Abstract

Undoubtedly, Raman spectroscopy is one of the most elaborate spectroscopy tools in materials science, chemistry, medicine and optics. However, when it comes to the analysis of nanostructured specimens or individual sub-wavelength-sized systems, the access to Raman spectra resulting from different excitation schemes is usually very limited. For instance, the excitation with an electric field component oriented perpendicularly to the substrate plane is a difficult task. Conventionally, this can only be achieved by mechanically tilting the sample or by sophisticated sample preparation. Here, we propose a novel experimental method based on the utilization of polarization tailored light for Raman spectroscopy of individual nanostructures. As a proof of principle, we create three-dimensional electromagnetic field distributions at the nanoscale using tightly focused cylindrical vector beams impinging normally onto the specimen, hence keeping the traditional beam-path of commercial Raman systems. In order to demonstrate the convenience of this excitation scheme, we use a sub-wavelength diameter gallium-nitride nanostructure as a test platform and show experimentally that its Raman spectra depend sensitively on its location relative to the focal vector field. The observed Raman spectra can be attributed to the interaction with transverse and pure longitudinal electric field components. This novel technique may pave the way towards a characterization of Raman active nanosystems, granting direct access to growth-related parameters such as strain or defects in the material by using the full information of all Raman modes.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light

Nastaran Kazemi-Zanjani, Sylvain Vedraine, and François Lagugné-Labarthet
Opt. Express 21(21) 25271-25276 (2013)

Tip-enhanced Raman spectroscopy based on plasmonic lens excitation and experimental detection

Mingqian Zhang, Jia Wang, and Qian Tian
Opt. Express 21(8) 9414-9421 (2013)

Probing optical resonances of silicon nanostructures using tunable-excitation Raman spectroscopy

M. Matthiae, K. E. S. Nielsen, A. Larroche, C. Zhou, A. Kristensen, and S. Raza
Opt. Express 27(26) 38479-38492 (2019)

References

  • View by:
  • |
  • |
  • |

  1. E. Smith and G. Dent, Modern Raman Spectroscopy: A Practical Approach (Wiley, 2005).
  2. C. A. F. de Oliveira Penido, M. T. T. Pacheco, I. K. Lednev, and L. Silveira, “Raman spectroscopy in forensic analysis: identification of cocaine and other illegal drugs of abuse,” J. Raman Spectrosc. 47(1), 28–38 (2016).
    [Crossref]
  3. E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
    [Crossref]
  4. D. S. Moore and S. D. McGrane, “Raman temperature measurement,” J. Phys.: Conf. Ser. 500(19), 192011 (2014).
    [Crossref]
  5. C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6(1), 8429 (2015).
    [Crossref]
  6. G. Sarau, M. Heilmann, M. Latzel, and S. Christiansen, “Disentangling the effects of nanoscale structural variations on the light emission wavelength of single nano-emitters: InGaN/GaN multiquantum well nano-LEDs for a case study,” Nanoscale 6(20), 11953–11962 (2014).
    [Crossref]
  7. B. Fluegel, A. V. Mialitsin, D. A. Beaton, J. L. Reno, and A. Mascarenhas, “Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors,” Nat. Commun. 6(1), 7136 (2015).
    [Crossref]
  8. Y. Kang, Y. Qiu, Z. Lei, and M. Hu, “An application of Raman spectroscopy on the measurement of residual stress in porous silicon,” Opt. Laser Eng. 43(8), 847–855 (2005).
    [Crossref]
  9. C. Pinquier, F. Demangeot, J. Frandon, J. W. Pomeroy, M. Kuball, H. Hubel, N. W. A. van Uden, D. J. Dunstan, O. Briot, B. Maleyre, S. Ruffenach, and B. Gil, “Raman scattering in hexagonal InN under high pressure,” Phys. Rev. B 70(11), 113202 (2004).
    [Crossref]
  10. A. Wang, “Development of the Mars microbeam Raman spectrometer (MMRS),” J. Geophys. Res. 108(E1), 5005 (2003).
    [Crossref]
  11. J. Koningstein, “Dephasing and resonance electronic Raman scattering,” Chem. Phys. Lett. 146(6), 576–581 (1988).
    [Crossref]
  12. E. C. L. Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
    [Crossref]
  13. R. W. Terhune, P. D. Maker, and C. M. Savage, “Measurements of nonlinear light scattering,” Phys. Rev. Lett. 14(17), 681–684 (1965).
    [Crossref]
  14. M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. V. Duyne, “Recent advances in tip-enhanced Raman spectroscopy,” J. Phys. Chem. Lett. 5(18), 3125–3130 (2014).
    [Crossref]
  15. P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137(3A), A801–A818 (1965).
    [Crossref]
  16. R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti-stokes raman spectroscopy,” Appl. Phys. Lett. 25(7), 387–390 (1974).
    [Crossref]
  17. W. M. Tolles, J. W. Nibler, J. R. McDonald, and A. B. Harvey, “A review of the theory and application of coherent anti-stokes Raman spectroscopy,” Appl. Spectrosc. 31(4), 253–271 (1977).
    [Crossref]
  18. D. N. Waters, “Raman spectroscopy of powders: Effects of light absorption and scattering,” Spectrochim. Acta, Part A: Mol. Spectrosc. 50(11), 1833–1840 (1994).
    [Crossref]
  19. J. M. Grzybowski, R. K. Khanna, and E. R. Lippincott, “Evidence of ion-pairing in the polarized raman spectra of a ba2+cro doped ki single crystal,” J. Raman Spectrosc. 4(1), 25–30 (1975).
    [Crossref]
  20. T. C. Damen, S. P. S. Porto, and B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142(2), 570–574 (1966).
    [Crossref]
  21. L. Novotny and B. Hecht, Principles of Nano-Optics, Principles of Nano-optics (Cambridge University Press, 2006).
  22. M. Heilmann, A. M. Munshi, G. Sarau, M. Göbelt, C. Tessarek, V. T. Fauske, A. T. J. van Helvoort, J. Yang, M. Latzel, B. Hoffmann, G. Conibeer, H. Weman, and S. Christiansen, “Vertically oriented growth of GaN nanorods on si using graphene as an atomically thin buffer layer,” Nano Lett. 16(6), 3524–3532 (2016).
    [Crossref]
  23. G. Pezzotti, H. Sueoka, A. A. Porporati, M. Manghnani, and W. Zhu, “Raman tensor elements for wurtzitic GaN and their application to assess crystallographic orientation at film/substrate interfaces,” J. Appl. Phys. 110(1), 013527 (2011).
    [Crossref]
  24. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
    [Crossref]
  25. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [Crossref]
  26. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [Crossref]
  27. T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
    [Crossref]
  28. J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89(4), 517–520 (2007).
    [Crossref]
  29. T. Züchner, A. Failla, A. Hartschuh, and A. Meixner, “A novel approach to detect and characterize the scattering patterns of single au nanoparticles using confocal microscopy,” J. Microsc. 229(2), 337–343 (2008).
    [Crossref]
  30. G. Volpe, S. Cherukulappurath, R. Juanola Parramon, G. Molina-Terriza, and R. Quidant, “Controlling the optical near field of nanoantennas with spatial phase-shaped beams,” Nano Lett. 9(10), 3608–3611 (2009).
    [Crossref]
  31. P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express 18(10), 10905 (2010).
    [Crossref]
  32. G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
    [Crossref]
  33. G. Bautista, M. J. Huttunen, J. M. Kontio, J. Simonen, and M. Kauranen, “Third-and second-harmonic generation microscopy of individual metal nanocones using cylindrical vector beams,” Opt. Express 21(19), 21918–21923 (2013).
    [Crossref]
  34. P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
    [Crossref]
  35. D. P. Biss, K. S. Youngworth, and T. G. Brown, “Dark-field imaging with cylindrical-vector beams,” Appl. Opt. 45(3), 470–479 (2006).
    [Crossref]
  36. X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in sted microscopy,” J. Opt. 12(11), 115707 (2010).
    [Crossref]
  37. M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nat. Commun. 7(1), 11286 (2016).
    [Crossref]
  38. A. Bag, M. Neugebauer, P. Woźniak, G. Leuchs, and P. Banzer, “Transverse kerker scattering for angstrom localization of nanoparticles,” Phys. Rev. Lett. 121(19), 193902 (2018).
    [Crossref]
  39. M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
    [Crossref]
  40. S. Nechayev, J. S. Eismann, M. Neugebauer, P. Wozniak, A. Bag, G. Leuchs, and P. Banzer, “Huygens’ dipole for polarization-controlled nanoscale light routing,” Phys. Rev. A 99(4), 041801 (2019).
    [Crossref]
  41. A. Golla, B. Chalopin, M. Bader, I. Harder, K. Mantel, R. Maiwald, N. Lindlein, M. Sondermann, and G. Leuchs, “Generation of a wave packet tailored to efficient free space excitation of a single atom,” Eur. Phys. J. D 66(7), 190 (2012).
    [Crossref]
  42. Y. Saito, M. Kobayashi, D. Hiraga, K. Fujita, S. Kawano, N. I. Smith, Y. Inouye, and S. Kawata, “z-polarization sensitive detection in micro-Raman spectroscopy by radially polarized incident light,” J. Raman Spectrosc. 39(11), 1643–1648 (2008).
    [Crossref]
  43. Y. Saito and P. Verma, “Polarization-controlled Raman microscopy and nanoscopy,” J. Phys. Chem. Lett. 3(10), 1295–1300 (2012).
    [Crossref]
  44. F. Lu, W. Zheng, and Z. Huang, “Coherent anti-stokes raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett. 34(12), 1870–1872 (2009).
    [Crossref]
  45. D. Roy and C. Williams, “High resolution Raman imaging of single wall carbon nanotubes using electrochemically etched gold tips and a radially polarized annular beam,” J. Vac. Sci. Technol., A 28(3), 472–475 (2010).
    [Crossref]
  46. K. A. Forbes, “Raman optical activity using twisted photons,” Phys. Rev. Lett. 122(10), 103201 (2019).
    [Crossref]
  47. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
    [Crossref]
  48. C. Tessarek and S. Christiansen, “Self-catalyzed, vertically aligned GaN rod-structures by metal-organic vapor phase epitaxy,” Phys. Status Solidi C 9(3-4), 596–600 (2012).
    [Crossref]
  49. C. Tessarek, M. Bashouti, M. Heilmann, C. Dieker, I. Knoke, E. Spiecker, and S. Christiansen, “Controlling morphology and optical properties of self-catalyzed, mask-free GaN rods and nanorods by metal-organic vapor phase epitaxy,” J. Appl. Phys. 114(14), 144304 (2013).
    [Crossref]
  50. C. Tessarek, S. Figge, A. Gust, M. Heilmann, C. Dieker, E. Spiecker, and S. Christiansen, “Optical properties of vertical, tilted and in-plane GaN nanowires on different crystallographic orientations of sapphire,” J. Phys. D: Appl. Phys. 47(39), 394008 (2014).
    [Crossref]
  51. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).
  52. T. Bauer, S. Orlov, G. Leuchs, and P. Banzer, “Towards an optical far-field measurement of higher-order multipole contributions to the scattering response of nanoparticles,” Appl. Phys. Lett. 106(9), 091108 (2015).
    [Crossref]
  53. G. Turrell, M. Delhaye, and P. Dhamelincourt, “Characteristics of Raman microscopy,” in Raman Microscopy, (Elsevier BV, 1996), pp. 27–49.
  54. R. Loudon, “The Raman effect in crystals,” Adv. Phys. 13(52), 423–482 (1964).
    [Crossref]
  55. H. Morkoc, Handbook of Nitride Semiconductors and Devices, Materials Properties, Physics and Growth, Handbook of Nitride Semiconductors and Devices (Wiley, 2009).
  56. E. Kroumova, M. Aroyo, J. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, and H. Wondratschek, “Bilbao crystallographic server : Useful databases and tools for phase-transition studies,” Phase Transitions 76(1-2), 155–170 (2003).
    [Crossref]
  57. V. Liégeois, O. Quinet, and B. Champagne, “Vibrational Raman optical activity as a mean for revealing the helicity of oligosilanes,” J. Chem. Phys. 122(21), 214304 (2005).
    [Crossref]
  58. G. Irmer, “C. Röder,” C. Himcinschi and J. Kortus, “Raman tensor elements and faust-henry coefficients of wurtzite-type alpha-GaN: How to overcome the dilemma of the sign of faust-henry coefficients in alpha-GaN,” J. Appl. Phys. 116(24), 245702 (2014).
    [Crossref]
  59. T. Livneh, J. Zhang, G. Cheng, and M. Moskovits, “Polarized Raman scattering from single GaN nanowires,” Phys. Rev. B 74(3), 035320 (2006).
    [Crossref]
  60. G. Turrell, “Analysis of polarization measurements in Raman microspectroscopy,” J. Raman Spectrosc. 15(2), 103–108 (1984).
    [Crossref]
  61. G. Turrell, “Raman sampling,” in Practical Raman Spectroscopy, (Springer Nature, 1989), pp. 13–54.
  62. P. H. C. Eilers and H. F. M. Boelens, “Baseline correction with asymmetric least squares smoothing,” Published online (2005).
  63. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Transporting and focusing radially polarized laser beams,” Opt. Eng. 31(7), 1527–1532 (1992).
    [Crossref]
  64. H. Budde, N. Coca-Lopez, X. Shi, R. Ciesielski, A. Lombardo, D. Yoon, A. C. Ferrari, and A. Hartschuh, “Raman radiation patterns of graphene,” ACS Nano 10(2), 1756–1763 (2016).
    [Crossref]
  65. J. S. Eismann, M. Neugebauer, and P. Banzer, “Exciting a chiral dipole moment in an achiral nanostructure,” Optica 5(8), 954–959 (2018).
    [Crossref]

2019 (2)

S. Nechayev, J. S. Eismann, M. Neugebauer, P. Wozniak, A. Bag, G. Leuchs, and P. Banzer, “Huygens’ dipole for polarization-controlled nanoscale light routing,” Phys. Rev. A 99(4), 041801 (2019).
[Crossref]

K. A. Forbes, “Raman optical activity using twisted photons,” Phys. Rev. Lett. 122(10), 103201 (2019).
[Crossref]

2018 (2)

A. Bag, M. Neugebauer, P. Woźniak, G. Leuchs, and P. Banzer, “Transverse kerker scattering for angstrom localization of nanoparticles,” Phys. Rev. Lett. 121(19), 193902 (2018).
[Crossref]

J. S. Eismann, M. Neugebauer, and P. Banzer, “Exciting a chiral dipole moment in an achiral nanostructure,” Optica 5(8), 954–959 (2018).
[Crossref]

2016 (4)

H. Budde, N. Coca-Lopez, X. Shi, R. Ciesielski, A. Lombardo, D. Yoon, A. C. Ferrari, and A. Hartschuh, “Raman radiation patterns of graphene,” ACS Nano 10(2), 1756–1763 (2016).
[Crossref]

M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nat. Commun. 7(1), 11286 (2016).
[Crossref]

C. A. F. de Oliveira Penido, M. T. T. Pacheco, I. K. Lednev, and L. Silveira, “Raman spectroscopy in forensic analysis: identification of cocaine and other illegal drugs of abuse,” J. Raman Spectrosc. 47(1), 28–38 (2016).
[Crossref]

M. Heilmann, A. M. Munshi, G. Sarau, M. Göbelt, C. Tessarek, V. T. Fauske, A. T. J. van Helvoort, J. Yang, M. Latzel, B. Hoffmann, G. Conibeer, H. Weman, and S. Christiansen, “Vertically oriented growth of GaN nanorods on si using graphene as an atomically thin buffer layer,” Nano Lett. 16(6), 3524–3532 (2016).
[Crossref]

2015 (4)

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6(1), 8429 (2015).
[Crossref]

B. Fluegel, A. V. Mialitsin, D. A. Beaton, J. L. Reno, and A. Mascarenhas, “Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors,” Nat. Commun. 6(1), 7136 (2015).
[Crossref]

T. Bauer, S. Orlov, G. Leuchs, and P. Banzer, “Towards an optical far-field measurement of higher-order multipole contributions to the scattering response of nanoparticles,” Appl. Phys. Lett. 106(9), 091108 (2015).
[Crossref]

2014 (7)

C. Tessarek, S. Figge, A. Gust, M. Heilmann, C. Dieker, E. Spiecker, and S. Christiansen, “Optical properties of vertical, tilted and in-plane GaN nanowires on different crystallographic orientations of sapphire,” J. Phys. D: Appl. Phys. 47(39), 394008 (2014).
[Crossref]

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
[Crossref]

G. Irmer, “C. Röder,” C. Himcinschi and J. Kortus, “Raman tensor elements and faust-henry coefficients of wurtzite-type alpha-GaN: How to overcome the dilemma of the sign of faust-henry coefficients in alpha-GaN,” J. Appl. Phys. 116(24), 245702 (2014).
[Crossref]

G. Irmer, “C. Röder,” C. Himcinschi and J. Kortus, “Raman tensor elements and faust-henry coefficients of wurtzite-type alpha-GaN: How to overcome the dilemma of the sign of faust-henry coefficients in alpha-GaN,” J. Appl. Phys. 116(24), 245702 (2014).
[Crossref]

G. Irmer, “C. Röder,” C. Himcinschi and J. Kortus, “Raman tensor elements and faust-henry coefficients of wurtzite-type alpha-GaN: How to overcome the dilemma of the sign of faust-henry coefficients in alpha-GaN,” J. Appl. Phys. 116(24), 245702 (2014).
[Crossref]

G. Sarau, M. Heilmann, M. Latzel, and S. Christiansen, “Disentangling the effects of nanoscale structural variations on the light emission wavelength of single nano-emitters: InGaN/GaN multiquantum well nano-LEDs for a case study,” Nanoscale 6(20), 11953–11962 (2014).
[Crossref]

M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. V. Duyne, “Recent advances in tip-enhanced Raman spectroscopy,” J. Phys. Chem. Lett. 5(18), 3125–3130 (2014).
[Crossref]

D. S. Moore and S. D. McGrane, “Raman temperature measurement,” J. Phys.: Conf. Ser. 500(19), 192011 (2014).
[Crossref]

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

2013 (2)

G. Bautista, M. J. Huttunen, J. M. Kontio, J. Simonen, and M. Kauranen, “Third-and second-harmonic generation microscopy of individual metal nanocones using cylindrical vector beams,” Opt. Express 21(19), 21918–21923 (2013).
[Crossref]

C. Tessarek, M. Bashouti, M. Heilmann, C. Dieker, I. Knoke, E. Spiecker, and S. Christiansen, “Controlling morphology and optical properties of self-catalyzed, mask-free GaN rods and nanorods by metal-organic vapor phase epitaxy,” J. Appl. Phys. 114(14), 144304 (2013).
[Crossref]

2012 (4)

C. Tessarek and S. Christiansen, “Self-catalyzed, vertically aligned GaN rod-structures by metal-organic vapor phase epitaxy,” Phys. Status Solidi C 9(3-4), 596–600 (2012).
[Crossref]

A. Golla, B. Chalopin, M. Bader, I. Harder, K. Mantel, R. Maiwald, N. Lindlein, M. Sondermann, and G. Leuchs, “Generation of a wave packet tailored to efficient free space excitation of a single atom,” Eur. Phys. J. D 66(7), 190 (2012).
[Crossref]

Y. Saito and P. Verma, “Polarization-controlled Raman microscopy and nanoscopy,” J. Phys. Chem. Lett. 3(10), 1295–1300 (2012).
[Crossref]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref]

2011 (1)

G. Pezzotti, H. Sueoka, A. A. Porporati, M. Manghnani, and W. Zhu, “Raman tensor elements for wurtzitic GaN and their application to assess crystallographic orientation at film/substrate interfaces,” J. Appl. Phys. 110(1), 013527 (2011).
[Crossref]

2010 (3)

P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express 18(10), 10905 (2010).
[Crossref]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in sted microscopy,” J. Opt. 12(11), 115707 (2010).
[Crossref]

D. Roy and C. Williams, “High resolution Raman imaging of single wall carbon nanotubes using electrochemically etched gold tips and a radially polarized annular beam,” J. Vac. Sci. Technol., A 28(3), 472–475 (2010).
[Crossref]

2009 (2)

F. Lu, W. Zheng, and Z. Huang, “Coherent anti-stokes raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett. 34(12), 1870–1872 (2009).
[Crossref]

G. Volpe, S. Cherukulappurath, R. Juanola Parramon, G. Molina-Terriza, and R. Quidant, “Controlling the optical near field of nanoantennas with spatial phase-shaped beams,” Nano Lett. 9(10), 3608–3611 (2009).
[Crossref]

2008 (2)

T. Züchner, A. Failla, A. Hartschuh, and A. Meixner, “A novel approach to detect and characterize the scattering patterns of single au nanoparticles using confocal microscopy,” J. Microsc. 229(2), 337–343 (2008).
[Crossref]

Y. Saito, M. Kobayashi, D. Hiraga, K. Fujita, S. Kawano, N. I. Smith, Y. Inouye, and S. Kawata, “z-polarization sensitive detection in micro-Raman spectroscopy by radially polarized incident light,” J. Raman Spectrosc. 39(11), 1643–1648 (2008).
[Crossref]

2007 (2)

J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89(4), 517–520 (2007).
[Crossref]

E. C. L. Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

2006 (3)

D. P. Biss, K. S. Youngworth, and T. G. Brown, “Dark-field imaging with cylindrical-vector beams,” Appl. Opt. 45(3), 470–479 (2006).
[Crossref]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

T. Livneh, J. Zhang, G. Cheng, and M. Moskovits, “Polarized Raman scattering from single GaN nanowires,” Phys. Rev. B 74(3), 035320 (2006).
[Crossref]

2005 (2)

V. Liégeois, O. Quinet, and B. Champagne, “Vibrational Raman optical activity as a mean for revealing the helicity of oligosilanes,” J. Chem. Phys. 122(21), 214304 (2005).
[Crossref]

Y. Kang, Y. Qiu, Z. Lei, and M. Hu, “An application of Raman spectroscopy on the measurement of residual stress in porous silicon,” Opt. Laser Eng. 43(8), 847–855 (2005).
[Crossref]

2004 (1)

C. Pinquier, F. Demangeot, J. Frandon, J. W. Pomeroy, M. Kuball, H. Hubel, N. W. A. van Uden, D. J. Dunstan, O. Briot, B. Maleyre, S. Ruffenach, and B. Gil, “Raman scattering in hexagonal InN under high pressure,” Phys. Rev. B 70(11), 113202 (2004).
[Crossref]

2003 (3)

A. Wang, “Development of the Mars microbeam Raman spectrometer (MMRS),” J. Geophys. Res. 108(E1), 5005 (2003).
[Crossref]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref]

E. Kroumova, M. Aroyo, J. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, and H. Wondratschek, “Bilbao crystallographic server : Useful databases and tools for phase-transition studies,” Phase Transitions 76(1-2), 155–170 (2003).
[Crossref]

2000 (3)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[Crossref]

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref]

1994 (1)

D. N. Waters, “Raman spectroscopy of powders: Effects of light absorption and scattering,” Spectrochim. Acta, Part A: Mol. Spectrosc. 50(11), 1833–1840 (1994).
[Crossref]

1992 (1)

S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Transporting and focusing radially polarized laser beams,” Opt. Eng. 31(7), 1527–1532 (1992).
[Crossref]

1988 (1)

J. Koningstein, “Dephasing and resonance electronic Raman scattering,” Chem. Phys. Lett. 146(6), 576–581 (1988).
[Crossref]

1984 (1)

G. Turrell, “Analysis of polarization measurements in Raman microspectroscopy,” J. Raman Spectrosc. 15(2), 103–108 (1984).
[Crossref]

1977 (1)

1975 (1)

J. M. Grzybowski, R. K. Khanna, and E. R. Lippincott, “Evidence of ion-pairing in the polarized raman spectra of a ba2+cro doped ki single crystal,” J. Raman Spectrosc. 4(1), 25–30 (1975).
[Crossref]

1974 (1)

R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti-stokes raman spectroscopy,” Appl. Phys. Lett. 25(7), 387–390 (1974).
[Crossref]

1966 (1)

T. C. Damen, S. P. S. Porto, and B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142(2), 570–574 (1966).
[Crossref]

1965 (2)

R. W. Terhune, P. D. Maker, and C. M. Savage, “Measurements of nonlinear light scattering,” Phys. Rev. Lett. 14(17), 681–684 (1965).
[Crossref]

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137(3A), A801–A818 (1965).
[Crossref]

1964 (1)

R. Loudon, “The Raman effect in crystals,” Adv. Phys. 13(52), 423–482 (1964).
[Crossref]

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).

Aroyo, M.

E. Kroumova, M. Aroyo, J. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, and H. Wondratschek, “Bilbao crystallographic server : Useful databases and tools for phase-transition studies,” Phase Transitions 76(1-2), 155–170 (2003).
[Crossref]

Bader, M.

A. Golla, B. Chalopin, M. Bader, I. Harder, K. Mantel, R. Maiwald, N. Lindlein, M. Sondermann, and G. Leuchs, “Generation of a wave packet tailored to efficient free space excitation of a single atom,” Eur. Phys. J. D 66(7), 190 (2012).
[Crossref]

Bag, A.

S. Nechayev, J. S. Eismann, M. Neugebauer, P. Wozniak, A. Bag, G. Leuchs, and P. Banzer, “Huygens’ dipole for polarization-controlled nanoscale light routing,” Phys. Rev. A 99(4), 041801 (2019).
[Crossref]

A. Bag, M. Neugebauer, P. Woźniak, G. Leuchs, and P. Banzer, “Transverse kerker scattering for angstrom localization of nanoparticles,” Phys. Rev. Lett. 121(19), 193902 (2018).
[Crossref]

M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nat. Commun. 7(1), 11286 (2016).
[Crossref]

Banszerus, L.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6(1), 8429 (2015).
[Crossref]

Banzer, P.

S. Nechayev, J. S. Eismann, M. Neugebauer, P. Wozniak, A. Bag, G. Leuchs, and P. Banzer, “Huygens’ dipole for polarization-controlled nanoscale light routing,” Phys. Rev. A 99(4), 041801 (2019).
[Crossref]

A. Bag, M. Neugebauer, P. Woźniak, G. Leuchs, and P. Banzer, “Transverse kerker scattering for angstrom localization of nanoparticles,” Phys. Rev. Lett. 121(19), 193902 (2018).
[Crossref]

J. S. Eismann, M. Neugebauer, and P. Banzer, “Exciting a chiral dipole moment in an achiral nanostructure,” Optica 5(8), 954–959 (2018).
[Crossref]

M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nat. Commun. 7(1), 11286 (2016).
[Crossref]

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

T. Bauer, S. Orlov, G. Leuchs, and P. Banzer, “Towards an optical far-field measurement of higher-order multipole contributions to the scattering response of nanoparticles,” Appl. Phys. Lett. 106(9), 091108 (2015).
[Crossref]

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
[Crossref]

P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express 18(10), 10905 (2010).
[Crossref]

J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89(4), 517–520 (2007).
[Crossref]

Bashouti, M.

C. Tessarek, M. Bashouti, M. Heilmann, C. Dieker, I. Knoke, E. Spiecker, and S. Christiansen, “Controlling morphology and optical properties of self-catalyzed, mask-free GaN rods and nanorods by metal-organic vapor phase epitaxy,” J. Appl. Phys. 114(14), 144304 (2013).
[Crossref]

Bauer, T.

T. Bauer, S. Orlov, G. Leuchs, and P. Banzer, “Towards an optical far-field measurement of higher-order multipole contributions to the scattering response of nanoparticles,” Appl. Phys. Lett. 106(9), 091108 (2015).
[Crossref]

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
[Crossref]

Bautista, G.

G. Bautista, M. J. Huttunen, J. M. Kontio, J. Simonen, and M. Kauranen, “Third-and second-harmonic generation microscopy of individual metal nanocones using cylindrical vector beams,” Opt. Express 21(19), 21918–21923 (2013).
[Crossref]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref]

Beaton, D. A.

B. Fluegel, A. V. Mialitsin, D. A. Beaton, J. L. Reno, and A. Mascarenhas, “Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors,” Nat. Commun. 6(1), 7136 (2015).
[Crossref]

Begley, R. F.

R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti-stokes raman spectroscopy,” Appl. Phys. Lett. 25(7), 387–390 (1974).
[Crossref]

Beschoten, B.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6(1), 8429 (2015).
[Crossref]

Biss, D. P.

Blackie, E.

E. C. L. Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Boelens, H. F. M.

P. H. C. Eilers and H. F. M. Boelens, “Baseline correction with asymmetric least squares smoothing,” Published online (2005).

Briot, O.

C. Pinquier, F. Demangeot, J. Frandon, J. W. Pomeroy, M. Kuball, H. Hubel, N. W. A. van Uden, D. J. Dunstan, O. Briot, B. Maleyre, S. Ruffenach, and B. Gil, “Raman scattering in hexagonal InN under high pressure,” Phys. Rev. B 70(11), 113202 (2004).
[Crossref]

Brown, T. G.

Budde, H.

H. Budde, N. Coca-Lopez, X. Shi, R. Ciesielski, A. Lombardo, D. Yoon, A. C. Ferrari, and A. Hartschuh, “Raman radiation patterns of graphene,” ACS Nano 10(2), 1756–1763 (2016).
[Crossref]

Byer, R. L.

R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti-stokes raman spectroscopy,” Appl. Phys. Lett. 25(7), 387–390 (1974).
[Crossref]

Capillas, C.

E. Kroumova, M. Aroyo, J. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, and H. Wondratschek, “Bilbao crystallographic server : Useful databases and tools for phase-transition studies,” Phase Transitions 76(1-2), 155–170 (2003).
[Crossref]

Chalopin, B.

A. Golla, B. Chalopin, M. Bader, I. Harder, K. Mantel, R. Maiwald, N. Lindlein, M. Sondermann, and G. Leuchs, “Generation of a wave packet tailored to efficient free space excitation of a single atom,” Eur. Phys. J. D 66(7), 190 (2012).
[Crossref]

Champagne, B.

V. Liégeois, O. Quinet, and B. Champagne, “Vibrational Raman optical activity as a mean for revealing the helicity of oligosilanes,” J. Chem. Phys. 122(21), 214304 (2005).
[Crossref]

Cheng, G.

T. Livneh, J. Zhang, G. Cheng, and M. Moskovits, “Polarized Raman scattering from single GaN nanowires,” Phys. Rev. B 74(3), 035320 (2006).
[Crossref]

Cherukulappurath, S.

G. Volpe, S. Cherukulappurath, R. Juanola Parramon, G. Molina-Terriza, and R. Quidant, “Controlling the optical near field of nanoantennas with spatial phase-shaped beams,” Nano Lett. 9(10), 3608–3611 (2009).
[Crossref]

Christiansen, S.

M. Heilmann, A. M. Munshi, G. Sarau, M. Göbelt, C. Tessarek, V. T. Fauske, A. T. J. van Helvoort, J. Yang, M. Latzel, B. Hoffmann, G. Conibeer, H. Weman, and S. Christiansen, “Vertically oriented growth of GaN nanorods on si using graphene as an atomically thin buffer layer,” Nano Lett. 16(6), 3524–3532 (2016).
[Crossref]

G. Sarau, M. Heilmann, M. Latzel, and S. Christiansen, “Disentangling the effects of nanoscale structural variations on the light emission wavelength of single nano-emitters: InGaN/GaN multiquantum well nano-LEDs for a case study,” Nanoscale 6(20), 11953–11962 (2014).
[Crossref]

C. Tessarek, S. Figge, A. Gust, M. Heilmann, C. Dieker, E. Spiecker, and S. Christiansen, “Optical properties of vertical, tilted and in-plane GaN nanowires on different crystallographic orientations of sapphire,” J. Phys. D: Appl. Phys. 47(39), 394008 (2014).
[Crossref]

C. Tessarek, M. Bashouti, M. Heilmann, C. Dieker, I. Knoke, E. Spiecker, and S. Christiansen, “Controlling morphology and optical properties of self-catalyzed, mask-free GaN rods and nanorods by metal-organic vapor phase epitaxy,” J. Appl. Phys. 114(14), 144304 (2013).
[Crossref]

C. Tessarek and S. Christiansen, “Self-catalyzed, vertically aligned GaN rod-structures by metal-organic vapor phase epitaxy,” Phys. Status Solidi C 9(3-4), 596–600 (2012).
[Crossref]

Ciesielski, R.

H. Budde, N. Coca-Lopez, X. Shi, R. Ciesielski, A. Lombardo, D. Yoon, A. C. Ferrari, and A. Hartschuh, “Raman radiation patterns of graphene,” ACS Nano 10(2), 1756–1763 (2016).
[Crossref]

Coca-Lopez, N.

H. Budde, N. Coca-Lopez, X. Shi, R. Ciesielski, A. Lombardo, D. Yoon, A. C. Ferrari, and A. Hartschuh, “Raman radiation patterns of graphene,” ACS Nano 10(2), 1756–1763 (2016).
[Crossref]

Conibeer, G.

M. Heilmann, A. M. Munshi, G. Sarau, M. Göbelt, C. Tessarek, V. T. Fauske, A. T. J. van Helvoort, J. Yang, M. Latzel, B. Hoffmann, G. Conibeer, H. Weman, and S. Christiansen, “Vertically oriented growth of GaN nanorods on si using graphene as an atomically thin buffer layer,” Nano Lett. 16(6), 3524–3532 (2016).
[Crossref]

Damen, T. C.

T. C. Damen, S. P. S. Porto, and B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142(2), 570–574 (1966).
[Crossref]

Dasari, R. R.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref]

de Oliveira Penido, C. A. F.

C. A. F. de Oliveira Penido, M. T. T. Pacheco, I. K. Lednev, and L. Silveira, “Raman spectroscopy in forensic analysis: identification of cocaine and other illegal drugs of abuse,” J. Raman Spectrosc. 47(1), 28–38 (2016).
[Crossref]

Delhaye, M.

G. Turrell, M. Delhaye, and P. Dhamelincourt, “Characteristics of Raman microscopy,” in Raman Microscopy, (Elsevier BV, 1996), pp. 27–49.

Demangeot, F.

C. Pinquier, F. Demangeot, J. Frandon, J. W. Pomeroy, M. Kuball, H. Hubel, N. W. A. van Uden, D. J. Dunstan, O. Briot, B. Maleyre, S. Ruffenach, and B. Gil, “Raman scattering in hexagonal InN under high pressure,” Phys. Rev. B 70(11), 113202 (2004).
[Crossref]

Dent, G.

E. Smith and G. Dent, Modern Raman Spectroscopy: A Practical Approach (Wiley, 2005).

Dhamelincourt, P.

G. Turrell, M. Delhaye, and P. Dhamelincourt, “Characteristics of Raman microscopy,” in Raman Microscopy, (Elsevier BV, 1996), pp. 27–49.

Dieker, C.

C. Tessarek, S. Figge, A. Gust, M. Heilmann, C. Dieker, E. Spiecker, and S. Christiansen, “Optical properties of vertical, tilted and in-plane GaN nanowires on different crystallographic orientations of sapphire,” J. Phys. D: Appl. Phys. 47(39), 394008 (2014).
[Crossref]

C. Tessarek, M. Bashouti, M. Heilmann, C. Dieker, I. Knoke, E. Spiecker, and S. Christiansen, “Controlling morphology and optical properties of self-catalyzed, mask-free GaN rods and nanorods by metal-organic vapor phase epitaxy,” J. Appl. Phys. 114(14), 144304 (2013).
[Crossref]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]

Drögeler, M.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6(1), 8429 (2015).
[Crossref]

Dunstan, D. J.

C. Pinquier, F. Demangeot, J. Frandon, J. W. Pomeroy, M. Kuball, H. Hubel, N. W. A. van Uden, D. J. Dunstan, O. Briot, B. Maleyre, S. Ruffenach, and B. Gil, “Raman scattering in hexagonal InN under high pressure,” Phys. Rev. B 70(11), 113202 (2004).
[Crossref]

Duyne, R. P. V.

M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. V. Duyne, “Recent advances in tip-enhanced Raman spectroscopy,” J. Phys. Chem. Lett. 5(18), 3125–3130 (2014).
[Crossref]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]

Eilers, P. H. C.

P. H. C. Eilers and H. F. M. Boelens, “Baseline correction with asymmetric least squares smoothing,” Published online (2005).

Eismann, J. S.

S. Nechayev, J. S. Eismann, M. Neugebauer, P. Wozniak, A. Bag, G. Leuchs, and P. Banzer, “Huygens’ dipole for polarization-controlled nanoscale light routing,” Phys. Rev. A 99(4), 041801 (2019).
[Crossref]

J. S. Eismann, M. Neugebauer, and P. Banzer, “Exciting a chiral dipole moment in an achiral nanostructure,” Optica 5(8), 954–959 (2018).
[Crossref]

Etchegoin, P. G.

E. C. L. Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Failla, A.

T. Züchner, A. Failla, A. Hartschuh, and A. Meixner, “A novel approach to detect and characterize the scattering patterns of single au nanoparticles using confocal microscopy,” J. Microsc. 229(2), 337–343 (2008).
[Crossref]

Fauske, V. T.

M. Heilmann, A. M. Munshi, G. Sarau, M. Göbelt, C. Tessarek, V. T. Fauske, A. T. J. van Helvoort, J. Yang, M. Latzel, B. Hoffmann, G. Conibeer, H. Weman, and S. Christiansen, “Vertically oriented growth of GaN nanorods on si using graphene as an atomically thin buffer layer,” Nano Lett. 16(6), 3524–3532 (2016).
[Crossref]

Feld, M. S.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref]

Ferrari, A. C.

H. Budde, N. Coca-Lopez, X. Shi, R. Ciesielski, A. Lombardo, D. Yoon, A. C. Ferrari, and A. Hartschuh, “Raman radiation patterns of graphene,” ACS Nano 10(2), 1756–1763 (2016).
[Crossref]

Figge, S.

C. Tessarek, S. Figge, A. Gust, M. Heilmann, C. Dieker, E. Spiecker, and S. Christiansen, “Optical properties of vertical, tilted and in-plane GaN nanowires on different crystallographic orientations of sapphire,” J. Phys. D: Appl. Phys. 47(39), 394008 (2014).
[Crossref]

Fitzmaurice, M.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref]

Fluegel, B.

B. Fluegel, A. V. Mialitsin, D. A. Beaton, J. L. Reno, and A. Mascarenhas, “Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors,” Nat. Commun. 6(1), 7136 (2015).
[Crossref]

Forbes, K. A.

K. A. Forbes, “Raman optical activity using twisted photons,” Phys. Rev. Lett. 122(10), 103201 (2019).
[Crossref]

Ford, D. H.

S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Transporting and focusing radially polarized laser beams,” Opt. Eng. 31(7), 1527–1532 (1992).
[Crossref]

Frandon, J.

C. Pinquier, F. Demangeot, J. Frandon, J. W. Pomeroy, M. Kuball, H. Hubel, N. W. A. van Uden, D. J. Dunstan, O. Briot, B. Maleyre, S. Ruffenach, and B. Gil, “Raman scattering in hexagonal InN under high pressure,” Phys. Rev. B 70(11), 113202 (2004).
[Crossref]

Fujita, K.

Y. Saito, M. Kobayashi, D. Hiraga, K. Fujita, S. Kawano, N. I. Smith, Y. Inouye, and S. Kawata, “z-polarization sensitive detection in micro-Raman spectroscopy by radially polarized incident light,” J. Raman Spectrosc. 39(11), 1643–1648 (2008).
[Crossref]

Gil, B.

C. Pinquier, F. Demangeot, J. Frandon, J. W. Pomeroy, M. Kuball, H. Hubel, N. W. A. van Uden, D. J. Dunstan, O. Briot, B. Maleyre, S. Ruffenach, and B. Gil, “Raman scattering in hexagonal InN under high pressure,” Phys. Rev. B 70(11), 113202 (2004).
[Crossref]

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]

Göbelt, M.

M. Heilmann, A. M. Munshi, G. Sarau, M. Göbelt, C. Tessarek, V. T. Fauske, A. T. J. van Helvoort, J. Yang, M. Latzel, B. Hoffmann, G. Conibeer, H. Weman, and S. Christiansen, “Vertically oriented growth of GaN nanorods on si using graphene as an atomically thin buffer layer,” Nano Lett. 16(6), 3524–3532 (2016).
[Crossref]

Golla, A.

A. Golla, B. Chalopin, M. Bader, I. Harder, K. Mantel, R. Maiwald, N. Lindlein, M. Sondermann, and G. Leuchs, “Generation of a wave packet tailored to efficient free space excitation of a single atom,” Eur. Phys. J. D 66(7), 190 (2012).
[Crossref]

Grzybowski, J. M.

J. M. Grzybowski, R. K. Khanna, and E. R. Lippincott, “Evidence of ion-pairing in the polarized raman spectra of a ba2+cro doped ki single crystal,” J. Raman Spectrosc. 4(1), 25–30 (1975).
[Crossref]

Gust, A.

C. Tessarek, S. Figge, A. Gust, M. Heilmann, C. Dieker, E. Spiecker, and S. Christiansen, “Optical properties of vertical, tilted and in-plane GaN nanowires on different crystallographic orientations of sapphire,” J. Phys. D: Appl. Phys. 47(39), 394008 (2014).
[Crossref]

Hanlon, E. B.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref]

Hao, X.

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in sted microscopy,” J. Opt. 12(11), 115707 (2010).
[Crossref]

Harder, I.

A. Golla, B. Chalopin, M. Bader, I. Harder, K. Mantel, R. Maiwald, N. Lindlein, M. Sondermann, and G. Leuchs, “Generation of a wave packet tailored to efficient free space excitation of a single atom,” Eur. Phys. J. D 66(7), 190 (2012).
[Crossref]

Hartschuh, A.

H. Budde, N. Coca-Lopez, X. Shi, R. Ciesielski, A. Lombardo, D. Yoon, A. C. Ferrari, and A. Hartschuh, “Raman radiation patterns of graphene,” ACS Nano 10(2), 1756–1763 (2016).
[Crossref]

T. Züchner, A. Failla, A. Hartschuh, and A. Meixner, “A novel approach to detect and characterize the scattering patterns of single au nanoparticles using confocal microscopy,” J. Microsc. 229(2), 337–343 (2008).
[Crossref]

Harvey, A. B.

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics, Principles of Nano-optics (Cambridge University Press, 2006).

Heilmann, M.

M. Heilmann, A. M. Munshi, G. Sarau, M. Göbelt, C. Tessarek, V. T. Fauske, A. T. J. van Helvoort, J. Yang, M. Latzel, B. Hoffmann, G. Conibeer, H. Weman, and S. Christiansen, “Vertically oriented growth of GaN nanorods on si using graphene as an atomically thin buffer layer,” Nano Lett. 16(6), 3524–3532 (2016).
[Crossref]

G. Sarau, M. Heilmann, M. Latzel, and S. Christiansen, “Disentangling the effects of nanoscale structural variations on the light emission wavelength of single nano-emitters: InGaN/GaN multiquantum well nano-LEDs for a case study,” Nanoscale 6(20), 11953–11962 (2014).
[Crossref]

C. Tessarek, S. Figge, A. Gust, M. Heilmann, C. Dieker, E. Spiecker, and S. Christiansen, “Optical properties of vertical, tilted and in-plane GaN nanowires on different crystallographic orientations of sapphire,” J. Phys. D: Appl. Phys. 47(39), 394008 (2014).
[Crossref]

C. Tessarek, M. Bashouti, M. Heilmann, C. Dieker, I. Knoke, E. Spiecker, and S. Christiansen, “Controlling morphology and optical properties of self-catalyzed, mask-free GaN rods and nanorods by metal-organic vapor phase epitaxy,” J. Appl. Phys. 114(14), 144304 (2013).
[Crossref]

Hersam, M. C.

M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. V. Duyne, “Recent advances in tip-enhanced Raman spectroscopy,” J. Phys. Chem. Lett. 5(18), 3125–3130 (2014).
[Crossref]

Himcinschi, C.

G. Irmer, “C. Röder,” C. Himcinschi and J. Kortus, “Raman tensor elements and faust-henry coefficients of wurtzite-type alpha-GaN: How to overcome the dilemma of the sign of faust-henry coefficients in alpha-GaN,” J. Appl. Phys. 116(24), 245702 (2014).
[Crossref]

Hiraga, D.

Y. Saito, M. Kobayashi, D. Hiraga, K. Fujita, S. Kawano, N. I. Smith, Y. Inouye, and S. Kawata, “z-polarization sensitive detection in micro-Raman spectroscopy by radially polarized incident light,” J. Raman Spectrosc. 39(11), 1643–1648 (2008).
[Crossref]

Hoffmann, B.

M. Heilmann, A. M. Munshi, G. Sarau, M. Göbelt, C. Tessarek, V. T. Fauske, A. T. J. van Helvoort, J. Yang, M. Latzel, B. Hoffmann, G. Conibeer, H. Weman, and S. Christiansen, “Vertically oriented growth of GaN nanorods on si using graphene as an atomically thin buffer layer,” Nano Lett. 16(6), 3524–3532 (2016).
[Crossref]

Hu, M.

Y. Kang, Y. Qiu, Z. Lei, and M. Hu, “An application of Raman spectroscopy on the measurement of residual stress in porous silicon,” Opt. Laser Eng. 43(8), 847–855 (2005).
[Crossref]

Huang, Z.

Hubel, H.

C. Pinquier, F. Demangeot, J. Frandon, J. W. Pomeroy, M. Kuball, H. Hubel, N. W. A. van Uden, D. J. Dunstan, O. Briot, B. Maleyre, S. Ruffenach, and B. Gil, “Raman scattering in hexagonal InN under high pressure,” Phys. Rev. B 70(11), 113202 (2004).
[Crossref]

Huttunen, M. J.

G. Bautista, M. J. Huttunen, J. M. Kontio, J. Simonen, and M. Kauranen, “Third-and second-harmonic generation microscopy of individual metal nanocones using cylindrical vector beams,” Opt. Express 21(19), 21918–21923 (2013).
[Crossref]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref]

Inouye, Y.

Y. Saito, M. Kobayashi, D. Hiraga, K. Fujita, S. Kawano, N. I. Smith, Y. Inouye, and S. Kawata, “z-polarization sensitive detection in micro-Raman spectroscopy by radially polarized incident light,” J. Raman Spectrosc. 39(11), 1643–1648 (2008).
[Crossref]

Irmer, G.

G. Irmer, “C. Röder,” C. Himcinschi and J. Kortus, “Raman tensor elements and faust-henry coefficients of wurtzite-type alpha-GaN: How to overcome the dilemma of the sign of faust-henry coefficients in alpha-GaN,” J. Appl. Phys. 116(24), 245702 (2014).
[Crossref]

Itzkan, I.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref]

Ivantchev, S.

E. Kroumova, M. Aroyo, J. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, and H. Wondratschek, “Bilbao crystallographic server : Useful databases and tools for phase-transition studies,” Phase Transitions 76(1-2), 155–170 (2003).
[Crossref]

Jiang, N.

M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. V. Duyne, “Recent advances in tip-enhanced Raman spectroscopy,” J. Phys. Chem. Lett. 5(18), 3125–3130 (2014).
[Crossref]

Juanola Parramon, R.

G. Volpe, S. Cherukulappurath, R. Juanola Parramon, G. Molina-Terriza, and R. Quidant, “Controlling the optical near field of nanoantennas with spatial phase-shaped beams,” Nano Lett. 9(10), 3608–3611 (2009).
[Crossref]

Kang, Y.

Y. Kang, Y. Qiu, Z. Lei, and M. Hu, “An application of Raman spectroscopy on the measurement of residual stress in porous silicon,” Opt. Laser Eng. 43(8), 847–855 (2005).
[Crossref]

Kauranen, M.

G. Bautista, M. J. Huttunen, J. M. Kontio, J. Simonen, and M. Kauranen, “Third-and second-harmonic generation microscopy of individual metal nanocones using cylindrical vector beams,” Opt. Express 21(19), 21918–21923 (2013).
[Crossref]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref]

Kawano, S.

Y. Saito, M. Kobayashi, D. Hiraga, K. Fujita, S. Kawano, N. I. Smith, Y. Inouye, and S. Kawata, “z-polarization sensitive detection in micro-Raman spectroscopy by radially polarized incident light,” J. Raman Spectrosc. 39(11), 1643–1648 (2008).
[Crossref]

Kawata, S.

Y. Saito, M. Kobayashi, D. Hiraga, K. Fujita, S. Kawano, N. I. Smith, Y. Inouye, and S. Kawata, “z-polarization sensitive detection in micro-Raman spectroscopy by radially polarized incident light,” J. Raman Spectrosc. 39(11), 1643–1648 (2008).
[Crossref]

Khanna, R. K.

J. M. Grzybowski, R. K. Khanna, and E. R. Lippincott, “Evidence of ion-pairing in the polarized raman spectra of a ba2+cro doped ki single crystal,” J. Raman Spectrosc. 4(1), 25–30 (1975).
[Crossref]

Kimura, W. D.

S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Transporting and focusing radially polarized laser beams,” Opt. Eng. 31(7), 1527–1532 (1992).
[Crossref]

Kindler, J.

J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89(4), 517–520 (2007).
[Crossref]

Kirov, A.

E. Kroumova, M. Aroyo, J. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, and H. Wondratschek, “Bilbao crystallographic server : Useful databases and tools for phase-transition studies,” Phase Transitions 76(1-2), 155–170 (2003).
[Crossref]

Knoke, I.

C. Tessarek, M. Bashouti, M. Heilmann, C. Dieker, I. Knoke, E. Spiecker, and S. Christiansen, “Controlling morphology and optical properties of self-catalyzed, mask-free GaN rods and nanorods by metal-organic vapor phase epitaxy,” J. Appl. Phys. 114(14), 144304 (2013).
[Crossref]

Kobayashi, M.

Y. Saito, M. Kobayashi, D. Hiraga, K. Fujita, S. Kawano, N. I. Smith, Y. Inouye, and S. Kawata, “z-polarization sensitive detection in micro-Raman spectroscopy by radially polarized incident light,” J. Raman Spectrosc. 39(11), 1643–1648 (2008).
[Crossref]

Koningstein, J.

J. Koningstein, “Dephasing and resonance electronic Raman scattering,” Chem. Phys. Lett. 146(6), 576–581 (1988).
[Crossref]

Kontio, J. M.

G. Bautista, M. J. Huttunen, J. M. Kontio, J. Simonen, and M. Kauranen, “Third-and second-harmonic generation microscopy of individual metal nanocones using cylindrical vector beams,” Opt. Express 21(19), 21918–21923 (2013).
[Crossref]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref]

Koo, T.-W.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref]

Kortus, J.

G. Irmer, “C. Röder,” C. Himcinschi and J. Kortus, “Raman tensor elements and faust-henry coefficients of wurtzite-type alpha-GaN: How to overcome the dilemma of the sign of faust-henry coefficients in alpha-GaN,” J. Appl. Phys. 116(24), 245702 (2014).
[Crossref]

Kramer, J. R.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref]

Kroumova, E.

E. Kroumova, M. Aroyo, J. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, and H. Wondratschek, “Bilbao crystallographic server : Useful databases and tools for phase-transition studies,” Phase Transitions 76(1-2), 155–170 (2003).
[Crossref]

Kuang, C.

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in sted microscopy,” J. Opt. 12(11), 115707 (2010).
[Crossref]

Kuball, M.

C. Pinquier, F. Demangeot, J. Frandon, J. W. Pomeroy, M. Kuball, H. Hubel, N. W. A. van Uden, D. J. Dunstan, O. Briot, B. Maleyre, S. Ruffenach, and B. Gil, “Raman scattering in hexagonal InN under high pressure,” Phys. Rev. B 70(11), 113202 (2004).
[Crossref]

Latzel, M.

M. Heilmann, A. M. Munshi, G. Sarau, M. Göbelt, C. Tessarek, V. T. Fauske, A. T. J. van Helvoort, J. Yang, M. Latzel, B. Hoffmann, G. Conibeer, H. Weman, and S. Christiansen, “Vertically oriented growth of GaN nanorods on si using graphene as an atomically thin buffer layer,” Nano Lett. 16(6), 3524–3532 (2016).
[Crossref]

G. Sarau, M. Heilmann, M. Latzel, and S. Christiansen, “Disentangling the effects of nanoscale structural variations on the light emission wavelength of single nano-emitters: InGaN/GaN multiquantum well nano-LEDs for a case study,” Nanoscale 6(20), 11953–11962 (2014).
[Crossref]

Lednev, I. K.

C. A. F. de Oliveira Penido, M. T. T. Pacheco, I. K. Lednev, and L. Silveira, “Raman spectroscopy in forensic analysis: identification of cocaine and other illegal drugs of abuse,” J. Raman Spectrosc. 47(1), 28–38 (2016).
[Crossref]

Lei, Z.

Y. Kang, Y. Qiu, Z. Lei, and M. Hu, “An application of Raman spectroscopy on the measurement of residual stress in porous silicon,” Opt. Laser Eng. 43(8), 847–855 (2005).
[Crossref]

Leuchs, G.

S. Nechayev, J. S. Eismann, M. Neugebauer, P. Wozniak, A. Bag, G. Leuchs, and P. Banzer, “Huygens’ dipole for polarization-controlled nanoscale light routing,” Phys. Rev. A 99(4), 041801 (2019).
[Crossref]

A. Bag, M. Neugebauer, P. Woźniak, G. Leuchs, and P. Banzer, “Transverse kerker scattering for angstrom localization of nanoparticles,” Phys. Rev. Lett. 121(19), 193902 (2018).
[Crossref]

M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nat. Commun. 7(1), 11286 (2016).
[Crossref]

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

T. Bauer, S. Orlov, G. Leuchs, and P. Banzer, “Towards an optical far-field measurement of higher-order multipole contributions to the scattering response of nanoparticles,” Appl. Phys. Lett. 106(9), 091108 (2015).
[Crossref]

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
[Crossref]

A. Golla, B. Chalopin, M. Bader, I. Harder, K. Mantel, R. Maiwald, N. Lindlein, M. Sondermann, and G. Leuchs, “Generation of a wave packet tailored to efficient free space excitation of a single atom,” Eur. Phys. J. D 66(7), 190 (2012).
[Crossref]

P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express 18(10), 10905 (2010).
[Crossref]

J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89(4), 517–520 (2007).
[Crossref]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]

Liégeois, V.

V. Liégeois, O. Quinet, and B. Champagne, “Vibrational Raman optical activity as a mean for revealing the helicity of oligosilanes,” J. Chem. Phys. 122(21), 214304 (2005).
[Crossref]

Lindlein, N.

A. Golla, B. Chalopin, M. Bader, I. Harder, K. Mantel, R. Maiwald, N. Lindlein, M. Sondermann, and G. Leuchs, “Generation of a wave packet tailored to efficient free space excitation of a single atom,” Eur. Phys. J. D 66(7), 190 (2012).
[Crossref]

Lippincott, E. R.

J. M. Grzybowski, R. K. Khanna, and E. R. Lippincott, “Evidence of ion-pairing in the polarized raman spectra of a ba2+cro doped ki single crystal,” J. Raman Spectrosc. 4(1), 25–30 (1975).
[Crossref]

Liu, X.

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in sted microscopy,” J. Opt. 12(11), 115707 (2010).
[Crossref]

Livneh, T.

T. Livneh, J. Zhang, G. Cheng, and M. Moskovits, “Polarized Raman scattering from single GaN nanowires,” Phys. Rev. B 74(3), 035320 (2006).
[Crossref]

Lombardo, A.

H. Budde, N. Coca-Lopez, X. Shi, R. Ciesielski, A. Lombardo, D. Yoon, A. C. Ferrari, and A. Hartschuh, “Raman radiation patterns of graphene,” ACS Nano 10(2), 1756–1763 (2016).
[Crossref]

Loudon, R.

R. Loudon, “The Raman effect in crystals,” Adv. Phys. 13(52), 423–482 (1964).
[Crossref]

Lu, F.

Maiwald, R.

A. Golla, B. Chalopin, M. Bader, I. Harder, K. Mantel, R. Maiwald, N. Lindlein, M. Sondermann, and G. Leuchs, “Generation of a wave packet tailored to efficient free space excitation of a single atom,” Eur. Phys. J. D 66(7), 190 (2012).
[Crossref]

Maker, P. D.

R. W. Terhune, P. D. Maker, and C. M. Savage, “Measurements of nonlinear light scattering,” Phys. Rev. Lett. 14(17), 681–684 (1965).
[Crossref]

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137(3A), A801–A818 (1965).
[Crossref]

Mäkitalo, J.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref]

Maleyre, B.

C. Pinquier, F. Demangeot, J. Frandon, J. W. Pomeroy, M. Kuball, H. Hubel, N. W. A. van Uden, D. J. Dunstan, O. Briot, B. Maleyre, S. Ruffenach, and B. Gil, “Raman scattering in hexagonal InN under high pressure,” Phys. Rev. B 70(11), 113202 (2004).
[Crossref]

Manghnani, M.

G. Pezzotti, H. Sueoka, A. A. Porporati, M. Manghnani, and W. Zhu, “Raman tensor elements for wurtzitic GaN and their application to assess crystallographic orientation at film/substrate interfaces,” J. Appl. Phys. 110(1), 013527 (2011).
[Crossref]

Manoharan, R.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref]

Mantel, K.

A. Golla, B. Chalopin, M. Bader, I. Harder, K. Mantel, R. Maiwald, N. Lindlein, M. Sondermann, and G. Leuchs, “Generation of a wave packet tailored to efficient free space excitation of a single atom,” Eur. Phys. J. D 66(7), 190 (2012).
[Crossref]

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

Marrucci, L.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

Mascarenhas, A.

B. Fluegel, A. V. Mialitsin, D. A. Beaton, J. L. Reno, and A. Mascarenhas, “Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors,” Nat. Commun. 6(1), 7136 (2015).
[Crossref]

Mauri, F.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6(1), 8429 (2015).
[Crossref]

McDonald, J. R.

McGrane, S. D.

D. S. Moore and S. D. McGrane, “Raman temperature measurement,” J. Phys.: Conf. Ser. 500(19), 192011 (2014).
[Crossref]

Meixner, A.

T. Züchner, A. Failla, A. Hartschuh, and A. Meixner, “A novel approach to detect and characterize the scattering patterns of single au nanoparticles using confocal microscopy,” J. Microsc. 229(2), 337–343 (2008).
[Crossref]

Meyer, M.

E. C. L. Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Mialitsin, A. V.

B. Fluegel, A. V. Mialitsin, D. A. Beaton, J. L. Reno, and A. Mascarenhas, “Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors,” Nat. Commun. 6(1), 7136 (2015).
[Crossref]

Molina-Terriza, G.

G. Volpe, S. Cherukulappurath, R. Juanola Parramon, G. Molina-Terriza, and R. Quidant, “Controlling the optical near field of nanoantennas with spatial phase-shaped beams,” Nano Lett. 9(10), 3608–3611 (2009).
[Crossref]

Moore, D. S.

D. S. Moore and S. D. McGrane, “Raman temperature measurement,” J. Phys.: Conf. Ser. 500(19), 192011 (2014).
[Crossref]

Morkoc, H.

H. Morkoc, Handbook of Nitride Semiconductors and Devices, Materials Properties, Physics and Growth, Handbook of Nitride Semiconductors and Devices (Wiley, 2009).

Moskovits, M.

T. Livneh, J. Zhang, G. Cheng, and M. Moskovits, “Polarized Raman scattering from single GaN nanowires,” Phys. Rev. B 74(3), 035320 (2006).
[Crossref]

Motz, J. T.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref]

Munshi, A. M.

M. Heilmann, A. M. Munshi, G. Sarau, M. Göbelt, C. Tessarek, V. T. Fauske, A. T. J. van Helvoort, J. Yang, M. Latzel, B. Hoffmann, G. Conibeer, H. Weman, and S. Christiansen, “Vertically oriented growth of GaN nanorods on si using graphene as an atomically thin buffer layer,” Nano Lett. 16(6), 3524–3532 (2016).
[Crossref]

Nechayev, S.

S. Nechayev, J. S. Eismann, M. Neugebauer, P. Wozniak, A. Bag, G. Leuchs, and P. Banzer, “Huygens’ dipole for polarization-controlled nanoscale light routing,” Phys. Rev. A 99(4), 041801 (2019).
[Crossref]

Neugebauer, M.

S. Nechayev, J. S. Eismann, M. Neugebauer, P. Wozniak, A. Bag, G. Leuchs, and P. Banzer, “Huygens’ dipole for polarization-controlled nanoscale light routing,” Phys. Rev. A 99(4), 041801 (2019).
[Crossref]

A. Bag, M. Neugebauer, P. Woźniak, G. Leuchs, and P. Banzer, “Transverse kerker scattering for angstrom localization of nanoparticles,” Phys. Rev. Lett. 121(19), 193902 (2018).
[Crossref]

J. S. Eismann, M. Neugebauer, and P. Banzer, “Exciting a chiral dipole moment in an achiral nanostructure,” Optica 5(8), 954–959 (2018).
[Crossref]

M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nat. Commun. 7(1), 11286 (2016).
[Crossref]

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
[Crossref]

Neumann, C.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6(1), 8429 (2015).
[Crossref]

Nibler, J. W.

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics, Principles of Nano-optics (Cambridge University Press, 2006).

Orlov, S.

T. Bauer, S. Orlov, G. Leuchs, and P. Banzer, “Towards an optical far-field measurement of higher-order multipole contributions to the scattering response of nanoparticles,” Appl. Phys. Lett. 106(9), 091108 (2015).
[Crossref]

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Pacheco, M. T. T.

C. A. F. de Oliveira Penido, M. T. T. Pacheco, I. K. Lednev, and L. Silveira, “Raman spectroscopy in forensic analysis: identification of cocaine and other illegal drugs of abuse,” J. Raman Spectrosc. 47(1), 28–38 (2016).
[Crossref]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

Perez-Mato, J.

E. Kroumova, M. Aroyo, J. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, and H. Wondratschek, “Bilbao crystallographic server : Useful databases and tools for phase-transition studies,” Phase Transitions 76(1-2), 155–170 (2003).
[Crossref]

Peschel, U.

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express 18(10), 10905 (2010).
[Crossref]

J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89(4), 517–520 (2007).
[Crossref]

Pezzotti, G.

G. Pezzotti, H. Sueoka, A. A. Porporati, M. Manghnani, and W. Zhu, “Raman tensor elements for wurtzitic GaN and their application to assess crystallographic orientation at film/substrate interfaces,” J. Appl. Phys. 110(1), 013527 (2011).
[Crossref]

Pinquier, C.

C. Pinquier, F. Demangeot, J. Frandon, J. W. Pomeroy, M. Kuball, H. Hubel, N. W. A. van Uden, D. J. Dunstan, O. Briot, B. Maleyre, S. Ruffenach, and B. Gil, “Raman scattering in hexagonal InN under high pressure,” Phys. Rev. B 70(11), 113202 (2004).
[Crossref]

Pomeroy, J. W.

C. Pinquier, F. Demangeot, J. Frandon, J. W. Pomeroy, M. Kuball, H. Hubel, N. W. A. van Uden, D. J. Dunstan, O. Briot, B. Maleyre, S. Ruffenach, and B. Gil, “Raman scattering in hexagonal InN under high pressure,” Phys. Rev. B 70(11), 113202 (2004).
[Crossref]

Porporati, A. A.

G. Pezzotti, H. Sueoka, A. A. Porporati, M. Manghnani, and W. Zhu, “Raman tensor elements for wurtzitic GaN and their application to assess crystallographic orientation at film/substrate interfaces,” J. Appl. Phys. 110(1), 013527 (2011).
[Crossref]

Porto, S. P. S.

T. C. Damen, S. P. S. Porto, and B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142(2), 570–574 (1966).
[Crossref]

Pozzi, E. A.

M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. V. Duyne, “Recent advances in tip-enhanced Raman spectroscopy,” J. Phys. Chem. Lett. 5(18), 3125–3130 (2014).
[Crossref]

Qiu, Y.

Y. Kang, Y. Qiu, Z. Lei, and M. Hu, “An application of Raman spectroscopy on the measurement of residual stress in porous silicon,” Opt. Laser Eng. 43(8), 847–855 (2005).
[Crossref]

Quabis, S.

P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express 18(10), 10905 (2010).
[Crossref]

J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89(4), 517–520 (2007).
[Crossref]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]

Quidant, R.

G. Volpe, S. Cherukulappurath, R. Juanola Parramon, G. Molina-Terriza, and R. Quidant, “Controlling the optical near field of nanoantennas with spatial phase-shaped beams,” Nano Lett. 9(10), 3608–3611 (2009).
[Crossref]

Quinet, O.

V. Liégeois, O. Quinet, and B. Champagne, “Vibrational Raman optical activity as a mean for revealing the helicity of oligosilanes,” J. Chem. Phys. 122(21), 214304 (2005).
[Crossref]

Reichardt, S.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6(1), 8429 (2015).
[Crossref]

Reno, J. L.

B. Fluegel, A. V. Mialitsin, D. A. Beaton, J. L. Reno, and A. Mascarenhas, “Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors,” Nat. Commun. 6(1), 7136 (2015).
[Crossref]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).

Röder, C.

G. Irmer, “C. Röder,” C. Himcinschi and J. Kortus, “Raman tensor elements and faust-henry coefficients of wurtzite-type alpha-GaN: How to overcome the dilemma of the sign of faust-henry coefficients in alpha-GaN,” J. Appl. Phys. 116(24), 245702 (2014).
[Crossref]

Rotkin, S. V.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6(1), 8429 (2015).
[Crossref]

Roy, D.

D. Roy and C. Williams, “High resolution Raman imaging of single wall carbon nanotubes using electrochemically etched gold tips and a radially polarized annular beam,” J. Vac. Sci. Technol., A 28(3), 472–475 (2010).
[Crossref]

Ru, E. C. L.

E. C. L. Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Ruffenach, S.

C. Pinquier, F. Demangeot, J. Frandon, J. W. Pomeroy, M. Kuball, H. Hubel, N. W. A. van Uden, D. J. Dunstan, O. Briot, B. Maleyre, S. Ruffenach, and B. Gil, “Raman scattering in hexagonal InN under high pressure,” Phys. Rev. B 70(11), 113202 (2004).
[Crossref]

Saito, Y.

Y. Saito and P. Verma, “Polarization-controlled Raman microscopy and nanoscopy,” J. Phys. Chem. Lett. 3(10), 1295–1300 (2012).
[Crossref]

Y. Saito, M. Kobayashi, D. Hiraga, K. Fujita, S. Kawano, N. I. Smith, Y. Inouye, and S. Kawata, “z-polarization sensitive detection in micro-Raman spectroscopy by radially polarized incident light,” J. Raman Spectrosc. 39(11), 1643–1648 (2008).
[Crossref]

Sarau, G.

M. Heilmann, A. M. Munshi, G. Sarau, M. Göbelt, C. Tessarek, V. T. Fauske, A. T. J. van Helvoort, J. Yang, M. Latzel, B. Hoffmann, G. Conibeer, H. Weman, and S. Christiansen, “Vertically oriented growth of GaN nanorods on si using graphene as an atomically thin buffer layer,” Nano Lett. 16(6), 3524–3532 (2016).
[Crossref]

G. Sarau, M. Heilmann, M. Latzel, and S. Christiansen, “Disentangling the effects of nanoscale structural variations on the light emission wavelength of single nano-emitters: InGaN/GaN multiquantum well nano-LEDs for a case study,” Nanoscale 6(20), 11953–11962 (2014).
[Crossref]

Savage, C. M.

R. W. Terhune, P. D. Maker, and C. M. Savage, “Measurements of nonlinear light scattering,” Phys. Rev. Lett. 14(17), 681–684 (1965).
[Crossref]

Schmitz, M.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6(1), 8429 (2015).
[Crossref]

Shafer, K. E.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref]

Shi, X.

H. Budde, N. Coca-Lopez, X. Shi, R. Ciesielski, A. Lombardo, D. Yoon, A. C. Ferrari, and A. Hartschuh, “Raman radiation patterns of graphene,” ACS Nano 10(2), 1756–1763 (2016).
[Crossref]

Silveira, L.

C. A. F. de Oliveira Penido, M. T. T. Pacheco, I. K. Lednev, and L. Silveira, “Raman spectroscopy in forensic analysis: identification of cocaine and other illegal drugs of abuse,” J. Raman Spectrosc. 47(1), 28–38 (2016).
[Crossref]

Simonen, J.

G. Bautista, M. J. Huttunen, J. M. Kontio, J. Simonen, and M. Kauranen, “Third-and second-harmonic generation microscopy of individual metal nanocones using cylindrical vector beams,” Opt. Express 21(19), 21918–21923 (2013).
[Crossref]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref]

Smith, E.

E. Smith and G. Dent, Modern Raman Spectroscopy: A Practical Approach (Wiley, 2005).

Smith, N. I.

Y. Saito, M. Kobayashi, D. Hiraga, K. Fujita, S. Kawano, N. I. Smith, Y. Inouye, and S. Kawata, “z-polarization sensitive detection in micro-Raman spectroscopy by radially polarized incident light,” J. Raman Spectrosc. 39(11), 1643–1648 (2008).
[Crossref]

Sondermann, M.

A. Golla, B. Chalopin, M. Bader, I. Harder, K. Mantel, R. Maiwald, N. Lindlein, M. Sondermann, and G. Leuchs, “Generation of a wave packet tailored to efficient free space excitation of a single atom,” Eur. Phys. J. D 66(7), 190 (2012).
[Crossref]

Sonntag, M. D.

M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. V. Duyne, “Recent advances in tip-enhanced Raman spectroscopy,” J. Phys. Chem. Lett. 5(18), 3125–3130 (2014).
[Crossref]

Spiecker, E.

C. Tessarek, S. Figge, A. Gust, M. Heilmann, C. Dieker, E. Spiecker, and S. Christiansen, “Optical properties of vertical, tilted and in-plane GaN nanowires on different crystallographic orientations of sapphire,” J. Phys. D: Appl. Phys. 47(39), 394008 (2014).
[Crossref]

C. Tessarek, M. Bashouti, M. Heilmann, C. Dieker, I. Knoke, E. Spiecker, and S. Christiansen, “Controlling morphology and optical properties of self-catalyzed, mask-free GaN rods and nanorods by metal-organic vapor phase epitaxy,” J. Appl. Phys. 114(14), 144304 (2013).
[Crossref]

Stampfer, C.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6(1), 8429 (2015).
[Crossref]

Sueoka, H.

G. Pezzotti, H. Sueoka, A. A. Porporati, M. Manghnani, and W. Zhu, “Raman tensor elements for wurtzitic GaN and their application to assess crystallographic orientation at film/substrate interfaces,” J. Appl. Phys. 110(1), 013527 (2011).
[Crossref]

Taniguchi, T.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6(1), 8429 (2015).
[Crossref]

Tell, B.

T. C. Damen, S. P. S. Porto, and B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142(2), 570–574 (1966).
[Crossref]

Terhune, R. W.

R. W. Terhune, P. D. Maker, and C. M. Savage, “Measurements of nonlinear light scattering,” Phys. Rev. Lett. 14(17), 681–684 (1965).
[Crossref]

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137(3A), A801–A818 (1965).
[Crossref]

Tessarek, C.

M. Heilmann, A. M. Munshi, G. Sarau, M. Göbelt, C. Tessarek, V. T. Fauske, A. T. J. van Helvoort, J. Yang, M. Latzel, B. Hoffmann, G. Conibeer, H. Weman, and S. Christiansen, “Vertically oriented growth of GaN nanorods on si using graphene as an atomically thin buffer layer,” Nano Lett. 16(6), 3524–3532 (2016).
[Crossref]

C. Tessarek, S. Figge, A. Gust, M. Heilmann, C. Dieker, E. Spiecker, and S. Christiansen, “Optical properties of vertical, tilted and in-plane GaN nanowires on different crystallographic orientations of sapphire,” J. Phys. D: Appl. Phys. 47(39), 394008 (2014).
[Crossref]

C. Tessarek, M. Bashouti, M. Heilmann, C. Dieker, I. Knoke, E. Spiecker, and S. Christiansen, “Controlling morphology and optical properties of self-catalyzed, mask-free GaN rods and nanorods by metal-organic vapor phase epitaxy,” J. Appl. Phys. 114(14), 144304 (2013).
[Crossref]

C. Tessarek and S. Christiansen, “Self-catalyzed, vertically aligned GaN rod-structures by metal-organic vapor phase epitaxy,” Phys. Status Solidi C 9(3-4), 596–600 (2012).
[Crossref]

Tidwell, S. C.

S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Transporting and focusing radially polarized laser beams,” Opt. Eng. 31(7), 1527–1532 (1992).
[Crossref]

Tolles, W. M.

Turrell, G.

G. Turrell, “Analysis of polarization measurements in Raman microspectroscopy,” J. Raman Spectrosc. 15(2), 103–108 (1984).
[Crossref]

G. Turrell, “Raman sampling,” in Practical Raman Spectroscopy, (Springer Nature, 1989), pp. 13–54.

G. Turrell, M. Delhaye, and P. Dhamelincourt, “Characteristics of Raman microscopy,” in Raman Microscopy, (Elsevier BV, 1996), pp. 27–49.

van Helvoort, A. T. J.

M. Heilmann, A. M. Munshi, G. Sarau, M. Göbelt, C. Tessarek, V. T. Fauske, A. T. J. van Helvoort, J. Yang, M. Latzel, B. Hoffmann, G. Conibeer, H. Weman, and S. Christiansen, “Vertically oriented growth of GaN nanorods on si using graphene as an atomically thin buffer layer,” Nano Lett. 16(6), 3524–3532 (2016).
[Crossref]

van Uden, N. W. A.

C. Pinquier, F. Demangeot, J. Frandon, J. W. Pomeroy, M. Kuball, H. Hubel, N. W. A. van Uden, D. J. Dunstan, O. Briot, B. Maleyre, S. Ruffenach, and B. Gil, “Raman scattering in hexagonal InN under high pressure,” Phys. Rev. B 70(11), 113202 (2004).
[Crossref]

Venezuela, P.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6(1), 8429 (2015).
[Crossref]

Verma, P.

Y. Saito and P. Verma, “Polarization-controlled Raman microscopy and nanoscopy,” J. Phys. Chem. Lett. 3(10), 1295–1300 (2012).
[Crossref]

Volpe, G.

G. Volpe, S. Cherukulappurath, R. Juanola Parramon, G. Molina-Terriza, and R. Quidant, “Controlling the optical near field of nanoantennas with spatial phase-shaped beams,” Nano Lett. 9(10), 3608–3611 (2009).
[Crossref]

Wang, A.

A. Wang, “Development of the Mars microbeam Raman spectrometer (MMRS),” J. Geophys. Res. 108(E1), 5005 (2003).
[Crossref]

Wang, T.

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in sted microscopy,” J. Opt. 12(11), 115707 (2010).
[Crossref]

Watanabe, K.

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6(1), 8429 (2015).
[Crossref]

Waters, D. N.

D. N. Waters, “Raman spectroscopy of powders: Effects of light absorption and scattering,” Spectrochim. Acta, Part A: Mol. Spectrosc. 50(11), 1833–1840 (1994).
[Crossref]

Weman, H.

M. Heilmann, A. M. Munshi, G. Sarau, M. Göbelt, C. Tessarek, V. T. Fauske, A. T. J. van Helvoort, J. Yang, M. Latzel, B. Hoffmann, G. Conibeer, H. Weman, and S. Christiansen, “Vertically oriented growth of GaN nanorods on si using graphene as an atomically thin buffer layer,” Nano Lett. 16(6), 3524–3532 (2016).
[Crossref]

Williams, C.

D. Roy and C. Williams, “High resolution Raman imaging of single wall carbon nanotubes using electrochemically etched gold tips and a radially polarized annular beam,” J. Vac. Sci. Technol., A 28(3), 472–475 (2010).
[Crossref]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).

Wondratschek, H.

E. Kroumova, M. Aroyo, J. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, and H. Wondratschek, “Bilbao crystallographic server : Useful databases and tools for phase-transition studies,” Phase Transitions 76(1-2), 155–170 (2003).
[Crossref]

Wozniak, P.

S. Nechayev, J. S. Eismann, M. Neugebauer, P. Wozniak, A. Bag, G. Leuchs, and P. Banzer, “Huygens’ dipole for polarization-controlled nanoscale light routing,” Phys. Rev. A 99(4), 041801 (2019).
[Crossref]

A. Bag, M. Neugebauer, P. Woźniak, G. Leuchs, and P. Banzer, “Transverse kerker scattering for angstrom localization of nanoparticles,” Phys. Rev. Lett. 121(19), 193902 (2018).
[Crossref]

M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nat. Commun. 7(1), 11286 (2016).
[Crossref]

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

Yang, J.

M. Heilmann, A. M. Munshi, G. Sarau, M. Göbelt, C. Tessarek, V. T. Fauske, A. T. J. van Helvoort, J. Yang, M. Latzel, B. Hoffmann, G. Conibeer, H. Weman, and S. Christiansen, “Vertically oriented growth of GaN nanorods on si using graphene as an atomically thin buffer layer,” Nano Lett. 16(6), 3524–3532 (2016).
[Crossref]

Yoon, D.

H. Budde, N. Coca-Lopez, X. Shi, R. Ciesielski, A. Lombardo, D. Yoon, A. C. Ferrari, and A. Hartschuh, “Raman radiation patterns of graphene,” ACS Nano 10(2), 1756–1763 (2016).
[Crossref]

Youngworth, K. S.

Zhang, J.

T. Livneh, J. Zhang, G. Cheng, and M. Moskovits, “Polarized Raman scattering from single GaN nanowires,” Phys. Rev. B 74(3), 035320 (2006).
[Crossref]

Zheng, W.

Zhu, W.

G. Pezzotti, H. Sueoka, A. A. Porporati, M. Manghnani, and W. Zhu, “Raman tensor elements for wurtzitic GaN and their application to assess crystallographic orientation at film/substrate interfaces,” J. Appl. Phys. 110(1), 013527 (2011).
[Crossref]

Züchner, T.

T. Züchner, A. Failla, A. Hartschuh, and A. Meixner, “A novel approach to detect and characterize the scattering patterns of single au nanoparticles using confocal microscopy,” J. Microsc. 229(2), 337–343 (2008).
[Crossref]

ACS Nano (1)

H. Budde, N. Coca-Lopez, X. Shi, R. Ciesielski, A. Lombardo, D. Yoon, A. C. Ferrari, and A. Hartschuh, “Raman radiation patterns of graphene,” ACS Nano 10(2), 1756–1763 (2016).
[Crossref]

Adv. Phys. (1)

R. Loudon, “The Raman effect in crystals,” Adv. Phys. 13(52), 423–482 (1964).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89(4), 517–520 (2007).
[Crossref]

Appl. Phys. Lett. (2)

R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti-stokes raman spectroscopy,” Appl. Phys. Lett. 25(7), 387–390 (1974).
[Crossref]

T. Bauer, S. Orlov, G. Leuchs, and P. Banzer, “Towards an optical far-field measurement of higher-order multipole contributions to the scattering response of nanoparticles,” Appl. Phys. Lett. 106(9), 091108 (2015).
[Crossref]

Appl. Spectrosc. (1)

Chem. Phys. Lett. (1)

J. Koningstein, “Dephasing and resonance electronic Raman scattering,” Chem. Phys. Lett. 146(6), 576–581 (1988).
[Crossref]

Eur. Phys. J. D (1)

A. Golla, B. Chalopin, M. Bader, I. Harder, K. Mantel, R. Maiwald, N. Lindlein, M. Sondermann, and G. Leuchs, “Generation of a wave packet tailored to efficient free space excitation of a single atom,” Eur. Phys. J. D 66(7), 190 (2012).
[Crossref]

J. Appl. Phys. (3)

G. Irmer, “C. Röder,” C. Himcinschi and J. Kortus, “Raman tensor elements and faust-henry coefficients of wurtzite-type alpha-GaN: How to overcome the dilemma of the sign of faust-henry coefficients in alpha-GaN,” J. Appl. Phys. 116(24), 245702 (2014).
[Crossref]

G. Pezzotti, H. Sueoka, A. A. Porporati, M. Manghnani, and W. Zhu, “Raman tensor elements for wurtzitic GaN and their application to assess crystallographic orientation at film/substrate interfaces,” J. Appl. Phys. 110(1), 013527 (2011).
[Crossref]

C. Tessarek, M. Bashouti, M. Heilmann, C. Dieker, I. Knoke, E. Spiecker, and S. Christiansen, “Controlling morphology and optical properties of self-catalyzed, mask-free GaN rods and nanorods by metal-organic vapor phase epitaxy,” J. Appl. Phys. 114(14), 144304 (2013).
[Crossref]

J. Chem. Phys. (1)

V. Liégeois, O. Quinet, and B. Champagne, “Vibrational Raman optical activity as a mean for revealing the helicity of oligosilanes,” J. Chem. Phys. 122(21), 214304 (2005).
[Crossref]

J. Geophys. Res. (1)

A. Wang, “Development of the Mars microbeam Raman spectrometer (MMRS),” J. Geophys. Res. 108(E1), 5005 (2003).
[Crossref]

J. Microsc. (1)

T. Züchner, A. Failla, A. Hartschuh, and A. Meixner, “A novel approach to detect and characterize the scattering patterns of single au nanoparticles using confocal microscopy,” J. Microsc. 229(2), 337–343 (2008).
[Crossref]

J. Opt. (1)

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in sted microscopy,” J. Opt. 12(11), 115707 (2010).
[Crossref]

J. Phys. Chem. C (1)

E. C. L. Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

J. Phys. Chem. Lett. (2)

M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. V. Duyne, “Recent advances in tip-enhanced Raman spectroscopy,” J. Phys. Chem. Lett. 5(18), 3125–3130 (2014).
[Crossref]

Y. Saito and P. Verma, “Polarization-controlled Raman microscopy and nanoscopy,” J. Phys. Chem. Lett. 3(10), 1295–1300 (2012).
[Crossref]

J. Phys. D: Appl. Phys. (1)

C. Tessarek, S. Figge, A. Gust, M. Heilmann, C. Dieker, E. Spiecker, and S. Christiansen, “Optical properties of vertical, tilted and in-plane GaN nanowires on different crystallographic orientations of sapphire,” J. Phys. D: Appl. Phys. 47(39), 394008 (2014).
[Crossref]

J. Phys.: Conf. Ser. (1)

D. S. Moore and S. D. McGrane, “Raman temperature measurement,” J. Phys.: Conf. Ser. 500(19), 192011 (2014).
[Crossref]

J. Raman Spectrosc. (4)

C. A. F. de Oliveira Penido, M. T. T. Pacheco, I. K. Lednev, and L. Silveira, “Raman spectroscopy in forensic analysis: identification of cocaine and other illegal drugs of abuse,” J. Raman Spectrosc. 47(1), 28–38 (2016).
[Crossref]

J. M. Grzybowski, R. K. Khanna, and E. R. Lippincott, “Evidence of ion-pairing in the polarized raman spectra of a ba2+cro doped ki single crystal,” J. Raman Spectrosc. 4(1), 25–30 (1975).
[Crossref]

Y. Saito, M. Kobayashi, D. Hiraga, K. Fujita, S. Kawano, N. I. Smith, Y. Inouye, and S. Kawata, “z-polarization sensitive detection in micro-Raman spectroscopy by radially polarized incident light,” J. Raman Spectrosc. 39(11), 1643–1648 (2008).
[Crossref]

G. Turrell, “Analysis of polarization measurements in Raman microspectroscopy,” J. Raman Spectrosc. 15(2), 103–108 (1984).
[Crossref]

J. Vac. Sci. Technol., A (1)

D. Roy and C. Williams, “High resolution Raman imaging of single wall carbon nanotubes using electrochemically etched gold tips and a radially polarized annular beam,” J. Vac. Sci. Technol., A 28(3), 472–475 (2010).
[Crossref]

Laser Photonics Rev. (1)

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

Nano Lett. (4)

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
[Crossref]

M. Heilmann, A. M. Munshi, G. Sarau, M. Göbelt, C. Tessarek, V. T. Fauske, A. T. J. van Helvoort, J. Yang, M. Latzel, B. Hoffmann, G. Conibeer, H. Weman, and S. Christiansen, “Vertically oriented growth of GaN nanorods on si using graphene as an atomically thin buffer layer,” Nano Lett. 16(6), 3524–3532 (2016).
[Crossref]

G. Volpe, S. Cherukulappurath, R. Juanola Parramon, G. Molina-Terriza, and R. Quidant, “Controlling the optical near field of nanoantennas with spatial phase-shaped beams,” Nano Lett. 9(10), 3608–3611 (2009).
[Crossref]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref]

Nanoscale (1)

G. Sarau, M. Heilmann, M. Latzel, and S. Christiansen, “Disentangling the effects of nanoscale structural variations on the light emission wavelength of single nano-emitters: InGaN/GaN multiquantum well nano-LEDs for a case study,” Nanoscale 6(20), 11953–11962 (2014).
[Crossref]

Nat. Commun. (3)

B. Fluegel, A. V. Mialitsin, D. A. Beaton, J. L. Reno, and A. Mascarenhas, “Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors,” Nat. Commun. 6(1), 7136 (2015).
[Crossref]

C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer, “Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6(1), 8429 (2015).
[Crossref]

M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, and P. Banzer, “Polarization-controlled directional scattering for nanoscopic position sensing,” Nat. Commun. 7(1), 11286 (2016).
[Crossref]

Nat. Photonics (1)

T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, “Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams,” Nat. Photonics 8(1), 23–27 (2014).
[Crossref]

Opt. Commun. (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[Crossref]

Opt. Eng. (1)

S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Transporting and focusing radially polarized laser beams,” Opt. Eng. 31(7), 1527–1532 (1992).
[Crossref]

Opt. Express (3)

Opt. Laser Eng. (1)

Y. Kang, Y. Qiu, Z. Lei, and M. Hu, “An application of Raman spectroscopy on the measurement of residual stress in porous silicon,” Opt. Laser Eng. 43(8), 847–855 (2005).
[Crossref]

Opt. Lett. (1)

Optica (1)

Phase Transitions (1)

E. Kroumova, M. Aroyo, J. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, and H. Wondratschek, “Bilbao crystallographic server : Useful databases and tools for phase-transition studies,” Phase Transitions 76(1-2), 155–170 (2003).
[Crossref]

Phys. Med. Biol. (1)

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref]

Phys. Rev. (2)

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137(3A), A801–A818 (1965).
[Crossref]

T. C. Damen, S. P. S. Porto, and B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142(2), 570–574 (1966).
[Crossref]

Phys. Rev. A (1)

S. Nechayev, J. S. Eismann, M. Neugebauer, P. Wozniak, A. Bag, G. Leuchs, and P. Banzer, “Huygens’ dipole for polarization-controlled nanoscale light routing,” Phys. Rev. A 99(4), 041801 (2019).
[Crossref]

Phys. Rev. B (2)

T. Livneh, J. Zhang, G. Cheng, and M. Moskovits, “Polarized Raman scattering from single GaN nanowires,” Phys. Rev. B 74(3), 035320 (2006).
[Crossref]

C. Pinquier, F. Demangeot, J. Frandon, J. W. Pomeroy, M. Kuball, H. Hubel, N. W. A. van Uden, D. J. Dunstan, O. Briot, B. Maleyre, S. Ruffenach, and B. Gil, “Raman scattering in hexagonal InN under high pressure,” Phys. Rev. B 70(11), 113202 (2004).
[Crossref]

Phys. Rev. Lett. (5)

R. W. Terhune, P. D. Maker, and C. M. Savage, “Measurements of nonlinear light scattering,” Phys. Rev. Lett. 14(17), 681–684 (1965).
[Crossref]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref]

K. A. Forbes, “Raman optical activity using twisted photons,” Phys. Rev. Lett. 122(10), 103201 (2019).
[Crossref]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

A. Bag, M. Neugebauer, P. Woźniak, G. Leuchs, and P. Banzer, “Transverse kerker scattering for angstrom localization of nanoparticles,” Phys. Rev. Lett. 121(19), 193902 (2018).
[Crossref]

Phys. Status Solidi C (1)

C. Tessarek and S. Christiansen, “Self-catalyzed, vertically aligned GaN rod-structures by metal-organic vapor phase epitaxy,” Phys. Status Solidi C 9(3-4), 596–600 (2012).
[Crossref]

Proc. R. Soc. A (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).

Spectrochim. Acta, Part A: Mol. Spectrosc. (1)

D. N. Waters, “Raman spectroscopy of powders: Effects of light absorption and scattering,” Spectrochim. Acta, Part A: Mol. Spectrosc. 50(11), 1833–1840 (1994).
[Crossref]

Other (6)

E. Smith and G. Dent, Modern Raman Spectroscopy: A Practical Approach (Wiley, 2005).

L. Novotny and B. Hecht, Principles of Nano-Optics, Principles of Nano-optics (Cambridge University Press, 2006).

G. Turrell, “Raman sampling,” in Practical Raman Spectroscopy, (Springer Nature, 1989), pp. 13–54.

P. H. C. Eilers and H. F. M. Boelens, “Baseline correction with asymmetric least squares smoothing,” Published online (2005).

G. Turrell, M. Delhaye, and P. Dhamelincourt, “Characteristics of Raman microscopy,” in Raman Microscopy, (Elsevier BV, 1996), pp. 27–49.

H. Morkoc, Handbook of Nitride Semiconductors and Devices, Materials Properties, Physics and Growth, Handbook of Nitride Semiconductors and Devices (Wiley, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Artist’s impression of polarization-based excitation tailoring for extended Raman spectroscopy. Tight focusing of radially polarized light results in three-dimensional focal field distributions a Raman-active nanostructure (blue cylinder) is exposed to. For different positions in the focus with respect to the optical axis, purely longitudinal, transverse or arbitrarily oriented electric field components excite the nanostructure. Different Raman spectra can be measured (green, red).
Fig. 2.
Fig. 2. Top: Simplified sketch of the experimental setup utilized for our proof-of-principle experiment introducing polarization-based excitation tailoring for extended Raman spectroscopy. Beam generation, focusing, sample and detection stages are shown. Bottom: Scanning electron micrographs of one of the investigated GaN nano-pillars (colored in yellow for better visibility). Left: View along the crystal c-axis. Right: perspective view (45$^{\circ }$) indicating the height of the investigated structure. Optical measurements are performed for a non-tilted setting as mentioned in the text.
Fig. 3.
Fig. 3. Focal-plane field distribution of a tightly focused radially polarized beam of wavelength $\lambda =532\,$nm, calculated using vectorial diffraction theory [51]. a) Lateral field components $\left |{\textbf{E}_\perp}\right |^{2}=\left |E_\textrm{x}\right |^{2}+\left |E_{\textrm{y}}\right |^{2}$ with the hexagon-like white contour representing the cross-section of the investigated GaN pillar (drawn to scale). b) Longitudinal field component. c) Collimated radially polarized input beam before entering the MO. d) Top-view (SEM-image) of the investigated GaN pillar with a partial reflection scan as overlay. In the experiment, the sample is scanned across the fixed beam using a piezostage. e) Full reflection scan corresponding to the region shown in d). f) Reflection scan with larger field of view.
Fig. 4.
Fig. 4. a) Raman spectra recorded using the radially polarized excitation scheme with displacements of $\Delta x = 0\;\textrm{nm}$ (top) and $\Delta x = 300\;\textrm{nm}$ (bottom) with respect to the optical axis. Black crosses: experimental data points; red line: baseline corrected fitted data achieved using an asymmetric least-square algorithm (see Ref. [62]); colored areas: fitted Gaussian functions for retrieval of the Raman peak positions. b) Raman spectra recorded for displacements in 50 nm steps along the $x$-axis. The projection plane to the left shows the position dependent amplitudes of the Gaussian functions fitted to the individual Raman peaks shown in the same colors as indicated in a).
Fig. 5.
Fig. 5. a) Ratio of the Raman peak intensities of $\textrm{E}_{2}^{\textrm{h}}$/A1(TO) shown for displacements in $x$- and $y$-direction. b) Same ratio as plotted in a) but now for a 2D scan. The orange and blue lines corresponging to the line-scans in a). c) Normalized reflection scan (corresponds to Fig. 3(e)).
Fig. 6.
Fig. 6. Near-fields extracted from 3D-FDTD simulations. Left: Cross-sectional view of the simulation layout with the excitation beam impinging from top and the nano-pillar (red) placed on substrate (light blue). Right: Total as well as transverse and longitudinal electric energy densities in the defined cross-section. a) Simulation with the pillar placed centrally on the optical axis. b) Simulation with the pillar displaced by 300 nm away from the optical axis.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I sca | e inc α e sca | 2 ,
α E 1 ( TO ) = ( 0 0 c 0 0 c c c 0 ) , α A 1 ( TO ) = ( a 0 0 0 a 0 0 0 b ) , α E 2 h = ( d d 0 d d 0 0 0 0 ) ,
I E 1 ( TO ) = c 2 B I + 2 c 2 A I z ,
I A 1 ( TO ) = a 2 A I + b 2 B I z ,
I E 2 h = 2 d 2 A I ,
I = I x + I y and I { x , y , z } = V d V | E pillar , { x , y , z } | 2
A = π 2 0 θ max d θ ( cos 2 θ + 1 ) sin θ = π 2 3 ( cos 3 θ max 3 cos θ max + 4 ) ,
B = 2 π 2 0 θ max d θ sin 3 θ = 2 π 2 3 ( cos 3 θ max 3 cos θ max + 2 ) .
I E 2 h I A 1 ( TO ) = 2 d 2 a 2 + b 2 B A I z I .