Abstract

We introduced photon-trapping microstructures into GeSn-based photodetectors for the first time, and achieved high-efficiency photo detection at 2 µm with a responsivity of 0.11 A/W. The demonstration was realized by a GeSn/Ge multiple-quantum-well (MQW) p-i-n photodiode on a GeOI architecture. Compared with the non-photon-trapping counterparts, the patterning and etching of photon-trapping microstructure can be processed in the same step with mesa structure at no additional cost. A four-fold enhancement of photo response was achieved at 2 µm. Although the incorporation of photo-trapping microstructure degrades the dark current density which increases from 31.5 to 45.2 mA/cm2 at −1 V, it benefits an improved 3-dB bandwidth of 2.7 GHz at bias voltage at −5 V. The optical performance of GeSn/Ge MQW photon-trapping photodetector manifests its great potential as a candidate for efficient 2 µm communication. Additionally, the underlying GeOI platform enables its feasibility of monolithic integration with other photonic components such as waveguide, modulator and (de)multiplexer for optoelectronic integrated circuits (OEICs) operating at 2 µm.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Integrating GeSn photodiode on a 200 mm Ge-on-insulator photonics platform with Ge CMOS devices for advanced OEIC operating at 2 μm band

Shengqiang Xu, Kaizhen Han, Yi-Chiau Huang, Kwang Hong Lee, Yuye Kang, Saeid Masudy-Panah, Ying Wu, Dian Lei, Yunshan Zhao, Hong Wang, Chuan Seng Tan, Xiao Gong, and Yee-Chia Yeo
Opt. Express 27(19) 26924-26939 (2019)

High-speed photo detection at two-micron-wavelength: technology enablement by GeSn/Ge multiple-quantum-well photodiode on 300 mm Si substrate

Shengqiang Xu, Wei Wang, Yi-Chiau Huang, Yuan Dong, Saeid Masudy-Panah, Hong Wang, Xiao Gong, and Yee-Chia Yeo
Opt. Express 27(4) 5798-5813 (2019)

GeSn lateral p-i-n photodetector on insulating substrate

Shengqiang Xu, Yi-Chiau Huang, Kwang Hong Lee, Wei Wang, Yuan Dong, Dian Lei, Saeid Masudy-Panah, Chuan Seng Tan, Xiao Gong, and Yee-Chia Yeo
Opt. Express 26(13) 17312-17321 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, “Filling the light pipe,” Science 330(6002), 327–328 (2010).
    [Crossref]
  2. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, and J. Knight, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [Crossref]
  3. H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “81 Gb/s WDM transmission at 2µm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in 2014 The European Conference on Optical Communication (ECOC), (IEEE, 2014), pp. 1–3.
  4. H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
    [Crossref]
  5. Z. Li, A. Heidt, J. Daniel, Y. Jung, S. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express 21(8), 9289–9297 (2013).
    [Crossref]
  6. Z. Li, A. Heidt, N. Simakov, Y. Jung, J. Daniel, S. Alam, and D. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800–2050nm window,” Opt. Express 21(22), 26450–26455 (2013).
    [Crossref]
  7. J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2 µm Wavelength Grating Coupler, Bent Waveguide, and Tunable Microring on Silicon Photonic MPW,” IEEE Photonics Technol. Lett. 30(5), 471–474 (2018).
    [Crossref]
  8. S. Zheng, M. Huang, X. Cao, L. Wang, Z. Ruan, L. Shen, and J. Wang, “Silicon-based four-mode division multiplexing for chip-scale optical data transmission in the 2 µm waveband,” Photonics Res. 7(9), 1030–1035 (2019).
    [Crossref]
  9. W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S.-U. Alam, J. Wang, F. Gardes, and W. Zhang, “High-speed silicon modulators for the 2 µm wavelength band,” Optica 5(9), 1055–1062 (2018).
    [Crossref]
  10. R. Soref, “Group IV photonics: Enabling 2 µm communications,” Nat. Photonics 9(6), 358–359 (2015).
    [Crossref]
  11. Y. Chen, Z. Xie, J. Huang, Z. Deng, and B. Chen, “High-speed uni-traveling carrier photodiode for 2 µm wavelength application,” Optica 6(7), 884–889 (2019).
    [Crossref]
  12. J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-Based pin Photodiodes With Partially Depleted Absorbers for High-Speed and High-Power Performance at 2.5 µm Wavelength,” IEEE Trans. Electron Devices 63(7), 2796–2801 (2016).
    [Crossref]
  13. H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
    [Crossref]
  14. S. Xu, Y.-C. Huang, K. H. Lee, W. Wang, Y. Dong, D. Lei, S. Masudy-Panah, C. S. Tan, X. Gong, and Y.-C. Yeo, “GeSn lateral pin photodetector on insulating substrate,” Opt. Express 26(13), 17312–17321 (2018).
    [Crossref]
  15. Y. Lin, K. H. Lee, S. Bao, X. Guo, H. Wang, J. Michel, and C. S. Tan, “High-efficiency normal-incidence vertical pin photodetectors on a germanium-on-insulator platform,” Photonics Res. 5(6), 702–709 (2017).
    [Crossref]
  16. S. Xu, W. Wang, Y.-C. Huang, Y. Dong, S. Masudy-Panah, H. Wang, X. Gong, and Y.-C. Yeo, “High-speed photo detection at two-micron-wavelength: technology enablement by GeSn/Ge multiple-quantum-well photodiode on 300 mm Si substrate,” Opt. Express 27(4), 5798–5813 (2019).
    [Crossref]
  17. T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
    [Crossref]
  18. H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, and J. Tolle, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
    [Crossref]
  19. H. Tran, T. Pham, J. Margetis, Y. Zhou, W. Dou, P. C. Grant, J. M. Grant, S. Alkabi, G. Sun, and R. A. Soref, “Si-based GeSn photodetectors towards mid-infrared imaging applications,” ACS Photonics 6(11), 2807–2815 (2019).
    [Crossref]
  20. M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, and W. Zhang, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
    [Crossref]
  21. Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S.-Y. Lee, W.-K. Loke, and S.-F. Yoon, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25(14), 15818–15827 (2017).
    [Crossref]
  22. M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, and E. Kasper, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
    [Crossref]
  23. B.-J. Huang, J.-H. Lin, H. Cheng, and G.-E. Chang, “GeSn resonant-cavity-enhanced photodetectors on silicon-on-insulator platforms,” Opt. Lett. 43(6), 1215–1218 (2018).
    [Crossref]
  24. J. Song, S. Yuan, and J. Xia, “High efficiency resonant-metasurface germanium photodetector with ultra-thin intrinsic layer,” arXiv preprint arXiv:1904.05744 (2019).
  25. T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge nip waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express 15(21), 13965–13971 (2007).
    [Crossref]
  26. L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz pin Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009).
    [Crossref]
  27. Y.-H. Peng, H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn pin waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105(23), 231109 (2014).
    [Crossref]
  28. Y.-H. Huang, G.-E. Chang, H. Li, and H. Cheng, “Sn-based waveguide pin photodetector with strained GeSn/Ge multiple-quantum-well active layer,” Opt. Lett. 42(9), 1652–1655 (2017).
    [Crossref]
  29. J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8(1), 1660 (2017).
    [Crossref]
  30. J. Tong, F. Suo, J. Ma, L. Y. Tobing, L. Qian, and D. H. Zhang, “[Opto-Electron Adv, 2019, 2 (1)] Surface plasmon enhanced infrared photodetection,” Opto-Electron. Rev. 3(1), 18002601–18002610 (2019).
    [Crossref]
  31. Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, and T. Yamada, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
    [Crossref]
  32. H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. P. Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, and S.-Y. Wang, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700nm,” Photonics Res. 6(7), 734–742 (2018).
    [Crossref]
  33. S. Xu, K. Han, Y.-C. Huang, K. H. Lee, Y. Kang, S. Masudy-Panah, Y. Wu, D. Lei, Y. Zhao, and H. Wang, “Integrating GeSn photodiode on a 200 mm Ge-on-insulator photonics platform with Ge CMOS devices for advanced OEIC operating at 2 µm band,” Opt. Express 27(19), 26924–26939 (2019).
    [Crossref]
  34. K. H. Lee, S. Bao, Y. Wang, E. A. Fitzgerald, and C. Seng Tan, “Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer,” J. Appl. Phys. 123(1), 015302 (2018).
    [Crossref]
  35. B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-Based Waveguide-Integrated Photodiodes With InGaAs/GaAsSb Type-II Quantum Wells and 10-GHz Bandwidth at 2 µm Wavelength,” J. Lightwave Technol. 36(20), 4981–4987 (2018).
    [Crossref]
  36. B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-based pin photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
    [Crossref]
  37. Y. Chen, X. Zhao, J. Huang, Z. Deng, C. Cao, Q. Gong, and B. Chen, “Dynamic model and bandwidth characterization of InGaAs/GaAsSb type-II quantum wells PIN photodiodes,” Opt. Express 26(26), 35034–35045 (2018).
    [Crossref]

2019 (6)

S. Zheng, M. Huang, X. Cao, L. Wang, Z. Ruan, L. Shen, and J. Wang, “Silicon-based four-mode division multiplexing for chip-scale optical data transmission in the 2 µm waveband,” Photonics Res. 7(9), 1030–1035 (2019).
[Crossref]

Y. Chen, Z. Xie, J. Huang, Z. Deng, and B. Chen, “High-speed uni-traveling carrier photodiode for 2 µm wavelength application,” Optica 6(7), 884–889 (2019).
[Crossref]

S. Xu, W. Wang, Y.-C. Huang, Y. Dong, S. Masudy-Panah, H. Wang, X. Gong, and Y.-C. Yeo, “High-speed photo detection at two-micron-wavelength: technology enablement by GeSn/Ge multiple-quantum-well photodiode on 300 mm Si substrate,” Opt. Express 27(4), 5798–5813 (2019).
[Crossref]

H. Tran, T. Pham, J. Margetis, Y. Zhou, W. Dou, P. C. Grant, J. M. Grant, S. Alkabi, G. Sun, and R. A. Soref, “Si-based GeSn photodetectors towards mid-infrared imaging applications,” ACS Photonics 6(11), 2807–2815 (2019).
[Crossref]

S. Xu, K. Han, Y.-C. Huang, K. H. Lee, Y. Kang, S. Masudy-Panah, Y. Wu, D. Lei, Y. Zhao, and H. Wang, “Integrating GeSn photodiode on a 200 mm Ge-on-insulator photonics platform with Ge CMOS devices for advanced OEIC operating at 2 µm band,” Opt. Express 27(19), 26924–26939 (2019).
[Crossref]

J. Tong, F. Suo, J. Ma, L. Y. Tobing, L. Qian, and D. H. Zhang, “[Opto-Electron Adv, 2019, 2 (1)] Surface plasmon enhanced infrared photodetection,” Opto-Electron. Rev. 3(1), 18002601–18002610 (2019).
[Crossref]

2018 (9)

H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. P. Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, and S.-Y. Wang, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700nm,” Photonics Res. 6(7), 734–742 (2018).
[Crossref]

Y. Chen, X. Zhao, J. Huang, Z. Deng, C. Cao, Q. Gong, and B. Chen, “Dynamic model and bandwidth characterization of InGaAs/GaAsSb type-II quantum wells PIN photodiodes,” Opt. Express 26(26), 35034–35045 (2018).
[Crossref]

K. H. Lee, S. Bao, Y. Wang, E. A. Fitzgerald, and C. Seng Tan, “Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer,” J. Appl. Phys. 123(1), 015302 (2018).
[Crossref]

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-Based Waveguide-Integrated Photodiodes With InGaAs/GaAsSb Type-II Quantum Wells and 10-GHz Bandwidth at 2 µm Wavelength,” J. Lightwave Technol. 36(20), 4981–4987 (2018).
[Crossref]

B.-J. Huang, J.-H. Lin, H. Cheng, and G.-E. Chang, “GeSn resonant-cavity-enhanced photodetectors on silicon-on-insulator platforms,” Opt. Lett. 43(6), 1215–1218 (2018).
[Crossref]

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2 µm Wavelength Grating Coupler, Bent Waveguide, and Tunable Microring on Silicon Photonic MPW,” IEEE Photonics Technol. Lett. 30(5), 471–474 (2018).
[Crossref]

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, and J. Tolle, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

S. Xu, Y.-C. Huang, K. H. Lee, W. Wang, Y. Dong, D. Lei, S. Masudy-Panah, C. S. Tan, X. Gong, and Y.-C. Yeo, “GeSn lateral pin photodetector on insulating substrate,” Opt. Express 26(13), 17312–17321 (2018).
[Crossref]

W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S.-U. Alam, J. Wang, F. Gardes, and W. Zhang, “High-speed silicon modulators for the 2 µm wavelength band,” Optica 5(9), 1055–1062 (2018).
[Crossref]

2017 (5)

Y. Lin, K. H. Lee, S. Bao, X. Guo, H. Wang, J. Michel, and C. S. Tan, “High-efficiency normal-incidence vertical pin photodetectors on a germanium-on-insulator platform,” Photonics Res. 5(6), 702–709 (2017).
[Crossref]

Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S.-Y. Lee, W.-K. Loke, and S.-F. Yoon, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25(14), 15818–15827 (2017).
[Crossref]

Y.-H. Huang, G.-E. Chang, H. Li, and H. Cheng, “Sn-based waveguide pin photodetector with strained GeSn/Ge multiple-quantum-well active layer,” Opt. Lett. 42(9), 1652–1655 (2017).
[Crossref]

J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8(1), 1660 (2017).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, and T. Yamada, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

2016 (2)

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref]

J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-Based pin Photodiodes With Partially Depleted Absorbers for High-Speed and High-Power Performance at 2.5 µm Wavelength,” IEEE Trans. Electron Devices 63(7), 2796–2801 (2016).
[Crossref]

2015 (2)

2014 (3)

2013 (3)

2011 (1)

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-based pin photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

2010 (1)

D. J. Richardson, “Filling the light pipe,” Science 330(6002), 327–328 (2010).
[Crossref]

2009 (1)

2007 (1)

2005 (1)

Addamane, S. J.

Alam, S.

Alam, S.-U.

Alkabi, S.

H. Tran, T. Pham, J. Margetis, Y. Zhou, W. Dou, P. C. Grant, J. M. Grant, S. Alkabi, G. Sun, and R. A. Soref, “Si-based GeSn photodetectors towards mid-infrared imaging applications,” ACS Photonics 6(11), 2807–2815 (2019).
[Crossref]

Balakrishnan, G.

Bao, S.

K. H. Lee, S. Bao, Y. Wang, E. A. Fitzgerald, and C. Seng Tan, “Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer,” J. Appl. Phys. 123(1), 015302 (2018).
[Crossref]

Y. Lin, K. H. Lee, S. Bao, X. Guo, H. Wang, J. Michel, and C. S. Tan, “High-efficiency normal-incidence vertical pin photodetectors on a germanium-on-insulator platform,” Photonics Res. 5(6), 702–709 (2017).
[Crossref]

Bartolo-Perez, C.

H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. P. Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, and S.-Y. Wang, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700nm,” Photonics Res. 6(7), 734–742 (2018).
[Crossref]

Bechler, S.

Beling, A.

Birks, T.

Bowers, J. E.

J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-Based pin Photodiodes With Partially Depleted Absorbers for High-Speed and High-Power Performance at 2.5 µm Wavelength,” IEEE Trans. Electron Devices 63(7), 2796–2801 (2016).
[Crossref]

Cansizoglu, H.

H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. P. Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, and S.-Y. Wang, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700nm,” Photonics Res. 6(7), 734–742 (2018).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, and T. Yamada, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Cao, C.

Cao, W.

Cao, X.

S. Zheng, M. Huang, X. Cao, L. Wang, Z. Ruan, L. Shen, and J. Wang, “Silicon-based four-mode division multiplexing for chip-scale optical data transmission in the 2 µm waveband,” Photonics Res. 7(9), 1030–1035 (2019).
[Crossref]

Cassan, E.

Chang, G.-E.

Chen, B.

Chen, Y.

Chen, Y. H.

J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-Based pin Photodiodes With Partially Depleted Absorbers for High-Speed and High-Power Performance at 2.5 µm Wavelength,” IEEE Trans. Electron Devices 63(7), 2796–2801 (2016).
[Crossref]

Cheng, H.

Chetrit, Y.

Cohen, R.

Couny, F.

Crozat, P.

Damlencourt, J.-F.

Daniel, J.

Deng, Z.

Devine, E. P.

H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. P. Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, and S.-Y. Wang, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700nm,” Photonics Res. 6(7), 734–742 (2018).
[Crossref]

Dong, Y.

Dou, W.

H. Tran, T. Pham, J. Margetis, Y. Zhou, W. Dou, P. C. Grant, J. M. Grant, S. Alkabi, G. Sun, and R. A. Soref, “Si-based GeSn photodetectors towards mid-infrared imaging applications,” ACS Photonics 6(11), 2807–2815 (2019).
[Crossref]

Du, J.

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2 µm Wavelength Grating Coupler, Bent Waveguide, and Tunable Microring on Silicon Photonic MPW,” IEEE Photonics Technol. Lett. 30(5), 471–474 (2018).
[Crossref]

Du, W.

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, and J. Tolle, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref]

Elrefaie, A. F.

H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. P. Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, and S.-Y. Wang, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700nm,” Photonics Res. 6(7), 734–742 (2018).
[Crossref]

Farr, L.

Fédéli, J.-M.

Fitzgerald, E. A.

K. H. Lee, S. Bao, Y. Wang, E. A. Fitzgerald, and C. Seng Tan, “Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer,” J. Appl. Phys. 123(1), 015302 (2018).
[Crossref]

Gao, Y.

H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. P. Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, and S.-Y. Wang, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700nm,” Photonics Res. 6(7), 734–742 (2018).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, and T. Yamada, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Gardes, F.

Ghandiparsi, S.

H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. P. Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, and S.-Y. Wang, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700nm,” Photonics Res. 6(7), 734–742 (2018).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, and T. Yamada, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Gollhofer, M.

Gong, Q.

Gong, X.

Grant, J. M.

H. Tran, T. Pham, J. Margetis, Y. Zhou, W. Dou, P. C. Grant, J. M. Grant, S. Alkabi, G. Sun, and R. A. Soref, “Si-based GeSn photodetectors towards mid-infrared imaging applications,” ACS Photonics 6(11), 2807–2815 (2019).
[Crossref]

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, and J. Tolle, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

Grant, P. C.

H. Tran, T. Pham, J. Margetis, Y. Zhou, W. Dou, P. C. Grant, J. M. Grant, S. Alkabi, G. Sun, and R. A. Soref, “Si-based GeSn photodetectors towards mid-infrared imaging applications,” ACS Photonics 6(11), 2807–2815 (2019).
[Crossref]

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, and J. Tolle, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

Gunning, F.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Guo, X.

Y. Lin, K. H. Lee, S. Bao, X. Guo, H. Wang, J. Michel, and C. S. Tan, “High-efficiency normal-incidence vertical pin photodetectors on a germanium-on-insulator platform,” Photonics Res. 5(6), 702–709 (2017).
[Crossref]

Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S.-Y. Lee, W.-K. Loke, and S.-F. Yoon, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25(14), 15818–15827 (2017).
[Crossref]

Hagan, D.

Han, K.

Han, W.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Hayes, J.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref]

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “81 Gb/s WDM transmission at 2µm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in 2014 The European Conference on Optical Communication (ECOC), (IEEE, 2014), pp. 1–3.

He, Z.

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2 µm Wavelength Grating Coupler, Bent Waveguide, and Tunable Microring on Silicon Photonic MPW,” IEEE Photonics Technol. Lett. 30(5), 471–474 (2018).
[Crossref]

Heidt, A.

Holmes, A. L.

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-Based Waveguide-Integrated Photodiodes With InGaAs/GaAsSb Type-II Quantum Wells and 10-GHz Bandwidth at 2 µm Wavelength,” J. Lightwave Technol. 36(20), 4981–4987 (2018).
[Crossref]

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-based pin photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

Huang, B.-J.

Huang, J.

Huang, M.

S. Zheng, M. Huang, X. Cao, L. Wang, Z. Ruan, L. Shen, and J. Wang, “Silicon-based four-mode division multiplexing for chip-scale optical data transmission in the 2 µm waveband,” Photonics Res. 7(9), 1030–1035 (2019).
[Crossref]

Huang, Y.-C.

Huang, Y.-H.

Huang, Z.

J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8(1), 1660 (2017).
[Crossref]

Jiang, W.

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-based pin photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

Jung, Y.

Kang, Y.

Kaschel, M.

Kasper, E.

Kavanagh, N.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref]

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “81 Gb/s WDM transmission at 2µm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in 2014 The European Conference on Optical Communication (ECOC), (IEEE, 2014), pp. 1–3.

Kaya, A.

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, and T. Yamada, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Kelly, B.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Kittler, M.

Knight, J.

Knights, A.

Koerner, R.

Körner, R.

Kostecki, K.

Laval, S.

Lecunff, Y.

Lee, K. H.

S. Xu, K. Han, Y.-C. Huang, K. H. Lee, Y. Kang, S. Masudy-Panah, Y. Wu, D. Lei, Y. Zhao, and H. Wang, “Integrating GeSn photodiode on a 200 mm Ge-on-insulator photonics platform with Ge CMOS devices for advanced OEIC operating at 2 µm band,” Opt. Express 27(19), 26924–26939 (2019).
[Crossref]

K. H. Lee, S. Bao, Y. Wang, E. A. Fitzgerald, and C. Seng Tan, “Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer,” J. Appl. Phys. 123(1), 015302 (2018).
[Crossref]

S. Xu, Y.-C. Huang, K. H. Lee, W. Wang, Y. Dong, D. Lei, S. Masudy-Panah, C. S. Tan, X. Gong, and Y.-C. Yeo, “GeSn lateral pin photodetector on insulating substrate,” Opt. Express 26(13), 17312–17321 (2018).
[Crossref]

Y. Lin, K. H. Lee, S. Bao, X. Guo, H. Wang, J. Michel, and C. S. Tan, “High-efficiency normal-incidence vertical pin photodetectors on a germanium-on-insulator platform,” Photonics Res. 5(6), 702–709 (2017).
[Crossref]

Lee, S.-Y.

Lei, D.

Li, B.

Li, H.

Li, J.

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2 µm Wavelength Grating Coupler, Bent Waveguide, and Tunable Microring on Silicon Photonic MPW,” IEEE Photonics Technol. Lett. 30(5), 471–474 (2018).
[Crossref]

Li, Z.

Lin, J.-H.

Lin, Y.

Y. Lin, K. H. Lee, S. Bao, X. Guo, H. Wang, J. Michel, and C. S. Tan, “High-efficiency normal-incidence vertical pin photodetectors on a germanium-on-insulator platform,” Photonics Res. 5(6), 702–709 (2017).
[Crossref]

Littlejohns, C. G.

Liu, Y.

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2 µm Wavelength Grating Coupler, Bent Waveguide, and Tunable Microring on Silicon Photonic MPW,” IEEE Photonics Technol. Lett. 30(5), 471–474 (2018).
[Crossref]

Loke, W.-K.

Ma, J.

J. Tong, F. Suo, J. Ma, L. Y. Tobing, L. Qian, and D. H. Zhang, “[Opto-Electron Adv, 2019, 2 (1)] Surface plasmon enhanced infrared photodetection,” Opto-Electron. Rev. 3(1), 18002601–18002610 (2019).
[Crossref]

MacSuibhne, N.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Mamtaz, H. H.

H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. P. Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, and S.-Y. Wang, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700nm,” Photonics Res. 6(7), 734–742 (2018).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, and T. Yamada, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Mangan, B.

Margetis, J.

H. Tran, T. Pham, J. Margetis, Y. Zhou, W. Dou, P. C. Grant, J. M. Grant, S. Alkabi, G. Sun, and R. A. Soref, “Si-based GeSn photodetectors towards mid-infrared imaging applications,” ACS Photonics 6(11), 2807–2815 (2019).
[Crossref]

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, and J. Tolle, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref]

Marris-Morini, D.

Mashanov, V. I.

Y.-H. Peng, H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn pin waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105(23), 231109 (2014).
[Crossref]

Mason, M.

Masudy-Panah, S.

Mayet, A. S.

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, and T. Yamada, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Meng, Y.

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2 µm Wavelength Grating Coupler, Bent Waveguide, and Tunable Microring on Silicon Photonic MPW,” IEEE Photonics Technol. Lett. 30(5), 471–474 (2018).
[Crossref]

Michel, J.

Y. Lin, K. H. Lee, S. Bao, X. Guo, H. Wang, J. Michel, and C. S. Tan, “High-efficiency normal-incidence vertical pin photodetectors on a germanium-on-insulator platform,” Photonics Res. 5(6), 702–709 (2017).
[Crossref]

Morse, M. M.

Naseem, H. A.

Nedeljkovic, M.

Nudds, N.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

O’Carroll, J.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Oehme, M.

Onat, B. M.

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-based pin photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

Osmond, J.

Paniccia, M. J.

Peng, Y.-H.

Y.-H. Peng, H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn pin waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105(23), 231109 (2014).
[Crossref]

Pham, T.

H. Tran, T. Pham, J. Margetis, Y. Zhou, W. Dou, P. C. Grant, J. M. Grant, S. Alkabi, G. Sun, and R. A. Soref, “Si-based GeSn photodetectors towards mid-infrared imaging applications,” ACS Photonics 6(11), 2807–2815 (2019).
[Crossref]

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, and J. Tolle, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref]

Phelan, R.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Polat, K. G.

H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. P. Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, and S.-Y. Wang, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700nm,” Photonics Res. 6(7), 734–742 (2018).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, and T. Yamada, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Qian, L.

J. Tong, F. Suo, J. Ma, L. Y. Tobing, L. Qian, and D. H. Zhang, “[Opto-Electron Adv, 2019, 2 (1)] Surface plasmon enhanced infrared photodetection,” Opto-Electron. Rev. 3(1), 18002601–18002610 (2019).
[Crossref]

Qu, Y.

J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8(1), 1660 (2017).
[Crossref]

Richardson, D.

Richardson, D. J.

Roberts, P.

Ruan, Z.

S. Zheng, M. Huang, X. Cao, L. Wang, Z. Ruan, L. Shen, and J. Wang, “Silicon-based four-mode division multiplexing for chip-scale optical data transmission in the 2 µm waveband,” Photonics Res. 7(9), 1030–1035 (2019).
[Crossref]

Rubin, D.

Sabert, H.

Sandoghchi, S.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref]

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “81 Gb/s WDM transmission at 2µm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in 2014 The European Conference on Optical Communication (ECOC), (IEEE, 2014), pp. 1–3.

Sarid, G.

Schmid, M.

Schwartz, B.

Seng Tan, C.

K. H. Lee, S. Bao, Y. Wang, E. A. Fitzgerald, and C. Seng Tan, “Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer,” J. Appl. Phys. 123(1), 015302 (2018).
[Crossref]

Shen, L.

S. Zheng, M. Huang, X. Cao, L. Wang, Z. Ruan, L. Shen, and J. Wang, “Silicon-based four-mode division multiplexing for chip-scale optical data transmission in the 2 µm waveband,” Photonics Res. 7(9), 1030–1035 (2019).
[Crossref]

Shi, J. W.

J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-Based pin Photodiodes With Partially Depleted Absorbers for High-Speed and High-Power Performance at 2.5 µm Wavelength,” IEEE Trans. Electron Devices 63(7), 2796–2801 (2016).
[Crossref]

Simakov, N.

Song, J.

J. Song, S. Yuan, and J. Xia, “High efficiency resonant-metasurface germanium photodetector with ultra-thin intrinsic layer,” arXiv preprint arXiv:1904.05744 (2019).

Song, Q.

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2 µm Wavelength Grating Coupler, Bent Waveguide, and Tunable Microring on Silicon Photonic MPW,” IEEE Photonics Technol. Lett. 30(5), 471–474 (2018).
[Crossref]

Soref, R.

R. Soref, “Group IV photonics: Enabling 2 µm communications,” Nat. Photonics 9(6), 358–359 (2015).
[Crossref]

Soref, R. A.

H. Tran, T. Pham, J. Margetis, Y. Zhou, W. Dou, P. C. Grant, J. M. Grant, S. Alkabi, G. Sun, and R. A. Soref, “Si-based GeSn photodetectors towards mid-infrared imaging applications,” ACS Photonics 6(11), 2807–2815 (2019).
[Crossref]

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, and J. Tolle, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref]

Sun, G.

H. Tran, T. Pham, J. Margetis, Y. Zhou, W. Dou, P. C. Grant, J. M. Grant, S. Alkabi, G. Sun, and R. A. Soref, “Si-based GeSn photodetectors towards mid-infrared imaging applications,” ACS Photonics 6(11), 2807–2815 (2019).
[Crossref]

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, and J. Tolle, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref]

Suo, F.

J. Tong, F. Suo, J. Ma, L. Y. Tobing, L. Qian, and D. H. Zhang, “[Opto-Electron Adv, 2019, 2 (1)] Surface plasmon enhanced infrared photodetection,” Opto-Electron. Rev. 3(1), 18002601–18002610 (2019).
[Crossref]

Tan, C. S.

S. Xu, Y.-C. Huang, K. H. Lee, W. Wang, Y. Dong, D. Lei, S. Masudy-Panah, C. S. Tan, X. Gong, and Y.-C. Yeo, “GeSn lateral pin photodetector on insulating substrate,” Opt. Express 26(13), 17312–17321 (2018).
[Crossref]

Y. Lin, K. H. Lee, S. Bao, X. Guo, H. Wang, J. Michel, and C. S. Tan, “High-efficiency normal-incidence vertical pin photodetectors on a germanium-on-insulator platform,” Photonics Res. 5(6), 702–709 (2017).
[Crossref]

Thomson, D. J.

Tobing, L. Y.

J. Tong, F. Suo, J. Ma, L. Y. Tobing, L. Qian, and D. H. Zhang, “[Opto-Electron Adv, 2019, 2 (1)] Surface plasmon enhanced infrared photodetection,” Opto-Electron. Rev. 3(1), 18002601–18002610 (2019).
[Crossref]

Tolle, J.

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, and J. Tolle, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref]

Tomlinson, A.

Tong, J.

J. Tong, F. Suo, J. Ma, L. Y. Tobing, L. Qian, and D. H. Zhang, “[Opto-Electron Adv, 2019, 2 (1)] Surface plasmon enhanced infrared photodetection,” Opto-Electron. Rev. 3(1), 18002601–18002610 (2019).
[Crossref]

J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8(1), 1660 (2017).
[Crossref]

Tossoun, B.

Tran, H.

H. Tran, T. Pham, J. Margetis, Y. Zhou, W. Dou, P. C. Grant, J. M. Grant, S. Alkabi, G. Sun, and R. A. Soref, “Si-based GeSn photodetectors towards mid-infrared imaging applications,” ACS Photonics 6(11), 2807–2815 (2019).
[Crossref]

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, and J. Tolle, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref]

Ulbricht, K.

Vivien, L.

Wang, F.

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2 µm Wavelength Grating Coupler, Bent Waveguide, and Tunable Microring on Silicon Photonic MPW,” IEEE Photonics Technol. Lett. 30(5), 471–474 (2018).
[Crossref]

Wang, H.

Wang, J.

S. Zheng, M. Huang, X. Cao, L. Wang, Z. Ruan, L. Shen, and J. Wang, “Silicon-based four-mode division multiplexing for chip-scale optical data transmission in the 2 µm waveband,” Photonics Res. 7(9), 1030–1035 (2019).
[Crossref]

W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S.-U. Alam, J. Wang, F. Gardes, and W. Zhang, “High-speed silicon modulators for the 2 µm wavelength band,” Optica 5(9), 1055–1062 (2018).
[Crossref]

Wang, L.

S. Zheng, M. Huang, X. Cao, L. Wang, Z. Ruan, L. Shen, and J. Wang, “Silicon-based four-mode division multiplexing for chip-scale optical data transmission in the 2 µm waveband,” Photonics Res. 7(9), 1030–1035 (2019).
[Crossref]

Wang, S.-Y.

H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. P. Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, and S.-Y. Wang, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700nm,” Photonics Res. 6(7), 734–742 (2018).
[Crossref]

Wang, W.

Wang, X.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Wang, Y.

K. H. Lee, S. Bao, Y. Wang, E. A. Fitzgerald, and C. Seng Tan, “Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer,” J. Appl. Phys. 123(1), 015302 (2018).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, and T. Yamada, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Wang, Y. W.

J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-Based pin Photodiodes With Partially Depleted Absorbers for High-Speed and High-Power Performance at 2.5 µm Wavelength,” IEEE Trans. Electron Devices 63(7), 2796–2801 (2016).
[Crossref]

Wheeler, N.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref]

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “81 Gb/s WDM transmission at 2µm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in 2014 The European Conference on Optical Communication (ECOC), (IEEE, 2014), pp. 1–3.

Widmann, D.

Williams, D.

Wooler, J.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref]

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “81 Gb/s WDM transmission at 2µm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in 2014 The European Conference on Optical Communication (ECOC), (IEEE, 2014), pp. 1–3.

Wu, Y.

Wun, J. M.

J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-Based pin Photodiodes With Partially Depleted Absorbers for High-Speed and High-Power Performance at 2.5 µm Wavelength,” IEEE Trans. Electron Devices 63(7), 2796–2801 (2016).
[Crossref]

Xia, J.

J. Song, S. Yuan, and J. Xia, “High efficiency resonant-metasurface germanium photodetector with ultra-thin intrinsic layer,” arXiv preprint arXiv:1904.05744 (2019).

Xie, Z.

Xu, K.

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2 µm Wavelength Grating Coupler, Bent Waveguide, and Tunable Microring on Silicon Photonic MPW,” IEEE Photonics Technol. Lett. 30(5), 471–474 (2018).
[Crossref]

Xu, S.

Xu, Z.

J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8(1), 1660 (2017).
[Crossref]

Yamada, T.

H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. P. Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, and S.-Y. Wang, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700nm,” Photonics Res. 6(7), 734–742 (2018).
[Crossref]

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, and T. Yamada, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Yang, H.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Ye, K.

Ye, N.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref]

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “81 Gb/s WDM transmission at 2µm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in 2014 The European Conference on Optical Communication (ECOC), (IEEE, 2014), pp. 1–3.

Yeo, Y.-C.

Yin, T.

Yoon, S.-F.

Yu, S.-Q.

Yuan, J.

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-based pin photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

Yuan, S.

J. Song, S. Yuan, and J. Xia, “High efficiency resonant-metasurface germanium photodetector with ultra-thin intrinsic layer,” arXiv preprint arXiv:1904.05744 (2019).

Zang, J.

Zaumseil, P.

Zhang, D. H.

J. Tong, F. Suo, J. Ma, L. Y. Tobing, L. Qian, and D. H. Zhang, “[Opto-Electron Adv, 2019, 2 (1)] Surface plasmon enhanced infrared photodetection,” Opto-Electron. Rev. 3(1), 18002601–18002610 (2019).
[Crossref]

J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8(1), 1660 (2017).
[Crossref]

Zhang, H.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref]

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “81 Gb/s WDM transmission at 2µm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in 2014 The European Conference on Optical Communication (ECOC), (IEEE, 2014), pp. 1–3.

Zhang, W.

Zhang, X.

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, and T. Yamada, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

Zhang, Y.

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, and J. Tolle, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

Zhao, J.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref]

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “81 Gb/s WDM transmission at 2µm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in 2014 The European Conference on Optical Communication (ECOC), (IEEE, 2014), pp. 1–3.

Zhao, X.

Zhao, Y.

Zheng, S.

S. Zheng, M. Huang, X. Cao, L. Wang, Z. Ruan, L. Shen, and J. Wang, “Silicon-based four-mode division multiplexing for chip-scale optical data transmission in the 2 µm waveband,” Photonics Res. 7(9), 1030–1035 (2019).
[Crossref]

Zhou, W.

J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8(1), 1660 (2017).
[Crossref]

Zhou, Y.

H. Tran, T. Pham, J. Margetis, Y. Zhou, W. Dou, P. C. Grant, J. M. Grant, S. Alkabi, G. Sun, and R. A. Soref, “Si-based GeSn photodetectors towards mid-infrared imaging applications,” ACS Photonics 6(11), 2807–2815 (2019).
[Crossref]

ACS Photonics (1)

H. Tran, T. Pham, J. Margetis, Y. Zhou, W. Dou, P. C. Grant, J. M. Grant, S. Alkabi, G. Sun, and R. A. Soref, “Si-based GeSn photodetectors towards mid-infrared imaging applications,” ACS Photonics 6(11), 2807–2815 (2019).
[Crossref]

Appl. Phys. Lett. (1)

Y.-H. Peng, H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn pin waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105(23), 231109 (2014).
[Crossref]

Electron. Lett. (1)

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, and F. Gunning, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “SWIR/MWIR InP-based pin photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE J. Quantum Electron. 47(9), 1244–1250 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2 µm Wavelength Grating Coupler, Bent Waveguide, and Tunable Microring on Silicon Photonic MPW,” IEEE Photonics Technol. Lett. 30(5), 471–474 (2018).
[Crossref]

IEEE Trans. Electron Devices (1)

J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-Based pin Photodiodes With Partially Depleted Absorbers for High-Speed and High-Power Performance at 2.5 µm Wavelength,” IEEE Trans. Electron Devices 63(7), 2796–2801 (2016).
[Crossref]

J. Appl. Phys. (2)

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, and J. Tolle, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

K. H. Lee, S. Bao, Y. Wang, E. A. Fitzgerald, and C. Seng Tan, “Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer,” J. Appl. Phys. 123(1), 015302 (2018).
[Crossref]

J. Lightwave Technol. (1)

Nat. Commun. (1)

J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8(1), 1660 (2017).
[Crossref]

Nat. Photonics (2)

Y. Gao, H. Cansizoglu, K. G. Polat, S. Ghandiparsi, A. Kaya, H. H. Mamtaz, A. S. Mayet, Y. Wang, X. Zhang, and T. Yamada, “Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes,” Nat. Photonics 11(5), 301–308 (2017).
[Crossref]

R. Soref, “Group IV photonics: Enabling 2 µm communications,” Nat. Photonics 9(6), 358–359 (2015).
[Crossref]

Opt. Express (13)

P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, and J. Knight, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref]

T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge nip waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express 15(21), 13965–13971 (2007).
[Crossref]

L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz pin Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009).
[Crossref]

Z. Li, A. Heidt, J. Daniel, Y. Jung, S. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express 21(8), 9289–9297 (2013).
[Crossref]

Z. Li, A. Heidt, N. Simakov, Y. Jung, J. Daniel, S. Alam, and D. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800–2050nm window,” Opt. Express 21(22), 26450–26455 (2013).
[Crossref]

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, and W. Zhang, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref]

Y. Chen, X. Zhao, J. Huang, Z. Deng, C. Cao, Q. Gong, and B. Chen, “Dynamic model and bandwidth characterization of InGaAs/GaAsSb type-II quantum wells PIN photodiodes,” Opt. Express 26(26), 35034–35045 (2018).
[Crossref]

S. Xu, W. Wang, Y.-C. Huang, Y. Dong, S. Masudy-Panah, H. Wang, X. Gong, and Y.-C. Yeo, “High-speed photo detection at two-micron-wavelength: technology enablement by GeSn/Ge multiple-quantum-well photodiode on 300 mm Si substrate,” Opt. Express 27(4), 5798–5813 (2019).
[Crossref]

Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S.-Y. Lee, W.-K. Loke, and S.-F. Yoon, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25(14), 15818–15827 (2017).
[Crossref]

S. Xu, Y.-C. Huang, K. H. Lee, W. Wang, Y. Dong, D. Lei, S. Masudy-Panah, C. S. Tan, X. Gong, and Y.-C. Yeo, “GeSn lateral pin photodetector on insulating substrate,” Opt. Express 26(13), 17312–17321 (2018).
[Crossref]

S. Xu, K. Han, Y.-C. Huang, K. H. Lee, Y. Kang, S. Masudy-Panah, Y. Wu, D. Lei, Y. Zhao, and H. Wang, “Integrating GeSn photodiode on a 200 mm Ge-on-insulator photonics platform with Ge CMOS devices for advanced OEIC operating at 2 µm band,” Opt. Express 27(19), 26924–26939 (2019).
[Crossref]

Opt. Lett. (3)

Optica (2)

Opto-Electron. Rev. (1)

J. Tong, F. Suo, J. Ma, L. Y. Tobing, L. Qian, and D. H. Zhang, “[Opto-Electron Adv, 2019, 2 (1)] Surface plasmon enhanced infrared photodetection,” Opto-Electron. Rev. 3(1), 18002601–18002610 (2019).
[Crossref]

Photonics Res. (3)

Y. Lin, K. H. Lee, S. Bao, X. Guo, H. Wang, J. Michel, and C. S. Tan, “High-efficiency normal-incidence vertical pin photodetectors on a germanium-on-insulator platform,” Photonics Res. 5(6), 702–709 (2017).
[Crossref]

H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. P. Devine, S. Ghandiparsi, K. G. Polat, H. H. Mamtaz, T. Yamada, A. F. Elrefaie, and S.-Y. Wang, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700nm,” Photonics Res. 6(7), 734–742 (2018).
[Crossref]

S. Zheng, M. Huang, X. Cao, L. Wang, Z. Ruan, L. Shen, and J. Wang, “Silicon-based four-mode division multiplexing for chip-scale optical data transmission in the 2 µm waveband,” Photonics Res. 7(9), 1030–1035 (2019).
[Crossref]

Science (1)

D. J. Richardson, “Filling the light pipe,” Science 330(6002), 327–328 (2010).
[Crossref]

Other (2)

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, and S. Sandoghchi, “81 Gb/s WDM transmission at 2µm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in 2014 The European Conference on Optical Communication (ECOC), (IEEE, 2014), pp. 1–3.

J. Song, S. Yuan, and J. Xia, “High efficiency resonant-metasurface germanium photodetector with ultra-thin intrinsic layer,” arXiv preprint arXiv:1904.05744 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. (a) Cross-sectional TEM image of the GeSn/Ge MQW structure on an insulator platform after DWB process. (b) SIMS depth profiles of Ge, Sn and Si elements in GeSn/Ge MQW structure from surface to buried oxide layer.
Fig. 2.
Fig. 2. Band structure of the GeSn/Ge MQW region calculated by single band model. Band offsets between Ge and GeSn layer are labelled using double-sided arrows. The dashed lines represent ground states of each bands in GeSn layer.
Fig. 3.
Fig. 3. (a) 3D schematic of GeSn/Ge MQW photodetector with photon-trapping microstructure. Passivation layer on the top surface is not shown for clarity. (b) Key process steps in the fabrication of the GeSn/Ge MQW photodetectors.
Fig. 4.
Fig. 4. Plane view SEM image of GeSn/Ge MQW photodetector with photon-trapping microstructure. The inset is zoomed-in view of the photon-trapping microstructure.
Fig. 5.
Fig. 5. Current-voltage (I-V) characteristics of the GeSn/Ge MQW photodetectors with and without photon-trapping microstructure at 2 µm.
Fig. 6.
Fig. 6. (a) Photocurrents of photon-trapping photodetectors with various hole radii at increasing optical power of 1.19, 5.21, 15.64 and 23.21 mW. The reverse bias voltage was fixed at 1 V. (b) Extrapolated responsivities of photon-trapping photodetectors with various hole radii.
Fig. 7.
Fig. 7. Cross-sectional view and top view of electric filed density distribution in photodetectors with and without photon-trapping microstructure. The simulated region is a unit cell of hole-array structure and periodical boundary condition was adopted in the simulation.
Fig. 8.
Fig. 8. Normalized reflection spectral of GeSn/Ge MQW photodetectors with and without photon-trapping microstructure from 2 to 3 µm measured by micro-FTIR.
Fig. 9.
Fig. 9. (a) Responsivity spectral of GeSn/Ge MQW photodetectors with and without photon-trapping microstructure from 1500 to 1630 nm. (b) Photocurrent of GeSn/Ge MQW photon-trapping photodetector from 1700 nm to 2300 nm at −1 V.
Fig. 10.
Fig. 10. (a) Dark current versus bias voltage (Idark-Vbias) characteristics of GeSn/Ge MQW photodetectors with varying mesa diameters at room temperature. The measured photon-trapping photodetectors have a hole radius of 700 nm. (b) Linear interpolation of dark current density versus 4/D for photodetectors without photon-trapping microstructure.
Fig. 11.
Fig. 11. Surface leakage percentages of photodetectors with and without photon-trapping microstructures.
Fig. 12.
Fig. 12. Linear interpolation of Inet−1 versus dV/dInetr at room temperature for photon-trapping photodetector with mesa diameter of 60 and 250 µm.
Fig. 13.
Fig. 13. The specific detectivity D* spectrum of photon-trapping photodetector with hole radius of 600 nm and mesa diameter of 250 µm from 1500 to 1630 nm at room temperature. The red star point represents the specific detectivity D* of photon-trapping photodetector with hole radius of 700 nm and mesa diameter of 250 µm at 2 µm at room temperature. The specific detectivity D* of bulk Ge0.9Sn0.1 photodiode in [17] was also plotted for comparison.
Fig. 14.
Fig. 14. (a) Small signal frequency response of GeSn/Ge MQW photodetectors with mesa diameters of 60 µm at 1.55 µm. (b) Small signal frequency response of GeSn/Ge MQW photodetectors with mesa diameters of 60 µm at 2 µm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

J d a r k = J b u l k + 4 D + 8 N r D 2 4 N r 2 J s u r f
I = I 0 exp [ q ( V R S I n e t ) n k T ] + V R S h
d V d I n e t = n k T q I n e t 1 + R S
D = A Δ f N E P = A Δ f I r m s R

Metrics