Abstract

Calibrating ring-based optical switches automatically is strongly demanded in large-scale ring-based optical switch fabrics. Supported by a machine-learning algorithm, we build an artificial neural network (ANN) model to retrieve the parameters of a 2×2 dual-ring assisted Mach-Zehnder interferometer (DR-MZI) switch from the measured spectra for the first time. The calibration algorithm is verified on several devices. The operating wavelength of the optical switch can be tuned to any wavelength in a free spectral range with an accuracy better than 90 pm. The extinction ratio exceeds 20 dB at the cross- and bar-states with no more than 7 calibration cycles. The voltage difference between the automatic calibration and manual tuning is less than 30 mV, showing the high accuracy of the calibration algorithm. Our scheme provides a new way to calibrate ring-based devices that work as optical switch fabrics and tunable optical filters.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Silicon optical filters reconfigured from a 16 × 16 Benes switch matrix

Lin Shen, Liangjun Lu, Zhanzhi Guo, Linjie Zhou, and Jianping Chen
Opt. Express 27(12) 16945-16957 (2019)

Monitoring and automatic tuning and stabilization of a 2×2 MZI optical switch for large-scale WDM switch networks

M. W. AlTaha, H. Jayatilleka, Z. Lu, J. F. Chung, D. Celo, D. Goodwill, E. Bernier, S. Mirabbasi, L. Chrostowski, and S. Shekhar
Opt. Express 27(17) 24747-24764 (2019)

Tapless and topology agnostic calibration solution for silicon photonic switches

Alexander Gazman, Evgeny Manzhosov, Colm Browning, Meisam Bahadori, Yanir London, Liam Barry, and Keren Bergman
Opt. Express 26(25) 32662-32674 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, and A. Weiss, “1100×1100 port MEMS-based optical crossconnect with 4-dB maximum loss,”,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
    [Crossref]
  2. M. Mizukami, J. Yamaguchi, N. Nemoto, Y. Kawajiri, and H. Hirata, “128×128three-dimensional MEMS optical switch module with simultaneous optical path connection for optical crossconnect systems,” Appl. Opt. 50(21), 4037–4041 (2011).
    [Crossref]
  3. Y. Zha, D. G. Sun, T. G. Liu, Y. Zhang, X. Li, and X. Fu, “Rearrangeable nonblocking 8×8 matrix optical switch based on silica waveguide and extended banyan network,” IEEE Photonics Technol. Lett. 19(6), 390–392 (2007).
    [Crossref]
  4. T. Shibata, M. Okuno, T. Goh, T. Watanabe, and M. Yasu, “Silica-based waveguide-type 16×16 optical switch module incorporating driving circuits,” IEEE Photonics Technol. Lett. 15(9), 1300–1302 (2003).
    [Crossref]
  5. Y. Huang, Q. Cheng, Y. Hung, H. Guan, X. Meng, A. Novack, M. Streshinsky, M. Hochberg, and K. Bergman, “Multi-Stage 8× 8 Silicon Photonic Switch based on Dual-Microring Switching Elements,” IEEE J. Lightw. Technol. 38(2), 194–201 (2020).
    [Crossref]
  6. Q. Cheng, L. Dai, N. C. Abrams, Y. Hung, P. E. Morrissey, M. Glick, P. O’Brien, and K. Bergman, “Ultralow-crosstalk, strictly non-blocking microring based optical switch,” Photonics Res. 7(2), 155–161 (2019).
    [Crossref]
  7. Q. Cheng, M. Bahadori, Y. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon Clos switch fabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–11 (2019).
    [Crossref]
  8. L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4×4 nonblocking silicon electrooptic switches based on Mach–Zehnder interferometers,” IEEE Photonics J. 7(1), 1–8 (2015).
    [Crossref]
  9. L. Lu, X. Li, W. Gao, L. Zhou, and J. Chen, “Silicon Non-blocking 4×4 Optical Switch Chip Integrated With Both Thermal and Electro-optic Tuners,” IEEE Photonics J. 11(6), 1–9 (2019).
    [Crossref]
  10. S. Zhao, L. Lu, L. Zhou, D. Li, Z. Guo, and J. Chen, “16×16 silicon Mach–Zehnder interferometer switch actuated with waveguide microheaters,” Photonics Res. 4(5), 202–207 (2016).
    [Crossref]
  11. L. Lu, L. Zhou, X. Li, and J. Chen, “Low-power 2×2 silicon electro-optic switches based on double-ring assisted Mach–Zehnder interferometers,” Opt. Lett. 39(6), 1633–1636 (2014).
    [Crossref]
  12. L. Lu, L. Zhou, Z. Li, X. Li, D. Li, S. Zhao, and J. Chen, “4 × 4 Silicon Optical Switches Based on Double Ring-Assisted Mach–Zehnder Interferometers,” IEEE Photonics Technol. Lett. 27(23), 2457–2460 (2015).
    [Crossref]
  13. Z. Guo, L. Lu, L. Zhou, L. Shen, and J. Chen, “16×16 Silicon Optical Switch Based on Dual-Ring-Assisted Mach–Zehnder Interferometer,” J. Lightwave Technol. 36(2), 225–232 (2018).
    [Crossref]
  14. L. Shen, L. Lu, Z. Guo, L. Zhou, and J. Chen, “Silicon optical filters reconfigured from a 16×16 Benes switch matrix,” Opt. Express 27(12), 16945–16957 (2019).
    [Crossref]
  15. M. W. Altaha, H. Jayatilleka, Z. Lu, J. F. Chung, D. Celo, D. Goodwill, E. Bernier, S. Mirabbasi, L. Chrostowski, and S. Shekhar, “Monitoring and automatic tuning and stabilization of a 2×2 MZI optical switch for large-scale WDM switch networks,” Opt. Express 27(17), 24747–24764 (2019).
    [Crossref]
  16. H. Jayatilleka, K. Murray, M. A. Guilĺen-Torres, M. Caverley, R. Hu, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters,” Opt. Express 23(19), 25084–25097 (2015).
    [Crossref]
  17. F. Morichetti, A. Annoni, S. Grillanda, M. Carminati, P. Ciccarella, G. Ferrari, M. Sampietro, A. Melloni, M. J. Strain, and M. Sorel, “Feedback-controlled tuning, switching, and locking of photonic integrated circuits,” in Proceedings of IEEE Conference on Photonics in Switching (IEEE, 2015), pp. 1–3.
  18. Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, Y. Zhang, X. Guo, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
    [Crossref]
  19. J. C. C. Mak, W. D. Sacher, J. C. Mikkelsen, T. Y. Xue, Z. Yong, and J. K. S. Poon, “Automated calibration of high-order microring filters,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper SW1N.2.
  20. Q. Zhu, H. Zhang, R. Cao, N. Zhao, X. Jiang, D. Li, and C. Qiu, “Wide-Range Automated Wavelength Calibration Over a Full FSR in a Dual-Ring based Silicon Photonic Switch,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Th3C.1.
  21. G. Cong, N. Yamamoto, T. Inoue, M. Okano, Y. Maegami, M. Ohno, and K. Yamada, “High-efficient Black-box Calibration of Large-scale Silicon Photonics Switches by Bacterial Foraging Algorithm,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper M3B.3.
  22. K. Padmaraju, D. F. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, and K. Bergman, “Wavelength Locking and Thermally Stabilizing Microring Resonators Using Dithering Signals,” J. Lightwave Technol. 32(3), 505–512 (2014).
    [Crossref]
  23. S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).
    [Crossref]
  24. F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-Invasive On-Chip Light Observation by Contactless Waveguide Conductivity Monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014).
    [Crossref]
  25. G. Choo, S. Cai, B. Wang, C. K. Madsen, K. Entesari, and S. Palermo, “Automatic Monitor-Based Tuning of Reconfigurable Silicon Photonic APF-Based Pole/Zero Filters,” J. Lightwave Technol. 36(10), 1899–1911 (2018).
    [Crossref]
  26. H. R. Grant, G. C. Papen, S. Mookherjea, B. G. Lee, and L. Schares, “Heuristic Model for Rapid Characterization of a SiP Switch Chip,” J. Lightwave Technol. 36(20), 4680–4690 (2018).
    [Crossref]
  27. R. Collobert and J. Weston, “A unified architecture for natural language processing: deep neural networks with multitask learning,” in Proceedings of IEEE Conference on Machine learning (IEEE, 2008) 18(5), 160–167.
  28. Z. Wu, M. Peng, and T. Chen, “Thermal face recognition using convolutional neural network,” in Proceedings of IEEE Conference on Optoelectronics and Image Processing (IEEE, 2016), pp. 6–9.
  29. J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), eaar4206–7 (2018).
    [Crossref]
  30. D. Liu, Y. Tan, and Z. Yu, “Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures,” ACS Photonics 5(4), 1365–1369 (2018).
    [Crossref]
  31. M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, and K. Parsons, “Deep Neural Network Inverse Design of Integrated Nanophotonic Devices,” https://arxiv.org/abs/1809.03555v1 .
  32. Q. Zhu, S. An, R. Cao, Y. Ling, and Y. Su, “Fast and Wide-Range Wavelength Locking Based on a Two-Layer Neural Network in a Silicon Micro-ring Switch,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper W1E.1.
  33. D. P. Kingma and J. L. Ba, “Adam: A Method for Stochastic Optimization,” https://arxiv.org/abs/1412.6980v9 .
  34. A. Cotter, O. Shamir, N. Srebro, and K. Sridharan, “Better Mini-Batch Algorithms via Accelerated Gradient Methods,” inProceedings of IEEE Conference on Advances in Neural Information Processing Systems24 (IEEE, 2011), pp. 1647–1655.

2020 (1)

Y. Huang, Q. Cheng, Y. Hung, H. Guan, X. Meng, A. Novack, M. Streshinsky, M. Hochberg, and K. Bergman, “Multi-Stage 8× 8 Silicon Photonic Switch based on Dual-Microring Switching Elements,” IEEE J. Lightw. Technol. 38(2), 194–201 (2020).
[Crossref]

2019 (5)

Q. Cheng, L. Dai, N. C. Abrams, Y. Hung, P. E. Morrissey, M. Glick, P. O’Brien, and K. Bergman, “Ultralow-crosstalk, strictly non-blocking microring based optical switch,” Photonics Res. 7(2), 155–161 (2019).
[Crossref]

Q. Cheng, M. Bahadori, Y. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon Clos switch fabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–11 (2019).
[Crossref]

L. Lu, X. Li, W. Gao, L. Zhou, and J. Chen, “Silicon Non-blocking 4×4 Optical Switch Chip Integrated With Both Thermal and Electro-optic Tuners,” IEEE Photonics J. 11(6), 1–9 (2019).
[Crossref]

L. Shen, L. Lu, Z. Guo, L. Zhou, and J. Chen, “Silicon optical filters reconfigured from a 16×16 Benes switch matrix,” Opt. Express 27(12), 16945–16957 (2019).
[Crossref]

M. W. Altaha, H. Jayatilleka, Z. Lu, J. F. Chung, D. Celo, D. Goodwill, E. Bernier, S. Mirabbasi, L. Chrostowski, and S. Shekhar, “Monitoring and automatic tuning and stabilization of a 2×2 MZI optical switch for large-scale WDM switch networks,” Opt. Express 27(17), 24747–24764 (2019).
[Crossref]

2018 (6)

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, Y. Zhang, X. Guo, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

G. Choo, S. Cai, B. Wang, C. K. Madsen, K. Entesari, and S. Palermo, “Automatic Monitor-Based Tuning of Reconfigurable Silicon Photonic APF-Based Pole/Zero Filters,” J. Lightwave Technol. 36(10), 1899–1911 (2018).
[Crossref]

H. R. Grant, G. C. Papen, S. Mookherjea, B. G. Lee, and L. Schares, “Heuristic Model for Rapid Characterization of a SiP Switch Chip,” J. Lightwave Technol. 36(20), 4680–4690 (2018).
[Crossref]

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), eaar4206–7 (2018).
[Crossref]

D. Liu, Y. Tan, and Z. Yu, “Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]

Z. Guo, L. Lu, L. Zhou, L. Shen, and J. Chen, “16×16 Silicon Optical Switch Based on Dual-Ring-Assisted Mach–Zehnder Interferometer,” J. Lightwave Technol. 36(2), 225–232 (2018).
[Crossref]

2016 (1)

S. Zhao, L. Lu, L. Zhou, D. Li, Z. Guo, and J. Chen, “16×16 silicon Mach–Zehnder interferometer switch actuated with waveguide microheaters,” Photonics Res. 4(5), 202–207 (2016).
[Crossref]

2015 (3)

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4×4 nonblocking silicon electrooptic switches based on Mach–Zehnder interferometers,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

H. Jayatilleka, K. Murray, M. A. Guilĺen-Torres, M. Caverley, R. Hu, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters,” Opt. Express 23(19), 25084–25097 (2015).
[Crossref]

L. Lu, L. Zhou, Z. Li, X. Li, D. Li, S. Zhao, and J. Chen, “4 × 4 Silicon Optical Switches Based on Double Ring-Assisted Mach–Zehnder Interferometers,” IEEE Photonics Technol. Lett. 27(23), 2457–2460 (2015).
[Crossref]

2014 (4)

2011 (1)

2007 (1)

Y. Zha, D. G. Sun, T. G. Liu, Y. Zhang, X. Li, and X. Fu, “Rearrangeable nonblocking 8×8 matrix optical switch based on silica waveguide and extended banyan network,” IEEE Photonics Technol. Lett. 19(6), 390–392 (2007).
[Crossref]

2003 (2)

T. Shibata, M. Okuno, T. Goh, T. Watanabe, and M. Yasu, “Silica-based waveguide-type 16×16 optical switch module incorporating driving circuits,” IEEE Photonics Technol. Lett. 15(9), 1300–1302 (2003).
[Crossref]

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, and A. Weiss, “1100×1100 port MEMS-based optical crossconnect with 4-dB maximum loss,”,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Abrams, N.

Q. Cheng, M. Bahadori, Y. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon Clos switch fabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–11 (2019).
[Crossref]

Abrams, N. C.

Q. Cheng, L. Dai, N. C. Abrams, Y. Hung, P. E. Morrissey, M. Glick, P. O’Brien, and K. Bergman, “Ultralow-crosstalk, strictly non-blocking microring based optical switch,” Photonics Res. 7(2), 155–161 (2019).
[Crossref]

Ackert, J. J.

Altaha, M. W.

An, S.

Q. Zhu, S. An, R. Cao, Y. Ling, and Y. Su, “Fast and Wide-Range Wavelength Locking Based on a Two-Layer Neural Network in a Silicon Micro-ring Switch,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper W1E.1.

Annoni, A.

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).
[Crossref]

F. Morichetti, A. Annoni, S. Grillanda, M. Carminati, P. Ciccarella, G. Ferrari, M. Sampietro, A. Melloni, M. J. Strain, and M. Sorel, “Feedback-controlled tuning, switching, and locking of photonic integrated circuits,” in Proceedings of IEEE Conference on Photonics in Switching (IEEE, 2015), pp. 1–3.

Ba, J. L.

D. P. Kingma and J. L. Ba, “Adam: A Method for Stochastic Optimization,” https://arxiv.org/abs/1412.6980v9 .

Bahadori, M.

Q. Cheng, M. Bahadori, Y. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon Clos switch fabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–11 (2019).
[Crossref]

Bergman, K.

Y. Huang, Q. Cheng, Y. Hung, H. Guan, X. Meng, A. Novack, M. Streshinsky, M. Hochberg, and K. Bergman, “Multi-Stage 8× 8 Silicon Photonic Switch based on Dual-Microring Switching Elements,” IEEE J. Lightw. Technol. 38(2), 194–201 (2020).
[Crossref]

Q. Cheng, L. Dai, N. C. Abrams, Y. Hung, P. E. Morrissey, M. Glick, P. O’Brien, and K. Bergman, “Ultralow-crosstalk, strictly non-blocking microring based optical switch,” Photonics Res. 7(2), 155–161 (2019).
[Crossref]

Q. Cheng, M. Bahadori, Y. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon Clos switch fabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–11 (2019).
[Crossref]

K. Padmaraju, D. F. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, and K. Bergman, “Wavelength Locking and Thermally Stabilizing Microring Resonators Using Dithering Signals,” J. Lightwave Technol. 32(3), 505–512 (2014).
[Crossref]

Bernier, E.

Cai, S.

Cano-Renteria, F.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), eaar4206–7 (2018).
[Crossref]

Cao, R.

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, Y. Zhang, X. Guo, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

Q. Zhu, H. Zhang, R. Cao, N. Zhao, X. Jiang, D. Li, and C. Qiu, “Wide-Range Automated Wavelength Calibration Over a Full FSR in a Dual-Ring based Silicon Photonic Switch,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Th3C.1.

Q. Zhu, S. An, R. Cao, Y. Ling, and Y. Su, “Fast and Wide-Range Wavelength Locking Based on a Two-Layer Neural Network in a Silicon Micro-ring Switch,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper W1E.1.

Carminati, M.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-Invasive On-Chip Light Observation by Contactless Waveguide Conductivity Monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014).
[Crossref]

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).
[Crossref]

F. Morichetti, A. Annoni, S. Grillanda, M. Carminati, P. Ciccarella, G. Ferrari, M. Sampietro, A. Melloni, M. J. Strain, and M. Sorel, “Feedback-controlled tuning, switching, and locking of photonic integrated circuits,” in Proceedings of IEEE Conference on Photonics in Switching (IEEE, 2015), pp. 1–3.

Caverley, M.

Celo, D.

Chen, J.

L. Shen, L. Lu, Z. Guo, L. Zhou, and J. Chen, “Silicon optical filters reconfigured from a 16×16 Benes switch matrix,” Opt. Express 27(12), 16945–16957 (2019).
[Crossref]

L. Lu, X. Li, W. Gao, L. Zhou, and J. Chen, “Silicon Non-blocking 4×4 Optical Switch Chip Integrated With Both Thermal and Electro-optic Tuners,” IEEE Photonics J. 11(6), 1–9 (2019).
[Crossref]

Z. Guo, L. Lu, L. Zhou, L. Shen, and J. Chen, “16×16 Silicon Optical Switch Based on Dual-Ring-Assisted Mach–Zehnder Interferometer,” J. Lightwave Technol. 36(2), 225–232 (2018).
[Crossref]

S. Zhao, L. Lu, L. Zhou, D. Li, Z. Guo, and J. Chen, “16×16 silicon Mach–Zehnder interferometer switch actuated with waveguide microheaters,” Photonics Res. 4(5), 202–207 (2016).
[Crossref]

L. Lu, L. Zhou, Z. Li, X. Li, D. Li, S. Zhao, and J. Chen, “4 × 4 Silicon Optical Switches Based on Double Ring-Assisted Mach–Zehnder Interferometers,” IEEE Photonics Technol. Lett. 27(23), 2457–2460 (2015).
[Crossref]

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4×4 nonblocking silicon electrooptic switches based on Mach–Zehnder interferometers,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

L. Lu, L. Zhou, X. Li, and J. Chen, “Low-power 2×2 silicon electro-optic switches based on double-ring assisted Mach–Zehnder interferometers,” Opt. Lett. 39(6), 1633–1636 (2014).
[Crossref]

Chen, T.

Z. Wu, M. Peng, and T. Chen, “Thermal face recognition using convolutional neural network,” in Proceedings of IEEE Conference on Optoelectronics and Image Processing (IEEE, 2016), pp. 6–9.

Cheng, Q.

Y. Huang, Q. Cheng, Y. Hung, H. Guan, X. Meng, A. Novack, M. Streshinsky, M. Hochberg, and K. Bergman, “Multi-Stage 8× 8 Silicon Photonic Switch based on Dual-Microring Switching Elements,” IEEE J. Lightw. Technol. 38(2), 194–201 (2020).
[Crossref]

Q. Cheng, L. Dai, N. C. Abrams, Y. Hung, P. E. Morrissey, M. Glick, P. O’Brien, and K. Bergman, “Ultralow-crosstalk, strictly non-blocking microring based optical switch,” Photonics Res. 7(2), 155–161 (2019).
[Crossref]

Q. Cheng, M. Bahadori, Y. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon Clos switch fabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–11 (2019).
[Crossref]

Choo, G.

Chrostowski, L.

Chung, J. F.

Ciccarella, P.

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).
[Crossref]

F. Morichetti, A. Annoni, S. Grillanda, M. Carminati, P. Ciccarella, G. Ferrari, M. Sampietro, A. Melloni, M. J. Strain, and M. Sorel, “Feedback-controlled tuning, switching, and locking of photonic integrated circuits,” in Proceedings of IEEE Conference on Photonics in Switching (IEEE, 2015), pp. 1–3.

Collobert, R.

R. Collobert and J. Weston, “A unified architecture for natural language processing: deep neural networks with multitask learning,” in Proceedings of IEEE Conference on Machine learning (IEEE, 2008) 18(5), 160–167.

Cong, G.

G. Cong, N. Yamamoto, T. Inoue, M. Okano, Y. Maegami, M. Ohno, and K. Yamada, “High-efficient Black-box Calibration of Large-scale Silicon Photonics Switches by Bacterial Foraging Algorithm,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper M3B.3.

Cotter, A.

A. Cotter, O. Shamir, N. Srebro, and K. Sridharan, “Better Mini-Batch Algorithms via Accelerated Gradient Methods,” inProceedings of IEEE Conference on Advances in Neural Information Processing Systems24 (IEEE, 2011), pp. 1647–1655.

Dai, L.

Q. Cheng, L. Dai, N. C. Abrams, Y. Hung, P. E. Morrissey, M. Glick, P. O’Brien, and K. Bergman, “Ultralow-crosstalk, strictly non-blocking microring based optical switch,” Photonics Res. 7(2), 155–161 (2019).
[Crossref]

DeLacy, B. G.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), eaar4206–7 (2018).
[Crossref]

Entesari, K.

Ferrari, G.

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).
[Crossref]

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-Invasive On-Chip Light Observation by Contactless Waveguide Conductivity Monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014).
[Crossref]

F. Morichetti, A. Annoni, S. Grillanda, M. Carminati, P. Ciccarella, G. Ferrari, M. Sampietro, A. Melloni, M. J. Strain, and M. Sorel, “Feedback-controlled tuning, switching, and locking of photonic integrated circuits,” in Proceedings of IEEE Conference on Photonics in Switching (IEEE, 2015), pp. 1–3.

Fu, X.

Y. Zha, D. G. Sun, T. G. Liu, Y. Zhang, X. Li, and X. Fu, “Rearrangeable nonblocking 8×8 matrix optical switch based on silica waveguide and extended banyan network,” IEEE Photonics Technol. Lett. 19(6), 390–392 (2007).
[Crossref]

Gao, W.

L. Lu, X. Li, W. Gao, L. Zhou, and J. Chen, “Silicon Non-blocking 4×4 Optical Switch Chip Integrated With Both Thermal and Electro-optic Tuners,” IEEE Photonics J. 11(6), 1–9 (2019).
[Crossref]

Glick, M.

Q. Cheng, L. Dai, N. C. Abrams, Y. Hung, P. E. Morrissey, M. Glick, P. O’Brien, and K. Bergman, “Ultralow-crosstalk, strictly non-blocking microring based optical switch,” Photonics Res. 7(2), 155–161 (2019).
[Crossref]

Goh, T.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, and M. Yasu, “Silica-based waveguide-type 16×16 optical switch module incorporating driving circuits,” IEEE Photonics Technol. Lett. 15(9), 1300–1302 (2003).
[Crossref]

Goodwill, D.

Grant, H. R.

Grillanda, S.

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).
[Crossref]

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-Invasive On-Chip Light Observation by Contactless Waveguide Conductivity Monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014).
[Crossref]

F. Morichetti, A. Annoni, S. Grillanda, M. Carminati, P. Ciccarella, G. Ferrari, M. Sampietro, A. Melloni, M. J. Strain, and M. Sorel, “Feedback-controlled tuning, switching, and locking of photonic integrated circuits,” in Proceedings of IEEE Conference on Photonics in Switching (IEEE, 2015), pp. 1–3.

Guan, H.

Y. Huang, Q. Cheng, Y. Hung, H. Guan, X. Meng, A. Novack, M. Streshinsky, M. Hochberg, and K. Bergman, “Multi-Stage 8× 8 Silicon Photonic Switch based on Dual-Microring Switching Elements,” IEEE J. Lightw. Technol. 38(2), 194–201 (2020).
[Crossref]

Guillen-Torres, M. A.

Guo, X.

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, Y. Zhang, X. Guo, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

Guo, Z.

Hirata, H.

Hochberg, M.

Y. Huang, Q. Cheng, Y. Hung, H. Guan, X. Meng, A. Novack, M. Streshinsky, M. Hochberg, and K. Bergman, “Multi-Stage 8× 8 Silicon Photonic Switch based on Dual-Microring Switching Elements,” IEEE J. Lightw. Technol. 38(2), 194–201 (2020).
[Crossref]

Hu, R.

Huang, Y.

Y. Huang, Q. Cheng, Y. Hung, H. Guan, X. Meng, A. Novack, M. Streshinsky, M. Hochberg, and K. Bergman, “Multi-Stage 8× 8 Silicon Photonic Switch based on Dual-Microring Switching Elements,” IEEE J. Lightw. Technol. 38(2), 194–201 (2020).
[Crossref]

Q. Cheng, M. Bahadori, Y. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon Clos switch fabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–11 (2019).
[Crossref]

Hung, Y.

Y. Huang, Q. Cheng, Y. Hung, H. Guan, X. Meng, A. Novack, M. Streshinsky, M. Hochberg, and K. Bergman, “Multi-Stage 8× 8 Silicon Photonic Switch based on Dual-Microring Switching Elements,” IEEE J. Lightw. Technol. 38(2), 194–201 (2020).
[Crossref]

Q. Cheng, L. Dai, N. C. Abrams, Y. Hung, P. E. Morrissey, M. Glick, P. O’Brien, and K. Bergman, “Ultralow-crosstalk, strictly non-blocking microring based optical switch,” Photonics Res. 7(2), 155–161 (2019).
[Crossref]

Q. Cheng, M. Bahadori, Y. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon Clos switch fabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–11 (2019).
[Crossref]

Inoue, T.

G. Cong, N. Yamamoto, T. Inoue, M. Okano, Y. Maegami, M. Ohno, and K. Yamada, “High-efficient Black-box Calibration of Large-scale Silicon Photonics Switches by Bacterial Foraging Algorithm,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper M3B.3.

Jaeger, N. A. F.

Jayatilleka, H.

Jha, D.

M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, and K. Parsons, “Deep Neural Network Inverse Design of Integrated Nanophotonic Devices,” https://arxiv.org/abs/1809.03555v1 .

Jiang, X.

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, Y. Zhang, X. Guo, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

Q. Zhu, H. Zhang, R. Cao, N. Zhao, X. Jiang, D. Li, and C. Qiu, “Wide-Range Automated Wavelength Calibration Over a Full FSR in a Dual-Ring based Silicon Photonic Switch,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Th3C.1.

Jing, L.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), eaar4206–7 (2018).
[Crossref]

Joannopoulos, J. D.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), eaar4206–7 (2018).
[Crossref]

Kawajiri, Y.

Kim, J.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, and A. Weiss, “1100×1100 port MEMS-based optical crossconnect with 4-dB maximum loss,”,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Kingma, D. P.

D. P. Kingma and J. L. Ba, “Adam: A Method for Stochastic Optimization,” https://arxiv.org/abs/1412.6980v9 .

Knights, A. P.

Koike-Akino, T.

M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, and K. Parsons, “Deep Neural Network Inverse Design of Integrated Nanophotonic Devices,” https://arxiv.org/abs/1809.03555v1 .

Kojima, K.

M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, and K. Parsons, “Deep Neural Network Inverse Design of Integrated Nanophotonic Devices,” https://arxiv.org/abs/1809.03555v1 .

Kraus, J. S.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, and A. Weiss, “1100×1100 port MEMS-based optical crossconnect with 4-dB maximum loss,”,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Kumar, B.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, and A. Weiss, “1100×1100 port MEMS-based optical crossconnect with 4-dB maximum loss,”,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Lee, B. G.

Li, D.

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, Y. Zhang, X. Guo, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

S. Zhao, L. Lu, L. Zhou, D. Li, Z. Guo, and J. Chen, “16×16 silicon Mach–Zehnder interferometer switch actuated with waveguide microheaters,” Photonics Res. 4(5), 202–207 (2016).
[Crossref]

L. Lu, L. Zhou, Z. Li, X. Li, D. Li, S. Zhao, and J. Chen, “4 × 4 Silicon Optical Switches Based on Double Ring-Assisted Mach–Zehnder Interferometers,” IEEE Photonics Technol. Lett. 27(23), 2457–2460 (2015).
[Crossref]

Q. Zhu, H. Zhang, R. Cao, N. Zhao, X. Jiang, D. Li, and C. Qiu, “Wide-Range Automated Wavelength Calibration Over a Full FSR in a Dual-Ring based Silicon Photonic Switch,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Th3C.1.

Li, X.

L. Lu, X. Li, W. Gao, L. Zhou, and J. Chen, “Silicon Non-blocking 4×4 Optical Switch Chip Integrated With Both Thermal and Electro-optic Tuners,” IEEE Photonics J. 11(6), 1–9 (2019).
[Crossref]

L. Lu, L. Zhou, Z. Li, X. Li, D. Li, S. Zhao, and J. Chen, “4 × 4 Silicon Optical Switches Based on Double Ring-Assisted Mach–Zehnder Interferometers,” IEEE Photonics Technol. Lett. 27(23), 2457–2460 (2015).
[Crossref]

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4×4 nonblocking silicon electrooptic switches based on Mach–Zehnder interferometers,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

L. Lu, L. Zhou, X. Li, and J. Chen, “Low-power 2×2 silicon electro-optic switches based on double-ring assisted Mach–Zehnder interferometers,” Opt. Lett. 39(6), 1633–1636 (2014).
[Crossref]

Y. Zha, D. G. Sun, T. G. Liu, Y. Zhang, X. Li, and X. Fu, “Rearrangeable nonblocking 8×8 matrix optical switch based on silica waveguide and extended banyan network,” IEEE Photonics Technol. Lett. 19(6), 390–392 (2007).
[Crossref]

Li, Y.

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, Y. Zhang, X. Guo, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

Li, Z.

L. Lu, L. Zhou, Z. Li, X. Li, D. Li, S. Zhao, and J. Chen, “4 × 4 Silicon Optical Switches Based on Double Ring-Assisted Mach–Zehnder Interferometers,” IEEE Photonics Technol. Lett. 27(23), 2457–2460 (2015).
[Crossref]

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4×4 nonblocking silicon electrooptic switches based on Mach–Zehnder interferometers,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

Lieuwen, D. F.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, and A. Weiss, “1100×1100 port MEMS-based optical crossconnect with 4-dB maximum loss,”,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Lin, C.

M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, and K. Parsons, “Deep Neural Network Inverse Design of Integrated Nanophotonic Devices,” https://arxiv.org/abs/1809.03555v1 .

Ling, Y.

Q. Zhu, S. An, R. Cao, Y. Ling, and Y. Su, “Fast and Wide-Range Wavelength Locking Based on a Two-Layer Neural Network in a Silicon Micro-ring Switch,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper W1E.1.

Liu, D.

D. Liu, Y. Tan, and Z. Yu, “Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]

Liu, T. G.

Y. Zha, D. G. Sun, T. G. Liu, Y. Zhang, X. Li, and X. Fu, “Rearrangeable nonblocking 8×8 matrix optical switch based on silica waveguide and extended banyan network,” IEEE Photonics Technol. Lett. 19(6), 390–392 (2007).
[Crossref]

Logan, D. F.

Lu, L.

L. Shen, L. Lu, Z. Guo, L. Zhou, and J. Chen, “Silicon optical filters reconfigured from a 16×16 Benes switch matrix,” Opt. Express 27(12), 16945–16957 (2019).
[Crossref]

L. Lu, X. Li, W. Gao, L. Zhou, and J. Chen, “Silicon Non-blocking 4×4 Optical Switch Chip Integrated With Both Thermal and Electro-optic Tuners,” IEEE Photonics J. 11(6), 1–9 (2019).
[Crossref]

Z. Guo, L. Lu, L. Zhou, L. Shen, and J. Chen, “16×16 Silicon Optical Switch Based on Dual-Ring-Assisted Mach–Zehnder Interferometer,” J. Lightwave Technol. 36(2), 225–232 (2018).
[Crossref]

S. Zhao, L. Lu, L. Zhou, D. Li, Z. Guo, and J. Chen, “16×16 silicon Mach–Zehnder interferometer switch actuated with waveguide microheaters,” Photonics Res. 4(5), 202–207 (2016).
[Crossref]

L. Lu, L. Zhou, Z. Li, X. Li, D. Li, S. Zhao, and J. Chen, “4 × 4 Silicon Optical Switches Based on Double Ring-Assisted Mach–Zehnder Interferometers,” IEEE Photonics Technol. Lett. 27(23), 2457–2460 (2015).
[Crossref]

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4×4 nonblocking silicon electrooptic switches based on Mach–Zehnder interferometers,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

L. Lu, L. Zhou, X. Li, and J. Chen, “Low-power 2×2 silicon electro-optic switches based on double-ring assisted Mach–Zehnder interferometers,” Opt. Lett. 39(6), 1633–1636 (2014).
[Crossref]

Lu, Z.

Madsen, C. K.

Maegami, Y.

G. Cong, N. Yamamoto, T. Inoue, M. Okano, Y. Maegami, M. Ohno, and K. Yamada, “High-efficient Black-box Calibration of Large-scale Silicon Photonics Switches by Bacterial Foraging Algorithm,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper M3B.3.

Mak, J. C. C.

J. C. C. Mak, W. D. Sacher, J. C. Mikkelsen, T. Y. Xue, Z. Yong, and J. K. S. Poon, “Automated calibration of high-order microring filters,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper SW1N.2.

Melloni, A.

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).
[Crossref]

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-Invasive On-Chip Light Observation by Contactless Waveguide Conductivity Monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014).
[Crossref]

F. Morichetti, A. Annoni, S. Grillanda, M. Carminati, P. Ciccarella, G. Ferrari, M. Sampietro, A. Melloni, M. J. Strain, and M. Sorel, “Feedback-controlled tuning, switching, and locking of photonic integrated circuits,” in Proceedings of IEEE Conference on Photonics in Switching (IEEE, 2015), pp. 1–3.

Meng, X.

Y. Huang, Q. Cheng, Y. Hung, H. Guan, X. Meng, A. Novack, M. Streshinsky, M. Hochberg, and K. Bergman, “Multi-Stage 8× 8 Silicon Photonic Switch based on Dual-Microring Switching Elements,” IEEE J. Lightw. Technol. 38(2), 194–201 (2020).
[Crossref]

Mikkelsen, J. C.

J. C. C. Mak, W. D. Sacher, J. C. Mikkelsen, T. Y. Xue, Z. Yong, and J. K. S. Poon, “Automated calibration of high-order microring filters,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper SW1N.2.

Mirabbasi, S.

Mizukami, M.

Mookherjea, S.

Morichetti, F.

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).
[Crossref]

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-Invasive On-Chip Light Observation by Contactless Waveguide Conductivity Monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014).
[Crossref]

F. Morichetti, A. Annoni, S. Grillanda, M. Carminati, P. Ciccarella, G. Ferrari, M. Sampietro, A. Melloni, M. J. Strain, and M. Sorel, “Feedback-controlled tuning, switching, and locking of photonic integrated circuits,” in Proceedings of IEEE Conference on Photonics in Switching (IEEE, 2015), pp. 1–3.

Morrissey, P. E.

Q. Cheng, L. Dai, N. C. Abrams, Y. Hung, P. E. Morrissey, M. Glick, P. O’Brien, and K. Bergman, “Ultralow-crosstalk, strictly non-blocking microring based optical switch,” Photonics Res. 7(2), 155–161 (2019).
[Crossref]

Murray, K.

Nemoto, N.

Novack, A.

Y. Huang, Q. Cheng, Y. Hung, H. Guan, X. Meng, A. Novack, M. Streshinsky, M. Hochberg, and K. Bergman, “Multi-Stage 8× 8 Silicon Photonic Switch based on Dual-Microring Switching Elements,” IEEE J. Lightw. Technol. 38(2), 194–201 (2020).
[Crossref]

Nuzman, C. J.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, and A. Weiss, “1100×1100 port MEMS-based optical crossconnect with 4-dB maximum loss,”,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

O’Brien, P.

Q. Cheng, L. Dai, N. C. Abrams, Y. Hung, P. E. Morrissey, M. Glick, P. O’Brien, and K. Bergman, “Ultralow-crosstalk, strictly non-blocking microring based optical switch,” Photonics Res. 7(2), 155–161 (2019).
[Crossref]

Ohno, M.

G. Cong, N. Yamamoto, T. Inoue, M. Okano, Y. Maegami, M. Ohno, and K. Yamada, “High-efficient Black-box Calibration of Large-scale Silicon Photonics Switches by Bacterial Foraging Algorithm,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper M3B.3.

Okano, M.

G. Cong, N. Yamamoto, T. Inoue, M. Okano, Y. Maegami, M. Ohno, and K. Yamada, “High-efficient Black-box Calibration of Large-scale Silicon Photonics Switches by Bacterial Foraging Algorithm,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper M3B.3.

Okuno, M.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, and M. Yasu, “Silica-based waveguide-type 16×16 optical switch module incorporating driving circuits,” IEEE Photonics Technol. Lett. 15(9), 1300–1302 (2003).
[Crossref]

Padmaraju, K.

Palermo, S.

Papen, G. C.

Parsons, K.

M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, and K. Parsons, “Deep Neural Network Inverse Design of Integrated Nanophotonic Devices,” https://arxiv.org/abs/1809.03555v1 .

Peng, M.

Z. Wu, M. Peng, and T. Chen, “Thermal face recognition using convolutional neural network,” in Proceedings of IEEE Conference on Optoelectronics and Image Processing (IEEE, 2016), pp. 6–9.

Peurifoy, J.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), eaar4206–7 (2018).
[Crossref]

Poon, J. K. S.

J. C. C. Mak, W. D. Sacher, J. C. Mikkelsen, T. Y. Xue, Z. Yong, and J. K. S. Poon, “Automated calibration of high-order microring filters,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper SW1N.2.

Qiu, C.

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, Y. Zhang, X. Guo, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

Q. Zhu, H. Zhang, R. Cao, N. Zhao, X. Jiang, D. Li, and C. Qiu, “Wide-Range Automated Wavelength Calibration Over a Full FSR in a Dual-Ring based Silicon Photonic Switch,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Th3C.1.

Sacher, W. D.

J. C. C. Mak, W. D. Sacher, J. C. Mikkelsen, T. Y. Xue, Z. Yong, and J. K. S. Poon, “Automated calibration of high-order microring filters,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper SW1N.2.

Sampietro, M.

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).
[Crossref]

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-Invasive On-Chip Light Observation by Contactless Waveguide Conductivity Monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014).
[Crossref]

F. Morichetti, A. Annoni, S. Grillanda, M. Carminati, P. Ciccarella, G. Ferrari, M. Sampietro, A. Melloni, M. J. Strain, and M. Sorel, “Feedback-controlled tuning, switching, and locking of photonic integrated circuits,” in Proceedings of IEEE Conference on Photonics in Switching (IEEE, 2015), pp. 1–3.

Schares, L.

Shamir, O.

A. Cotter, O. Shamir, N. Srebro, and K. Sridharan, “Better Mini-Batch Algorithms via Accelerated Gradient Methods,” inProceedings of IEEE Conference on Advances in Neural Information Processing Systems24 (IEEE, 2011), pp. 1647–1655.

Shekhar, S.

Shen, L.

Shen, Y.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), eaar4206–7 (2018).
[Crossref]

Shibata, T.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, and M. Yasu, “Silica-based waveguide-type 16×16 optical switch module incorporating driving circuits,” IEEE Photonics Technol. Lett. 15(9), 1300–1302 (2003).
[Crossref]

Shiraishi, T.

Soljacic, M.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), eaar4206–7 (2018).
[Crossref]

Sorel, M.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-Invasive On-Chip Light Observation by Contactless Waveguide Conductivity Monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014).
[Crossref]

S. Grillanda, M. Carminati, F. Morichetti, P. Ciccarella, A. Annoni, G. Ferrari, M. Strain, M. Sorel, M. Sampietro, and A. Melloni, “Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics,” Optica 1(3), 129–136 (2014).
[Crossref]

F. Morichetti, A. Annoni, S. Grillanda, M. Carminati, P. Ciccarella, G. Ferrari, M. Sampietro, A. Melloni, M. J. Strain, and M. Sorel, “Feedback-controlled tuning, switching, and locking of photonic integrated circuits,” in Proceedings of IEEE Conference on Photonics in Switching (IEEE, 2015), pp. 1–3.

Srebro, N.

A. Cotter, O. Shamir, N. Srebro, and K. Sridharan, “Better Mini-Batch Algorithms via Accelerated Gradient Methods,” inProceedings of IEEE Conference on Advances in Neural Information Processing Systems24 (IEEE, 2011), pp. 1647–1655.

Sridharan, K.

A. Cotter, O. Shamir, N. Srebro, and K. Sridharan, “Better Mini-Batch Algorithms via Accelerated Gradient Methods,” inProceedings of IEEE Conference on Advances in Neural Information Processing Systems24 (IEEE, 2011), pp. 1647–1655.

Strain, M.

Strain, M. J.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-Invasive On-Chip Light Observation by Contactless Waveguide Conductivity Monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014).
[Crossref]

F. Morichetti, A. Annoni, S. Grillanda, M. Carminati, P. Ciccarella, G. Ferrari, M. Sampietro, A. Melloni, M. J. Strain, and M. Sorel, “Feedback-controlled tuning, switching, and locking of photonic integrated circuits,” in Proceedings of IEEE Conference on Photonics in Switching (IEEE, 2015), pp. 1–3.

Streshinsky, M.

Y. Huang, Q. Cheng, Y. Hung, H. Guan, X. Meng, A. Novack, M. Streshinsky, M. Hochberg, and K. Bergman, “Multi-Stage 8× 8 Silicon Photonic Switch based on Dual-Microring Switching Elements,” IEEE J. Lightw. Technol. 38(2), 194–201 (2020).
[Crossref]

Su, Y.

Q. Zhu, S. An, R. Cao, Y. Ling, and Y. Su, “Fast and Wide-Range Wavelength Locking Based on a Two-Layer Neural Network in a Silicon Micro-ring Switch,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper W1E.1.

Sun, D. G.

Y. Zha, D. G. Sun, T. G. Liu, Y. Zhang, X. Li, and X. Fu, “Rearrangeable nonblocking 8×8 matrix optical switch based on silica waveguide and extended banyan network,” IEEE Photonics Technol. Lett. 19(6), 390–392 (2007).
[Crossref]

Tahersima, M. H.

M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, and K. Parsons, “Deep Neural Network Inverse Design of Integrated Nanophotonic Devices,” https://arxiv.org/abs/1809.03555v1 .

Tan, Y.

D. Liu, Y. Tan, and Z. Yu, “Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]

Tegmark, M.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), eaar4206–7 (2018).
[Crossref]

Wang, B.

G. Choo, S. Cai, B. Wang, C. K. Madsen, K. Entesari, and S. Palermo, “Automatic Monitor-Based Tuning of Reconfigurable Silicon Photonic APF-Based Pole/Zero Filters,” J. Lightwave Technol. 36(10), 1899–1911 (2018).
[Crossref]

M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, and K. Parsons, “Deep Neural Network Inverse Design of Integrated Nanophotonic Devices,” https://arxiv.org/abs/1809.03555v1 .

Watanabe, T.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, and M. Yasu, “Silica-based waveguide-type 16×16 optical switch module incorporating driving circuits,” IEEE Photonics Technol. Lett. 15(9), 1300–1302 (2003).
[Crossref]

Weiss, A.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, and A. Weiss, “1100×1100 port MEMS-based optical crossconnect with 4-dB maximum loss,”,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Weston, J.

R. Collobert and J. Weston, “A unified architecture for natural language processing: deep neural networks with multitask learning,” in Proceedings of IEEE Conference on Machine learning (IEEE, 2008) 18(5), 160–167.

Wu, Z.

Z. Wu, M. Peng, and T. Chen, “Thermal face recognition using convolutional neural network,” in Proceedings of IEEE Conference on Optoelectronics and Image Processing (IEEE, 2016), pp. 6–9.

Xue, T. Y.

J. C. C. Mak, W. D. Sacher, J. C. Mikkelsen, T. Y. Xue, Z. Yong, and J. K. S. Poon, “Automated calibration of high-order microring filters,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper SW1N.2.

Yamada, K.

G. Cong, N. Yamamoto, T. Inoue, M. Okano, Y. Maegami, M. Ohno, and K. Yamada, “High-efficient Black-box Calibration of Large-scale Silicon Photonics Switches by Bacterial Foraging Algorithm,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper M3B.3.

Yamaguchi, J.

Yamamoto, N.

G. Cong, N. Yamamoto, T. Inoue, M. Okano, Y. Maegami, M. Ohno, and K. Yamada, “High-efficient Black-box Calibration of Large-scale Silicon Photonics Switches by Bacterial Foraging Algorithm,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper M3B.3.

Yang, Y.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), eaar4206–7 (2018).
[Crossref]

Yasu, M.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, and M. Yasu, “Silica-based waveguide-type 16×16 optical switch module incorporating driving circuits,” IEEE Photonics Technol. Lett. 15(9), 1300–1302 (2003).
[Crossref]

Yong, Z.

J. C. C. Mak, W. D. Sacher, J. C. Mikkelsen, T. Y. Xue, Z. Yong, and J. K. S. Poon, “Automated calibration of high-order microring filters,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper SW1N.2.

Yu, Y.

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, Y. Zhang, X. Guo, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

Yu, Z.

D. Liu, Y. Tan, and Z. Yu, “Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]

Zeng, L.

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, Y. Zhang, X. Guo, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

Zha, Y.

Y. Zha, D. G. Sun, T. G. Liu, Y. Zhang, X. Li, and X. Fu, “Rearrangeable nonblocking 8×8 matrix optical switch based on silica waveguide and extended banyan network,” IEEE Photonics Technol. Lett. 19(6), 390–392 (2007).
[Crossref]

Zhang, H.

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, Y. Zhang, X. Guo, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

Q. Zhu, H. Zhang, R. Cao, N. Zhao, X. Jiang, D. Li, and C. Qiu, “Wide-Range Automated Wavelength Calibration Over a Full FSR in a Dual-Ring based Silicon Photonic Switch,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Th3C.1.

Zhang, Y.

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, Y. Zhang, X. Guo, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

Y. Zha, D. G. Sun, T. G. Liu, Y. Zhang, X. Li, and X. Fu, “Rearrangeable nonblocking 8×8 matrix optical switch based on silica waveguide and extended banyan network,” IEEE Photonics Technol. Lett. 19(6), 390–392 (2007).
[Crossref]

Zhao, N.

Q. Zhu, H. Zhang, R. Cao, N. Zhao, X. Jiang, D. Li, and C. Qiu, “Wide-Range Automated Wavelength Calibration Over a Full FSR in a Dual-Ring based Silicon Photonic Switch,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Th3C.1.

Zhao, S.

S. Zhao, L. Lu, L. Zhou, D. Li, Z. Guo, and J. Chen, “16×16 silicon Mach–Zehnder interferometer switch actuated with waveguide microheaters,” Photonics Res. 4(5), 202–207 (2016).
[Crossref]

L. Lu, L. Zhou, Z. Li, X. Li, D. Li, S. Zhao, and J. Chen, “4 × 4 Silicon Optical Switches Based on Double Ring-Assisted Mach–Zehnder Interferometers,” IEEE Photonics Technol. Lett. 27(23), 2457–2460 (2015).
[Crossref]

Zhou, L.

L. Lu, X. Li, W. Gao, L. Zhou, and J. Chen, “Silicon Non-blocking 4×4 Optical Switch Chip Integrated With Both Thermal and Electro-optic Tuners,” IEEE Photonics J. 11(6), 1–9 (2019).
[Crossref]

L. Shen, L. Lu, Z. Guo, L. Zhou, and J. Chen, “Silicon optical filters reconfigured from a 16×16 Benes switch matrix,” Opt. Express 27(12), 16945–16957 (2019).
[Crossref]

Z. Guo, L. Lu, L. Zhou, L. Shen, and J. Chen, “16×16 Silicon Optical Switch Based on Dual-Ring-Assisted Mach–Zehnder Interferometer,” J. Lightwave Technol. 36(2), 225–232 (2018).
[Crossref]

S. Zhao, L. Lu, L. Zhou, D. Li, Z. Guo, and J. Chen, “16×16 silicon Mach–Zehnder interferometer switch actuated with waveguide microheaters,” Photonics Res. 4(5), 202–207 (2016).
[Crossref]

L. Lu, L. Zhou, Z. Li, X. Li, D. Li, S. Zhao, and J. Chen, “4 × 4 Silicon Optical Switches Based on Double Ring-Assisted Mach–Zehnder Interferometers,” IEEE Photonics Technol. Lett. 27(23), 2457–2460 (2015).
[Crossref]

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4×4 nonblocking silicon electrooptic switches based on Mach–Zehnder interferometers,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

L. Lu, L. Zhou, X. Li, and J. Chen, “Low-power 2×2 silicon electro-optic switches based on double-ring assisted Mach–Zehnder interferometers,” Opt. Lett. 39(6), 1633–1636 (2014).
[Crossref]

Zhu, Q.

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, Y. Zhang, X. Guo, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

Q. Zhu, H. Zhang, R. Cao, N. Zhao, X. Jiang, D. Li, and C. Qiu, “Wide-Range Automated Wavelength Calibration Over a Full FSR in a Dual-Ring based Silicon Photonic Switch,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Th3C.1.

Q. Zhu, S. An, R. Cao, Y. Ling, and Y. Su, “Fast and Wide-Range Wavelength Locking Based on a Two-Layer Neural Network in a Silicon Micro-ring Switch,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper W1E.1.

ACS Photonics (1)

D. Liu, Y. Tan, and Z. Yu, “Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]

Appl. Opt. (1)

IEEE J. Lightw. Technol. (1)

Y. Huang, Q. Cheng, Y. Hung, H. Guan, X. Meng, A. Novack, M. Streshinsky, M. Hochberg, and K. Bergman, “Multi-Stage 8× 8 Silicon Photonic Switch based on Dual-Microring Switching Elements,” IEEE J. Lightw. Technol. 38(2), 194–201 (2020).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

Q. Cheng, M. Bahadori, Y. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon Clos switch fabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–11 (2019).
[Crossref]

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Non-Invasive On-Chip Light Observation by Contactless Waveguide Conductivity Monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(4), 292–301 (2014).
[Crossref]

IEEE Photonics J. (3)

L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4×4 nonblocking silicon electrooptic switches based on Mach–Zehnder interferometers,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

L. Lu, X. Li, W. Gao, L. Zhou, and J. Chen, “Silicon Non-blocking 4×4 Optical Switch Chip Integrated With Both Thermal and Electro-optic Tuners,” IEEE Photonics J. 11(6), 1–9 (2019).
[Crossref]

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, Y. Zhang, X. Guo, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (4)

Y. Zha, D. G. Sun, T. G. Liu, Y. Zhang, X. Li, and X. Fu, “Rearrangeable nonblocking 8×8 matrix optical switch based on silica waveguide and extended banyan network,” IEEE Photonics Technol. Lett. 19(6), 390–392 (2007).
[Crossref]

T. Shibata, M. Okuno, T. Goh, T. Watanabe, and M. Yasu, “Silica-based waveguide-type 16×16 optical switch module incorporating driving circuits,” IEEE Photonics Technol. Lett. 15(9), 1300–1302 (2003).
[Crossref]

L. Lu, L. Zhou, Z. Li, X. Li, D. Li, S. Zhao, and J. Chen, “4 × 4 Silicon Optical Switches Based on Double Ring-Assisted Mach–Zehnder Interferometers,” IEEE Photonics Technol. Lett. 27(23), 2457–2460 (2015).
[Crossref]

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, and A. Weiss, “1100×1100 port MEMS-based optical crossconnect with 4-dB maximum loss,”,” IEEE Photonics Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (3)

Opt. Lett. (1)

Optica (1)

Photonics Res. (2)

Q. Cheng, L. Dai, N. C. Abrams, Y. Hung, P. E. Morrissey, M. Glick, P. O’Brien, and K. Bergman, “Ultralow-crosstalk, strictly non-blocking microring based optical switch,” Photonics Res. 7(2), 155–161 (2019).
[Crossref]

S. Zhao, L. Lu, L. Zhou, D. Li, Z. Guo, and J. Chen, “16×16 silicon Mach–Zehnder interferometer switch actuated with waveguide microheaters,” Photonics Res. 4(5), 202–207 (2016).
[Crossref]

Sci. Adv. (1)

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), eaar4206–7 (2018).
[Crossref]

Other (10)

F. Morichetti, A. Annoni, S. Grillanda, M. Carminati, P. Ciccarella, G. Ferrari, M. Sampietro, A. Melloni, M. J. Strain, and M. Sorel, “Feedback-controlled tuning, switching, and locking of photonic integrated circuits,” in Proceedings of IEEE Conference on Photonics in Switching (IEEE, 2015), pp. 1–3.

J. C. C. Mak, W. D. Sacher, J. C. Mikkelsen, T. Y. Xue, Z. Yong, and J. K. S. Poon, “Automated calibration of high-order microring filters,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper SW1N.2.

Q. Zhu, H. Zhang, R. Cao, N. Zhao, X. Jiang, D. Li, and C. Qiu, “Wide-Range Automated Wavelength Calibration Over a Full FSR in a Dual-Ring based Silicon Photonic Switch,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Th3C.1.

G. Cong, N. Yamamoto, T. Inoue, M. Okano, Y. Maegami, M. Ohno, and K. Yamada, “High-efficient Black-box Calibration of Large-scale Silicon Photonics Switches by Bacterial Foraging Algorithm,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper M3B.3.

R. Collobert and J. Weston, “A unified architecture for natural language processing: deep neural networks with multitask learning,” in Proceedings of IEEE Conference on Machine learning (IEEE, 2008) 18(5), 160–167.

Z. Wu, M. Peng, and T. Chen, “Thermal face recognition using convolutional neural network,” in Proceedings of IEEE Conference on Optoelectronics and Image Processing (IEEE, 2016), pp. 6–9.

M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, and K. Parsons, “Deep Neural Network Inverse Design of Integrated Nanophotonic Devices,” https://arxiv.org/abs/1809.03555v1 .

Q. Zhu, S. An, R. Cao, Y. Ling, and Y. Su, “Fast and Wide-Range Wavelength Locking Based on a Two-Layer Neural Network in a Silicon Micro-ring Switch,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper W1E.1.

D. P. Kingma and J. L. Ba, “Adam: A Method for Stochastic Optimization,” https://arxiv.org/abs/1412.6980v9 .

A. Cotter, O. Shamir, N. Srebro, and K. Sridharan, “Better Mini-Batch Algorithms via Accelerated Gradient Methods,” inProceedings of IEEE Conference on Advances in Neural Information Processing Systems24 (IEEE, 2011), pp. 1647–1655.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. (a) Schematic drawing of the 2×2 DR-MZI. The inset shows the cross-section of the active waveguide in the MRR. (b) Microscope image of the fabricated device.
Fig. 2.
Fig. 2. Working principle illustration of the DR-MZI. (a, b) Phase responses of the MZI arms coupled with MRRs at (a) the cross-state and (b) the bar-state. (c, d) Transmission spectra of the DR-MZI at (c) the cross-state and (d) the bar-state.
Fig. 3.
Fig. 3. Transmission spectra of six as-fabricated DR-MZI switches, showing the large deviation in resonance wavelengths. Solid lines: bar-route. Dashed lines: cross-route.
Fig. 4.
Fig. 4. Calculated transmission spectra of the DR-MZI switch when (a) dp = 0, φMZI = 0.01π, (b) dp = 0.073π, φMZI = 0.01π, (c) dp = 0.025π, φMZI = 0.01π, and (d) dp = 0.12π, φMZI = 0.01π. The other parameters are a = 0.99, t = 0.888, r = 0.046 and r2 = 1.
Fig. 5.
Fig. 5. (a, b) Phase responses of the DR-MZI arms when (a) dp < 0, φMZI >0 and (b) dp > 0, φMZI <0. (c) Transmission spectra when dp·φMZI < 0. (d, e) Phase responses of the DR-MZI arms when (d) dp < 0, φMZI <0 and (e) dp > 0, φMZI >0. (f) Transmission spectra when dp·φMZI > 0.
Fig. 6.
Fig. 6. (a) An example of the generated spectrum sample. (b) ANN structure incorporating one input layer, three hidden layers, and one output layer.
Fig. 7.
Fig. 7. MSE of the training and validation sets evolving with the network training process.
Fig. 8.
Fig. 8. Flow of the calibration algorithm: (a) initialization, (b) cross-state calibration, and (c) bar-state calibration.
Fig. 9.
Fig. 9. Evolution of the measured transmission spectra during the calibration procedure (a) before initialization, (b) with applied trial voltages, (c) after initialization, (d) during the cross-state calibration, (e) with the differential phase of dp1 and dp2, and (f) during the bar-state calibration.
Fig. 10.
Fig. 10. (a-d) Measured transmission spectra in the automatic calibration of one DR-MZI device (a) before initialization, (b) after initialization, (c) after cross-state calibration, and (d) after bar-state calibration. (e, f) Transmission spectra with manual tuning to (e) the cross-state and (f) the bar-state.
Fig. 11.
Fig. 11. TO tuning power on two MRRs during the automatic calibration with the target wavelength set to (a) 1548 nm, (b) 1550 nm, (c) 1552 nm, and (d) 1554 nm. I: initialization; II: cross-state calibration; III: bar-state calibration.
Fig. 12.
Fig. 12. Statistics of 5 DR-MZIs. (a) ER at the cross-state, (b) ER at the bar-state, (c) wavelength deviation at the cross-state, (d) wavelength deviation at the bar-state
Fig. 13.
Fig. 13. Measured transmission spectra of DR-MZI devices (a,b) at the passive state, (c,d) after the cross-state calibration, and (e,f) after the bar-state calibration. The coupling length LC of the microring resonator is (a, c, e) 3.8 µm and (b, d, f) 4.6 µm.
Fig. 14.
Fig. 14. Schematic structure of a 4 × 4 DLN switch fabric based on DR-MZIs.
Fig. 15.
Fig. 15. Transmission route chosen for calibration of (a) E13, (b) E22, and (c) E41. The orange, blue and green blocks represent nontarget element, target element and cross-state element, respectively.

Tables (1)

Tables Icon

Table 1. Calibration results for DR-MZIs with three coupling lengths.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

[ E B a r E C r o s s ] = r ( r 2 1 ) [ τ j κ j κ τ ] [ t MRR 1 0 0 t MRR 2 e j φ MZI ] [ τ j κ j κ τ ] [ E i n 0 ]
t MRR i = t a e j θ i 1 t a e j θ i
θ i ( λ ) = 2 π n e f f ( λ ) L / 2 π n e f f ( λ ) L λ λ + p i
φ i ( λ ) = arctan [ a sin θ i ( λ ) t a cos θ i ( λ ) ] + arctan [ t a sin θ i ( λ ) 1 t a cos θ i ( λ ) ]
U i = U i 2 ± d p 0 2 π × FSR η i  ( i = 1 , 2 )
η i  =  | d p 0 d p d p 0 | η i

Metrics