromagnetic Waves and Antennas, (Rutgers University, 2002), Available: https://www.ece.rutgers.edu/orfanidi/ewa/ .
  14. M. Lequime, “Tunable thin film filters: review and perspectives,” Proc. SPIE 5250, 302–311 (2004).
    [Crossref]
  15. C. Crandall, N. Clark, and P. Davis, “Tunable optical filters for space exploration,” Proc. SPIE 6713, 67130I (2007).
    [Crossref]
  16. N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proc. SPIE 6466, 021004 (2008).
    [Crossref]
  17. J. Beeckman, “Liquid-crystal photonic applications,” Opt. Eng. 50(8), 081202 (2011).
    [Crossref]
  18. H. R. Morris, C. C. Hoyt, and P. J. Treado, “Imaging Spectrometers for Fluorescence and Raman Microscopy: Acousto-Optic and Liquid Crystal Tunable Filters,” Appl. Spectrosc. 48(7), 857–866 (1994).
    [Crossref]
  19. O. Aharon and I. Abdulhalim, “Liquid crystal Lyot tunable filter with extended free spectral range,” Opt. Express 17(14), 11426–11433 (2009).
    [Crossref]
  20. L. Bei, “Acousto-optic tunable filters: fundamentals and applications as applied to chemical analysis techniques,” Prog. Quantum Electron. 28(2), 67–87 (2004).
    [Crossref]
  21. A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. Asger Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
    [Crossref]
  22. Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, and C.-W. Qiu, “Color generation via subwavelength plasmonic nanostructures,” Nanoscale 7(15), 6409–6419 (2015).
    [Crossref]
  23. F. Gildas and Y. Dan, “Review of nanostructure color filters,” J. Nanophotonics 13(02), 1–26 (2019).
    [Crossref]
  24. G. Si, Y. Zhao, E. S. P. Leong, and Y. J. Liu, “Liquid-Crystal-Enabled Active Plasmonics: A Review,” Materials 7(2), 1296–1317 (2014).
    [Crossref]
  25. R. Bartholomew, C. Williams, A. Khan, R. Bowman, and T. Wilkinson, “Plasmonic nanohole electrodes for active color tunable liquid crystal transmissive pixels,” Opt. Lett. 42(14), 2810–2813 (2017).
    [Crossref]
  26. Z. Ma, X. Meng, X. Liu, G. Si, and Y. J. Liu, “Liquid Crystal Enabled Dynamic Nanodevices,” Nanomaterials 8(11), 871 (2018).
    [Crossref]
  27. J. Qin, “Hyperspectral Imaging Instruments,” in Hyperspectral Imaging for Food Quality Analysis and Control, D. W. Sun, ed., 129–172 (Academic Press, 2010).
  28. J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
    [Crossref]
  29. M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
    [Crossref]
  30. Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
    [Crossref]
  31. Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
    [Crossref]
  32. H. Kim, S. Choi, S. Kang, K. Oh, and S. Kweon, “Observation of Ge2Sb2Te5 thin film phase transition behavior according to the number of cycles using Transmission Electron Microscope and Scanning Probe Microscope,” Mater. Res. Soc. Symp. Proc. 961, 0961-O03-04 (2006).
    [Crossref]
  33. M.N. Julian, C. Williams, S. Borg, S. Bartram, and H.J. Kim, “All-optical continuous tuning of phase-change plasmonic metasurfaces for multispectral thermal imaging,” [Under Review] arXiv preprint 1912.08086 (2019).
  34. K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optical phase change materials in integrated silicon photonic devices: review,” Opt. Mater. Express 8(8), 2415–2429 (2018).
    [Crossref]
  35. B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
    [Crossref]
  36. W. Bai, P. Yang, J. Huang, D. Chen, J. Zhang, Z. Zhang, J. Yang, and B. Xu, “Near-infrared tunable metalens based on phase change material Ge2Sb2Te5,” Sci. Rep. 9(1), 5368 (2019).
    [Crossref]
  37. A. Piegari and F. Flory, Optical Thin Films and Coatings: From Materials to Applications (Woodhead Publishing, 2018).
  38. P. W. Baumeister, Optical Coating Technology, (SPIE Press, 2004).
  39. R. R. Willey, Practical Design and Production of Optical Thin Films, 2nd Edition (CRC Press, 2019).
  40. N. M. Ravindra, S. R. Marthi, and A. Bañobre, “Introduction to radiative properties,” in Radiative Properties of Semiconductors (Morgan & Claypool Publishers, 2017).
  41. C. D. Craver, The Coblentz Society Desk Book of Infrared Spectra, 2nd Edition (The Coblentz Society, 1982).
  42. “Differential absorption LIDAR for the detection and quantification of greenhouse gases,” https://www.nist.gov/programs-projects/differential-absorption-lidar-detection-and-quantification-greenhousegases .
  43. S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8(3), 1073–1087 (2015).
    [Crossref]

2019 (4)

C. Williams, G. S. D. Gordon, T. D. Wilkinson, and S. E. Bohndiek, “Grayscale-to-Color: Scalable Fabrication of Custom Multispectral Filter Arrays,” ACS Photonics 6(12), 3132–3141 (2019).
[Crossref]

F. Gildas and Y. Dan, “Review of nanostructure color filters,” J. Nanophotonics 13(02), 1–26 (2019).
[Crossref]

Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]

W. Bai, P. Yang, J. Huang, D. Chen, J. Zhang, Z. Zhang, J. Yang, and B. Xu, “Near-infrared tunable metalens based on phase change material Ge2Sb2Te5,” Sci. Rep. 9(1), 5368 (2019).
[Crossref]

2018 (2)

2017 (5)

R. Bartholomew, C. Williams, A. Khan, R. Bowman, and T. Wilkinson, “Plasmonic nanohole electrodes for active color tunable liquid crystal transmissive pixels,” Opt. Lett. 42(14), 2810–2813 (2017).
[Crossref]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. Asger Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

S. Türker-Kaya and C. W. Huck, “A Review of Mid-Infrared and Near-Infrared Imaging: Principles, Concepts and Applications in Plant Tissue Analysis,” Molecules 22(1), 168 (2017).
[Crossref]

T. P. Greene, D. M. Kelly, J. Stansberry, J. Leisenring, E. Egami, E. Schlawin, L. Chu, K. W. Hodapp, and M. Rieke, “λ = 2.4 - 5 m spectroscopy with the JWST NIRCam instrument,” J. Astron. Telesc. Instrum. Syst 3(3), 035001 (2017).
[Crossref]

2016 (3)

G. J. Tattersall, “Infrared thermography: A non-invasive window into thermal physiology,” Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 202, 78–98 (2016).
[Crossref]

J. Haas and B. Mizaikoff, “Advances in Mid-Infrared Spectroscopy for Chemical Analysis,” Annu. Rev. Anal. Chem. 9(1), 45–68 (2016).
[Crossref]

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

2015 (2)

S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8(3), 1073–1087 (2015).
[Crossref]

Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, and C.-W. Qiu, “Color generation via subwavelength plasmonic nanostructures,” Nanoscale 7(15), 6409–6419 (2015).
[Crossref]

2014 (2)

G. Si, Y. Zhao, E. S. P. Leong, and Y. J. Liu, “Liquid-Crystal-Enabled Active Plasmonics: A Review,” Materials 7(2), 1296–1317 (2014).
[Crossref]

P.-J. Lapray, X. Wang, J.-B. Thomas, and P. Gouton, “Multispectral filter arrays: recent advances and practical implementation,” Sensors 14(11), 21626–21659 (2014).
[Crossref]

2013 (2)

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref]

2012 (1)

2011 (1)

J. Beeckman, “Liquid-crystal photonic applications,” Opt. Eng. 50(8), 081202 (2011).
[Crossref]

2009 (1)

2008 (1)

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proc. SPIE 6466, 021004 (2008).
[Crossref]

2007 (1)

C. Crandall, N. Clark, and P. Davis, “Tunable optical filters for space exploration,” Proc. SPIE 6713, 67130I (2007).
[Crossref]

2006 (1)

H. Kim, S. Choi, S. Kang, K. Oh, and S. Kweon, “Observation of Ge2Sb2Te5 thin film phase transition behavior according to the number of cycles using Transmission Electron Microscope and Scanning Probe Microscope,” Mater. Res. Soc. Symp. Proc. 961, 0961-O03-04 (2006).
[Crossref]

2005 (1)

J. J. Szymanski and P. G. Weber, “Multispectral thermal imager: mission and applications overview,” IEEE Trans. Geosci. Electron. 43(9), 1943–1949 (2005).
[Crossref]

2004 (2)

M. Lequime, “Tunable thin film filters: review and perspectives,” Proc. SPIE 5250, 302–311 (2004).
[Crossref]

L. Bei, “Acousto-optic tunable filters: fundamentals and applications as applied to chemical analysis techniques,” Prog. Quantum Electron. 28(2), 67–87 (2004).
[Crossref]

2003 (1)

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

2000 (1)

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

1994 (1)

Abdulhalim, I.

Aharon, O.

Angus Macleod, H.

H. Angus Macleod, Thin-Film Optical Filters5 Edition (CRC Press, 2017).

Arneson, H. M.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Asger Mortensen, N.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. Asger Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Bai, W.

W. Bai, P. Yang, J. Huang, D. Chen, J. Zhang, Z. Zhang, J. Yang, and B. Xu, “Near-infrared tunable metalens based on phase change material Ge2Sb2Te5,” Sci. Rep. 9(1), 5368 (2019).
[Crossref]

Bañobre, A.

N. M. Ravindra, S. R. Marthi, and A. Bañobre, “Introduction to radiative properties,” in Radiative Properties of Semiconductors (Morgan & Claypool Publishers, 2017).

Bartholomew, R.

Bartram, S.

M.N. Julian, C. Williams, S. Borg, S. Bartram, and H.J. Kim, “All-optical continuous tuning of phase-change plasmonic metasurfaces for multispectral thermal imaging,” [Under Review] arXiv preprint 1912.08086 (2019).

Baumeister, P. W.

P. W. Baumeister, Optical Coating Technology, (SPIE Press, 2004).

Beeckman, J.

J. Beeckman, “Liquid-crystal photonic applications,” Opt. Eng. 50(8), 081202 (2011).
[Crossref]

Bei, L.

L. Bei, “Acousto-optic tunable filters: fundamentals and applications as applied to chemical analysis techniques,” Prog. Quantum Electron. 28(2), 67–87 (2004).
[Crossref]

Bell, J. F.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Bhargava, R.

Bhaskaran, H.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

Bohlin, B.

Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]

Bohndiek, S. E.

C. Williams, G. S. D. Gordon, T. D. Wilkinson, and S. E. Bohndiek, “Grayscale-to-Color: Scalable Fabrication of Custom Multispectral Filter Arrays,” ACS Photonics 6(12), 3132–3141 (2019).
[Crossref]

Borg, S.

M.N. Julian, C. Williams, S. Borg, S. Bartram, and H.J. Kim, “All-optical continuous tuning of phase-change plasmonic metasurfaces for multispectral thermal imaging,” [Under Review] arXiv preprint 1912.08086 (2019).

Bowman, R.

Bozhevolnyi, S. I.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. Asger Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Brown, D.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Chen, D.

W. Bai, P. Yang, J. Huang, D. Chen, J. Zhang, Z. Zhang, J. Yang, and B. Xu, “Near-infrared tunable metalens based on phase change material Ge2Sb2Te5,” Sci. Rep. 9(1), 5368 (2019).
[Crossref]

Choi, S.

H. Kim, S. Choi, S. Kang, K. Oh, and S. Kweon, “Observation of Ge2Sb2Te5 thin film phase transition behavior according to the number of cycles using Transmission Electron Microscope and Scanning Probe Microscope,” Mater. Res. Soc. Symp. Proc. 961, 0961-O03-04 (2006).
[Crossref]

Chou, J. B.

Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]

Chu, L.

T. P. Greene, D. M. Kelly, J. Stansberry, J. Leisenring, E. Egami, E. Schlawin, L. Chu, K. W. Hodapp, and M. Rieke, “λ = 2.4 - 5 m spectroscopy with the JWST NIRCam instrument,” J. Astron. Telesc. Instrum. Syst 3(3), 035001 (2017).
[Crossref]

Clark, N.

C. Crandall, N. Clark, and P. Davis, “Tunable optical filters for space exploration,” Proc. SPIE 6713, 67130I (2007).
[Crossref]

Collins, S. A.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Crandall, C.

C. Crandall, N. Clark, and P. Davis, “Tunable optical filters for space exploration,” Proc. SPIE 6713, 67130I (2007).
[Crossref]

Craver, C. D.

C. D. Craver, The Coblentz Society Desk Book of Infrared Spectra, 2nd Edition (The Coblentz Society, 1982).

Dan, Y.

F. Gildas and Y. Dan, “Review of nanostructure color filters,” J. Nanophotonics 13(02), 1–26 (2019).
[Crossref]

Davis, P.

C. Crandall, N. Clark, and P. Davis, “Tunable optical filters for space exploration,” Proc. SPIE 6713, 67130I (2007).
[Crossref]

Dingizian, A.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Du, Q.

Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]

Ebermann, M.

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proc. SPIE 6466, 021004 (2008).
[Crossref]

Egami, E.

T. P. Greene, D. M. Kelly, J. Stansberry, J. Leisenring, E. Egami, E. Schlawin, L. Chu, K. W. Hodapp, and M. Rieke, “λ = 2.4 - 5 m spectroscopy with the JWST NIRCam instrument,” J. Astron. Telesc. Instrum. Syst 3(3), 035001 (2017).
[Crossref]

Elliot, S. T.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Fang, Z.

Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]

Flory, F.

A. Piegari and F. Flory, Optical Thin Films and Coatings: From Materials to Applications (Woodhead Publishing, 2018).

Gat, N.

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

Gholipour, B.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref]

Gildas, F.

F. Gildas and Y. Dan, “Review of nanostructure color filters,” J. Nanophotonics 13(02), 1–26 (2019).
[Crossref]

Gordon, G. S. D.

C. Williams, G. S. D. Gordon, T. D. Wilkinson, and S. E. Bohndiek, “Grayscale-to-Color: Scalable Fabrication of Custom Multispectral Filter Arrays,” ACS Photonics 6(12), 3132–3141 (2019).
[Crossref]

Gouton, P.

P.-J. Lapray, X. Wang, J.-B. Thomas, and P. Gouton, “Multispectral filter arrays: recent advances and practical implementation,” Sensors 14(11), 21626–21659 (2014).
[Crossref]

Greene, T. P.

T. P. Greene, D. M. Kelly, J. Stansberry, J. Leisenring, E. Egami, E. Schlawin, L. Chu, K. W. Hodapp, and M. Rieke, “λ = 2.4 - 5 m spectroscopy with the JWST NIRCam instrument,” J. Astron. Telesc. Instrum. Syst 3(3), 035001 (2017).
[Crossref]

Gu, T.

Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]

Gu, Y.

Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, and C.-W. Qiu, “Color generation via subwavelength plasmonic nanostructures,” Nanoscale 7(15), 6409–6419 (2015).
[Crossref]

Haas, J.

J. Haas and B. Mizaikoff, “Advances in Mid-Infrared Spectroscopy for Chemical Analysis,” Annu. Rev. Anal. Chem. 9(1), 45–68 (2016).
[Crossref]

Hagerott, E. C.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Haglund, R. F.

Halas, N. J.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. Asger Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Hayes, A. G.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Hayman, M.

S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8(3), 1073–1087 (2015).
[Crossref]

Herkenhoff, K. E.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Hewak, D. W.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref]

Hiller, K.

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proc. SPIE 6466, 021004 (2008).
[Crossref]

Hodapp, K. W.

T. P. Greene, D. M. Kelly, J. Stansberry, J. Leisenring, E. Egami, E. Schlawin, L. Chu, K. W. Hodapp, and M. Rieke, “λ = 2.4 - 5 m spectroscopy with the JWST NIRCam instrument,” J. Astron. Telesc. Instrum. Syst 3(3), 035001 (2017).
[Crossref]

Hoyt, C. C.

Hu, J.

Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]

Huang, J.

W. Bai, P. Yang, J. Huang, D. Chen, J. Zhang, Z. Zhang, J. Yang, and B. Xu, “Near-infrared tunable metalens based on phase change material Ge2Sb2Te5,” Sci. Rep. 9(1), 5368 (2019).
[Crossref]

Huck, C. W.

S. Türker-Kaya and C. W. Huck, “A Review of Mid-Infrared and Near-Infrared Imaging: Principles, Concepts and Applications in Plant Tissue Analysis,” Molecules 22(1), 168 (2017).
[Crossref]

Johnson, J. R.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Johnson, M. J.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Joseph, J.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Julian, M.N.

M.N. Julian, C. Williams, S. Borg, S. Bartram, and H.J. Kim, “All-optical continuous tuning of phase-change plasmonic metasurfaces for multispectral thermal imaging,” [Under Review] arXiv preprint 1912.08086 (2019).

Kang, M.

Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]

Kang, S.

H. Kim, S. Choi, S. Kang, K. Oh, and S. Kweon, “Observation of Ge2Sb2Te5 thin film phase transition behavior according to the number of cycles using Transmission Electron Microscope and Scanning Probe Microscope,” Mater. Res. Soc. Symp. Proc. 961, 0961-O03-04 (2006).
[Crossref]

Kelly, D. M.

T. P. Greene, D. M. Kelly, J. Stansberry, J. Leisenring, E. Egami, E. Schlawin, L. Chu, K. W. Hodapp, and M. Rieke, “λ = 2.4 - 5 m spectroscopy with the JWST NIRCam instrument,” J. Astron. Telesc. Instrum. Syst 3(3), 035001 (2017).
[Crossref]

Khan, A.

Kim, H.

H. Kim, S. Choi, S. Kang, K. Oh, and S. Kweon, “Observation of Ge2Sb2Te5 thin film phase transition behavior according to the number of cycles using Transmission Electron Microscope and Scanning Probe Microscope,” Mater. Res. Soc. Symp. Proc. 961, 0961-O03-04 (2006).
[Crossref]

Kim, H.J.

M.N. Julian, C. Williams, S. Borg, S. Bartram, and H.J. Kim, “All-optical continuous tuning of phase-change plasmonic metasurfaces for multispectral thermal imaging,” [Under Review] arXiv preprint 1912.08086 (2019).

Kinch, K.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Kristensen, A.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. Asger Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Kurth, S.

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proc. SPIE 6466, 021004 (2008).
[Crossref]

Kweon, S.

H. Kim, S. Choi, S. Kang, K. Oh, and S. Kweon, “Observation of Ge2Sb2Te5 thin film phase transition behavior according to the number of cycles using Transmission Electron Microscope and Scanning Probe Microscope,” Mater. Res. Soc. Symp. Proc. 961, 0961-O03-04 (2006).
[Crossref]

Lapray, P.-J.

P.-J. Lapray, X. Wang, J.-B. Thomas, and P. Gouton, “Multispectral filter arrays: recent advances and practical implementation,” Sensors 14(11), 21626–21659 (2014).
[Crossref]

Law, S.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Leisenring, J.

T. P. Greene, D. M. Kelly, J. Stansberry, J. Leisenring, E. Egami, E. Schlawin, L. Chu, K. W. Hodapp, and M. Rieke, “λ = 2.4 - 5 m spectroscopy with the JWST NIRCam instrument,” J. Astron. Telesc. Instrum. Syst 3(3), 035001 (2017).
[Crossref]

Lemmon, M. T.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Leong, E. S. P.

G. Si, Y. Zhao, E. S. P. Leong, and Y. J. Liu, “Liquid-Crystal-Enabled Active Plasmonics: A Review,” Materials 7(2), 1296–1317 (2014).
[Crossref]

Lequime, M.

M. Lequime, “Tunable thin film filters: review and perspectives,” Proc. SPIE 5250, 302–311 (2004).
[Crossref]

Li, H.

Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]

Li, J.

Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]

Liberman, V.

Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]

Lin, H.

Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]

Link, S.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. Asger Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Liu, X.

Z. Ma, X. Meng, X. Liu, G. Si, and Y. J. Liu, “Liquid Crystal Enabled Dynamic Nanodevices,” Nanomaterials 8(11), 871 (2018).
[Crossref]

Liu, Y. J.

Z. Ma, X. Meng, X. Liu, G. Si, and Y. J. Liu, “Liquid Crystal Enabled Dynamic Nanodevices,” Nanomaterials 8(11), 871 (2018).
[Crossref]

G. Si, Y. Zhao, E. S. P. Leong, and Y. J. Liu, “Liquid-Crystal-Enabled Active Plasmonics: A Review,” Materials 7(2), 1296–1317 (2014).
[Crossref]

Ma, Z.

Z. Ma, X. Meng, X. Liu, G. Si, and Y. J. Liu, “Liquid Crystal Enabled Dynamic Nanodevices,” Nanomaterials 8(11), 871 (2018).
[Crossref]

MacDonald, K. F.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref]

Maki, J. N.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Marthi, S. R.

N. M. Ravindra, S. R. Marthi, and A. Bañobre, “Introduction to radiative properties,” in Radiative Properties of Semiconductors (Morgan & Claypool Publishers, 2017).

Meng, X.

Z. Ma, X. Meng, X. Liu, G. Si, and Y. J. Liu, “Liquid Crystal Enabled Dynamic Nanodevices,” Nanomaterials 8(11), 871 (2018).
[Crossref]

Miller, K. J.

Mitra, C.

C. Mitra, “Mid-Infrared Spectroscopy and Challenges in Industrial Environment,” in Infrared Spectroscopy - Principles, Advances, and Applications, M. El-Azazy, ed. (IntechOpen, 2019), Chap. 4.

Mizaikoff, B.

J. Haas and B. Mizaikoff, “Advances in Mid-Infrared Spectroscopy for Chemical Analysis,” Annu. Rev. Anal. Chem. 9(1), 45–68 (2016).
[Crossref]

Moen, D.

S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8(3), 1073–1087 (2015).
[Crossref]

Morley, B.

S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8(3), 1073–1087 (2015).
[Crossref]

Morris, H. R.

Morris, R. V.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Nehrir, A. R.

S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8(3), 1073–1087 (2015).
[Crossref]

Neumann, N.

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proc. SPIE 6466, 021004 (2008).
[Crossref]

Nordlander, P.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. Asger Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Oh, K.

H. Kim, S. Choi, S. Kang, K. Oh, and S. Kweon, “Observation of Ge2Sb2Te5 thin film phase transition behavior according to the number of cycles using Transmission Electron Microscope and Scanning Probe Microscope,” Mater. Res. Soc. Symp. Proc. 961, 0961-O03-04 (2006).
[Crossref]

Orfanidis, S. J.

S. J. Orfanidis, Electromagnetic Waves and Antennas, (Rutgers University, 2002), Available: https://www.ece.rutgers.edu/orfanidi/ewa/ .

Piegari, A.

A. Piegari and F. Flory, Optical Thin Films and Coatings: From Materials to Applications (Woodhead Publishing, 2018).

Podolskiy, V.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Qin, J.

J. Qin, “Hyperspectral Imaging Instruments,” in Hyperspectral Imaging for Food Quality Analysis and Control, D. W. Sun, ed., 129–172 (Academic Press, 2010).

Qiu, C.-W.

Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, and C.-W. Qiu, “Color generation via subwavelength plasmonic nanostructures,” Nanoscale 7(15), 6409–6419 (2015).
[Crossref]

Ravindra, N. M.

N. M. Ravindra, S. R. Marthi, and A. Bañobre, “Introduction to radiative properties,” in Radiative Properties of Semiconductors (Morgan & Claypool Publishers, 2017).

Repasky, K. S.

S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8(3), 1073–1087 (2015).
[Crossref]

Richardson, K.

Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]

Rieke, M.

T. P. Greene, D. M. Kelly, J. Stansberry, J. Leisenring, E. Egami, E. Schlawin, L. Chu, K. W. Hodapp, and M. Rieke, “λ = 2.4 - 5 m spectroscopy with the JWST NIRCam instrument,” J. Astron. Telesc. Instrum. Syst 3(3), 035001 (2017).
[Crossref]

Ríos, C.

Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]

Roberts, C.

Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]

Robinson, P.

Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]

Rogers, E. T. F.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Scherr, L.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Schlawin, E.

T. P. Greene, D. M. Kelly, J. Stansberry, J. Leisenring, E. Egami, E. Schlawin, L. Chu, K. W. Hodapp, and M. Rieke, “λ = 2.4 - 5 m spectroscopy with the JWST NIRCam instrument,” J. Astron. Telesc. Instrum. Syst 3(3), 035001 (2017).
[Crossref]

Schwochert, M.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Shalaginov, M. Y.

Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]

Shepard, M. K.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Si, G.

Z. Ma, X. Meng, X. Liu, G. Si, and Y. J. Liu, “Liquid Crystal Enabled Dynamic Nanodevices,” Nanomaterials 8(11), 871 (2018).
[Crossref]

G. Si, Y. Zhao, E. S. P. Leong, and Y. J. Liu, “Liquid-Crystal-Enabled Active Plasmonics: A Review,” Materials 7(2), 1296–1317 (2014).
[Crossref]

Smith, G. H.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Sohl-Dickstein, J. N.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Spuler, S. M.

S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8(3), 1073–1087 (2015).
[Crossref]

Squyres, S. W.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Stansberry, J.

T. P. Greene, D. M. Kelly, J. Stansberry, J. Leisenring, E. Egami, E. Schlawin, L. Chu, K. W. Hodapp, and M. Rieke, “λ = 2.4 - 5 m spectroscopy with the JWST NIRCam instrument,” J. Astron. Telesc. Instrum. Syst 3(3), 035001 (2017).
[Crossref]

Sullivan, R. J.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Sullivan, W. T.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Szymanski, J. J.

J. J. Szymanski and P. G. Weber, “Multispectral thermal imager: mission and applications overview,” IEEE Trans. Geosci. Electron. 43(9), 1943–1949 (2005).
[Crossref]

Tattersall, G. J.

G. J. Tattersall, “Infrared thermography: A non-invasive window into thermal physiology,” Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 202, 78–98 (2016).
[Crossref]

Taubner, T.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

Teng, J.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Thomas, J.-B.

P.-J. Lapray, X. Wang, J.-B. Thomas, and P. Gouton, “Multispectral filter arrays: recent advances and practical implementation,” Sensors 14(11), 21626–21659 (2014).
[Crossref]

Treado, P. J.

Türker-Kaya, S.

S. Türker-Kaya and C. W. Huck, “A Review of Mid-Infrared and Near-Infrared Imaging: Principles, Concepts and Applications in Plant Tissue Analysis,” Molecules 22(1), 168 (2017).
[Crossref]

Wadsworth, M.

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

Wang, C.-M.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Wang, Q.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Wang, X.

P.-J. Lapray, X. Wang, J.-B. Thomas, and P. Gouton, “Multispectral filter arrays: recent advances and practical implementation,” Sensors 14(11), 21626–21659 (2014).
[Crossref]

Warner, J.

Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]

Wasserman, D.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Weber, P. G.

J. J. Szymanski and P. G. Weber, “Multispectral thermal imager: mission and applications overview,” IEEE Trans. Geosci. Electron. 43(9), 1943–1949 (2005).
[Crossref]

Weiss, S. M.

Wilkinson, T.

Wilkinson, T. D.

C. Williams, G. S. D. Gordon, T. D. Wilkinson, and S. E. Bohndiek, “Grayscale-to-Color: Scalable Fabrication of Custom Multispectral Filter Arrays,” ACS Photonics 6(12), 3132–3141 (2019).
[Crossref]

Willey, R. R.

R. R. Willey, Practical Design and Production of Optical Thin Films, 2nd Edition (CRC Press, 2019).

Williams, C.

C. Williams, G. S. D. Gordon, T. D. Wilkinson, and S. E. Bohndiek, “Grayscale-to-Color: Scalable Fabrication of Custom Multispectral Filter Arrays,” ACS Photonics 6(12), 3132–3141 (2019).
[Crossref]

R. Bartholomew, C. Williams, A. Khan, R. Bowman, and T. Wilkinson, “Plasmonic nanohole electrodes for active color tunable liquid crystal transmissive pixels,” Opt. Lett. 42(14), 2810–2813 (2017).
[Crossref]

M.N. Julian, C. Williams, S. Borg, S. Bartram, and H.J. Kim, “All-optical continuous tuning of phase-change plasmonic metasurfaces for multispectral thermal imaging,” [Under Review] arXiv preprint 1912.08086 (2019).

Wuttig, M.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

Xu, B.

W. Bai, P. Yang, J. Huang, D. Chen, J. Zhang, Z. Zhang, J. Yang, and B. Xu, “Near-infrared tunable metalens based on phase change material Ge2Sb2Te5,” Sci. Rep. 9(1), 5368 (2019).
[Crossref]

Yadav, A.

Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]

Yang, J.

W. Bai, P. Yang, J. Huang, D. Chen, J. Zhang, Z. Zhang, J. Yang, and B. Xu, “Near-infrared tunable metalens based on phase change material Ge2Sb2Te5,” Sci. Rep. 9(1), 5368 (2019).
[Crossref]

Yang, J. K. W.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. Asger Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, and C.-W. Qiu, “Color generation via subwavelength plasmonic nanostructures,” Nanoscale 7(15), 6409–6419 (2015).
[Crossref]

Yang, P.

W. Bai, P. Yang, J. Huang, D. Chen, J. Zhang, Z. Zhang, J. Yang, and B. Xu, “Near-infrared tunable metalens based on phase change material Ge2Sb2Te5,” Sci. Rep. 9(1), 5368 (2019).
[Crossref]

Yeo, S. P.

Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, and C.-W. Qiu, “Color generation via subwavelength plasmonic nanostructures,” Nanoscale 7(15), 6409–6419 (2015).
[Crossref]

Yuan, G.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Zhang, J.

W. Bai, P. Yang, J. Huang, D. Chen, J. Zhang, Z. Zhang, J. Yang, and B. Xu, “Near-infrared tunable metalens based on phase change material Ge2Sb2Te5,” Sci. Rep. 9(1), 5368 (2019).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref]

Zhang, L.

Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, and C.-W. Qiu, “Color generation via subwavelength plasmonic nanostructures,” Nanoscale 7(15), 6409–6419 (2015).
[Crossref]

Zhang, Y.

Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]

Zhang, Z.

W. Bai, P. Yang, J. Huang, D. Chen, J. Zhang, Z. Zhang, J. Yang, and B. Xu, “Near-infrared tunable metalens based on phase change material Ge2Sb2Te5,” Sci. Rep. 9(1), 5368 (2019).
[Crossref]

Zhao, Y.

G. Si, Y. Zhao, E. S. P. Leong, and Y. J. Liu, “Liquid-Crystal-Enabled Active Plasmonics: A Review,” Materials 7(2), 1296–1317 (2014).
[Crossref]

Zheludev, N. I.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref]

Zhong, H.

Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]

Zhou, S.

Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]

ACS Photonics (1)

C. Williams, G. S. D. Gordon, T. D. Wilkinson, and S. E. Bohndiek, “Grayscale-to-Color: Scalable Fabrication of Custom Multispectral Filter Arrays,” ACS Photonics 6(12), 3132–3141 (2019).
[Crossref]

Adv. Mater. (1)

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref]

Annu. Rev. Anal. Chem. (1)

J. Haas and B. Mizaikoff, “Advances in Mid-Infrared Spectroscopy for Chemical Analysis,” Annu. Rev. Anal. Chem. 9(1), 45–68 (2016).
[Crossref]

Appl. Spectrosc. (2)

Atmos. Meas. Tech. (1)

S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8(3), 1073–1087 (2015).
[Crossref]

Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. (1)

G. J. Tattersall, “Infrared thermography: A non-invasive window into thermal physiology,” Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 202, 78–98 (2016).
[Crossref]

IEEE Trans. Geosci. Electron. (1)

J. J. Szymanski and P. G. Weber, “Multispectral thermal imager: mission and applications overview,” IEEE Trans. Geosci. Electron. 43(9), 1943–1949 (2005).
[Crossref]

J. Astron. Telesc. Instrum. Syst (1)

T. P. Greene, D. M. Kelly, J. Stansberry, J. Leisenring, E. Egami, E. Schlawin, L. Chu, K. W. Hodapp, and M. Rieke, “λ = 2.4 - 5 m spectroscopy with the JWST NIRCam instrument,” J. Astron. Telesc. Instrum. Syst 3(3), 035001 (2017).
[Crossref]

J. Geophys. Res. (1)

J. F. Bell, S. W. Squyres, K. E. Herkenhoff, J. N. Maki, H. M. Arneson, D. Brown, S. A. Collins, A. Dingizian, S. T. Elliot, E. C. Hagerott, A. G. Hayes, M. J. Johnson, J. R. Johnson, J. Joseph, K. Kinch, M. T. Lemmon, R. V. Morris, L. Scherr, M. Schwochert, M. K. Shepard, G. H. Smith, J. N. Sohl-Dickstein, R. J. Sullivan, W. T. Sullivan, and M. Wadsworth, “Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation,” J. Geophys. Res. 108(C3), 8063 (2003).
[Crossref]

J. Nanophotonics (1)

F. Gildas and Y. Dan, “Review of nanostructure color filters,” J. Nanophotonics 13(02), 1–26 (2019).
[Crossref]

Mater. Res. Soc. Symp. Proc. (1)

H. Kim, S. Choi, S. Kang, K. Oh, and S. Kweon, “Observation of Ge2Sb2Te5 thin film phase transition behavior according to the number of cycles using Transmission Electron Microscope and Scanning Probe Microscope,” Mater. Res. Soc. Symp. Proc. 961, 0961-O03-04 (2006).
[Crossref]

Materials (1)

G. Si, Y. Zhao, E. S. P. Leong, and Y. J. Liu, “Liquid-Crystal-Enabled Active Plasmonics: A Review,” Materials 7(2), 1296–1317 (2014).
[Crossref]

Molecules (1)

S. Türker-Kaya and C. W. Huck, “A Review of Mid-Infrared and Near-Infrared Imaging: Principles, Concepts and Applications in Plant Tissue Analysis,” Molecules 22(1), 168 (2017).
[Crossref]

Nanomaterials (1)

Z. Ma, X. Meng, X. Liu, G. Si, and Y. J. Liu, “Liquid Crystal Enabled Dynamic Nanodevices,” Nanomaterials 8(11), 871 (2018).
[Crossref]

Nanophotonics (1)

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Nanoscale (1)

Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, and C.-W. Qiu, “Color generation via subwavelength plasmonic nanostructures,” Nanoscale 7(15), 6409–6419 (2015).
[Crossref]

Nat. Commun. (1)

Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019).
[Crossref]

Nat. Photonics (2)

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

Nat. Rev. Mater. (1)

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. Asger Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Opt. Eng. (1)

J. Beeckman, “Liquid-crystal photonic applications,” Opt. Eng. 50(8), 081202 (2011).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (1)

Proc. SPIE (4)

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

M. Lequime, “Tunable thin film filters: review and perspectives,” Proc. SPIE 5250, 302–311 (2004).
[Crossref]

C. Crandall, N. Clark, and P. Davis, “Tunable optical filters for space exploration,” Proc. SPIE 6713, 67130I (2007).
[Crossref]

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proc. SPIE 6466, 021004 (2008).
[Crossref]

Prog. Quantum Electron. (1)

L. Bei, “Acousto-optic tunable filters: fundamentals and applications as applied to chemical analysis techniques,” Prog. Quantum Electron. 28(2), 67–87 (2004).
[Crossref]

Sci. Rep. (1)

W. Bai, P. Yang, J. Huang, D. Chen, J. Zhang, Z. Zhang, J. Yang, and B. Xu, “Near-infrared tunable metalens based on phase change material Ge2Sb2Te5,” Sci. Rep. 9(1), 5368 (2019).
[Crossref]

Sensors (1)

P.-J. Lapray, X. Wang, J.-B. Thomas, and P. Gouton, “Multispectral filter arrays: recent advances and practical implementation,” Sensors 14(11), 21626–21659 (2014).
[Crossref]

Other (11)

H. Angus Macleod, Thin-Film Optical Filters5 Edition (CRC Press, 2017).

S. J. Orfanidis, Electromagnetic Waves and Antennas, (Rutgers University, 2002), Available: https://www.ece.rutgers.edu/orfanidi/ewa/ .

C. Mitra, “Mid-Infrared Spectroscopy and Challenges in Industrial Environment,” in Infrared Spectroscopy - Principles, Advances, and Applications, M. El-Azazy, ed. (IntechOpen, 2019), Chap. 4.

A. Piegari and F. Flory, Optical Thin Films and Coatings: From Materials to Applications (Woodhead Publishing, 2018).

P. W. Baumeister, Optical Coating Technology, (SPIE Press, 2004).

R. R. Willey, Practical Design and Production of Optical Thin Films, 2nd Edition (CRC Press, 2019).

N. M. Ravindra, S. R. Marthi, and A. Bañobre, “Introduction to radiative properties,” in Radiative Properties of Semiconductors (Morgan & Claypool Publishers, 2017).

C. D. Craver, The Coblentz Society Desk Book of Infrared Spectra, 2nd Edition (The Coblentz Society, 1982).

“Differential absorption LIDAR for the detection and quantification of greenhouse gases,” https://www.nist.gov/programs-projects/differential-absorption-lidar-detection-and-quantification-greenhousegases .

J. Qin, “Hyperspectral Imaging Instruments,” in Hyperspectral Imaging for Food Quality Analysis and Control, D. W. Sun, ed., 129–172 (Academic Press, 2010).

M.N. Julian, C. Williams, S. Borg, S. Bartram, and H.J. Kim, “All-optical continuous tuning of phase-change plasmonic metasurfaces for multispectral thermal imaging,” [Under Review] arXiv preprint 1912.08086 (2019).

Supplementary Material (1)

NameDescription
» Visualization 1       IR-imaging of the two GST-FP bandpass filters in front of a hotplate (set at T = 486K)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Device concept and simulations. (a) Tunable MWIR Fabry-Perot bandpass filter layer design, with thicknesses of filter materials (e.g. tGST) indicated (i), whereby the centre wavelength (λ1 or λ2) of the narrowband transmission response will spectrally shift (ii) (a reversible process) depending on the spacer’s optical thickness, hence GST crystallinity (refractive index). (b) Simulation of the effect of N-bi layers on the transmission response of the filter for a-GST and c-GST spacer layers with quarter-wave DBR stacks. (c) Simulation of the 6-layer designed FP filter. DBR = distributed Bragg reflector, BP = bandpass, HL = high-low index bi-layer, Δλ = blocking wavelength range (rejection region).
Fig. 2.
Fig. 2. Thin-film materials characterization. XRD data for sputtered amorphous Ge2Sb2Te5 (a) and (b) crystalline (HCP) Ge2Sb2Te5 states. (c) Real and imaginary (d) part of the refractive index for thin-film a-GST and c-GST across λ = 1-7 µm, obtained through ellipsometry, with index modulation (Δn′) of ∼2.4 at 4.5 µm indicated. (e) Real and imaginary (f) part of the refractive index for sputtered Ge and Si across λ = 1-7 µm, obtained through ellipsometry. The design CWL of 4.5 µm is overlaid for visual reference.
Fig. 3.
Fig. 3. Tunable GST-FP MWIR bandpass filter characterization. (a) Schematic of the two BP filters, with N = 1 and N = 6 bilayers, which can operate in two states: a-GST or c-GST spacer. (b) Transmission spectra of the two GST spacer states for a N = 1 bi-layer stack - (Ge:Si)N(GST)(Ge:Si)N. (c) Transmission spectra of the two filter types (with N = 1 and N = 6) in their a-GST states. (d) Transmission spectra of the N = 6 filter in its two states: a-GST and c-GST.
Fig. 4.
Fig. 4. Thermal imaging with GST-FP bandpass filters. (a) White light (RGB) image of the thermal imaging setup showing the hotplate, NASA Insignia logo (transmission mask) and the two mounted filters (left) a-GST spacer, and (right) c-GST spacer, with CWL(a-GST) ∼ 4.5 µm and CWL(c-GST) ∼ 4.75 µm. (b) Shows the thermal (IR) image of the same scene but using a MWIR digital camera. The hotplate temperature (blackbody source) is increased from 320K (i) to 486K (iv). (c,d) Comparison of the 4.5 µm and 4.7 µm filter at 515 K. (a) test setup, (b) the smaller objects (i.e. higher spatial frequencies) image from 4.5 µm than the 4.7 µm, and (c) the filter positions has been swapped to check repeatability.
Fig. 5.
Fig. 5. CO2 gas sensing with GST-FP tunable bandpass filters. (a) IR transmittance spectra of CO2 (gas phase) – data obtained from [38] – with intensity modulation (Δ) between 4.25 µm and 4.55 µm indicated. (d) Transmission spectra of the two CO2 gas filer states: a-GST and c-GST, which were used for imaging. (c) Image (RGB) of the gas sensing setup with two filters at the two respective CWLs (λ1 and λ1 indicated). (d) IR-imaging of the two GST-FP bandpass filters in front of the hotplate (set at T = 486 K) with a supply of CO2 gas fed via inlet nozzle, between the hotplate and the filters. The CO2 gas supply, initially turned off (i), is varied and MWIR camera is used to capture the resultant response. The gas plume can be observed (ii-iv) as the supply is varied. Real-time capture video see Visualization 1.

Tables (1)

Tables Icon

Table 1. Summary of the experimentally derived MWIR optical constants (at 4.5µm and 4.52 µm) of the RF sputtered thin-films: Si, Ge, and Ge2Sb2Te5 (GST-225) in its amorphous and crystalline states.

Metrics