Abstract

We demonstrate a method for measuring on-chip waveguide losses using a single microring resonator with a tunable coupler. By tuning the power coupling to the microring and measuring the microring’s through-port transmission at each power coupling, one can separate the waveguide propagation loss and the effects of the coupling to the microring. This method is tolerant of fiber-chip coupling/alignment errors and does not require the use of expensive instruments for phase response measurements. In addition, this method offers a compact solution for measuring waveguide propagation losses, only using a single microring (230 µm×190 µm, including the metal pads). We demonstrate this method by measuring the propagation losses of silicon-on-insulator rib waveguides, yielding propagation losses of 3.1-1.3 dB/cm for core widths varying from 400-600 nm.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Study of coupling loss on strongly-coupled, ultra compact microring resonators

Chih-Wei Tseng, Chih-Wei Tsai, Kaung-Cheng Lin, Ming-Chang Lee, and Yung-Jui Chen
Opt. Express 21(6) 7250-7257 (2013)

Low-loss polysilicon subwavelength grating waveguides and narrowband Bragg reflectors in bulk CMOS

Yung-Jr Hung, Cheng-Tse Tang, Tse-Hung Chen, Tzu-Hsiang Yen, Ming-Ju Tsai, and San-Liang Lee
Opt. Express 28(6) 7786-7798 (2020)

Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber

Ni Yao, Junxia Zhou, Renhong Gao, Jintian Lin, Min Wang, Ya Cheng, Wei Fang, and Limin Tong
Opt. Express 28(8) 12416-12423 (2020)

References

  • View by:
  • |
  • |
  • |

  1. H. Jayatilleka, H. Shoman, L. Chrostowski, and S. Shekhar, “Photoconductive heaters enable control of large-scale silicon photonic ring resonator circuits,” Optica 6(1), 84–91 (2019).
    [Crossref]
  2. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
    [Crossref]
  3. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29(24), 2861–2863 (2004).
    [Crossref]
  4. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
    [Crossref]
  5. M. Chin and S.-T. Ho, “Design and modeling of waveguide-coupled single-mode microring resonators,” J. Lightwave Technol. 16(8), 1433–1446 (1998).
    [Crossref]
  6. A. H. Ahmed, A. Sharkia, B. Casper, S. Mirabbasi, and S. Shekhar, “Silicon-photonics microring links for datacenters - challenges and opportunities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 194–203 (2016).
    [Crossref]
  7. H. Jayatilleka, H. Shoman, R. Boeck, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Automatic configuration and wavelength locking of coupled silicon ring resonators,” J. Lightwave Technol. 36(2), 210–218 (2018).
    [Crossref]
  8. A. H. Park, H. Shoman, M. Ma, S. Shekhar, and L. Chrostowski, “Ring resonator based polarization diversity WDM receiver,” Opt. Express 27(5), 6147–6157 (2019).
    [Crossref]
  9. H. Shoman, H. Jayatilleka, A. H. Park, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Compact silicon microring modulator with tunable extinction ratio and wide FSR,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.
  10. H. Shoman, H. Jayatilleka, A. H. Park, A. Mistry, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Compact wavelength-and bandwidth-tunable microring modulator,” Opt. Express 27(19), 26661–26675 (2019).
    [Crossref]
  11. H. Gevorgyan, K. Al Qubaisi, M. S. Dahlem, and A. Khilo, “Silicon photonic time-wavelength pulse interleaver for photonic analog-to-digital converters,” Opt. Express 24(12), 13489–13499 (2016).
    [Crossref]
  12. A. N. Tait, H. Jayatilleka, T. F. De Lima, P. Y. Ma, M. A. Nahmias, B. J. Shastri, S. Shekhar, L. Chrostowski, and P. R. Prucnal, “Feedback control for microring weight banks,” Opt. Express 26(20), 26422–26443 (2018).
    [Crossref]
  13. E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic biosensors using label-free detection,” Sensors 18(10), 3519–3560 (2018).
    [Crossref]
  14. L. Dias, E. Luan, H. Shoman, H. Jayatilleka, S. Shekhar, L. Chrostowski, and N. A. F. Jaeger, “Cost-effective, CMOS-compatible, label-free biosensors using doped silicon detectors and a broadband source,” in CLEO: Applications and Technology, (Optical Society of America, 2019), pp. ATu4K–5.
  15. F. Payne and J. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
    [Crossref]
  16. M. Popović, “Theory and design of high-index-contrast microphotonic circuits,” Ph.D. thesis, Massachusetts Institute of Technology (2008).
  17. K. P. Yap, A. Delâge, J. Lapointe, B. Lamontagne, J. H. Schmid, P. Waldron, B. A. Syrett, and S. Janz, “Correlation of scattering loss, sidewall roughness and waveguide width in silicon-on-insulator (SOI) ridge waveguides,” J. Lightwave Technol. 27(18), 3999–4008 (2009).
    [Crossref]
  18. L. Chrostowski and M. Hochberg, Silicon photonics design: from devices to systems (Cambridge University, 2015).
  19. D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48(10), 3187–3215 (1969).
    [Crossref]
  20. J. Lacey and F. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc.-J: Optoelectron. 137(4), 282–288 (1990).
    [Crossref]
  21. F. Ladouceur and L. Poladian, “Surface roughness and backscattering,” Opt. Lett. 21(22), 1833–1835 (1996).
    [Crossref]
  22. F. Grillot, L. Vivien, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol. 24(2), 891–896 (2006).
    [Crossref]
  23. C. Ciminelli, F. Dell’Olio, V. M. Passaro, and M. N. Armenise, “Fully three-dimensional accurate modeling of scattering loss in optical waveguides,” Opt. Quantum Electron. 41(4), 285–298 (2009).
    [Crossref]
  24. C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).
    [Crossref]
  25. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10(11), 2395–2413 (1971).
    [Crossref]
  26. M. Nedeljkovic, J. S. Penades, V. Mittal, G. S. Murugan, A. Z. Khokhar, C. Littlejohns, L. G. Carpenter, C. B. Gawith, J. S. Wilkinson, and G. Z. Mashanovich, “Germanium-on-silicon waveguides operating at mid-infrared wavelengths up to 8.5 µm,” Opt. Express 25(22), 27431–27441 (2017).
    [Crossref]
  27. M. Gehl, N. Boynton, C. Dallo, A. Pomerene, A. Starbuck, D. Hood, D. C. Trotter, A. Lentine, and C. T. DeRose, “Accurate photonic waveguide characterization using an arrayed waveguide structure,” Opt. Express 26(14), 18082–18095 (2018).
    [Crossref]
  28. P. T. Rakich, “Optical studies of photonic crystals and high index-contrast microphotonic circuits,” Ph.D. thesis, Massachusetts Institute of Technology (2006).
  29. L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
    [Crossref]
  30. M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A robust method for characterization of optical waveguides and couplers,” IEEE Photonics Technol. Lett. 28(14), 1517–1520 (2016).
    [Crossref]
  31. R. Walker and R. Goodfellow, “Attenuation measurements on MOCVD-grown GaAs/GaAlAs optical waveguides,” Electron. Lett. 19(15), 590–592 (1983).
    [Crossref]
  32. R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
    [Crossref]
  33. D. Clark and M. Iqbal, “Simple extension to the Fabry–Perot technique for accurate measurement of losses in semiconductor waveguides,” Opt. Lett. 15(22), 1291–1293 (1990).
    [Crossref]
  34. W. Tomlinson and R. J. Deri, “Analysis of a proposed extension to the Fabry–Perot technique for measurements of loss in semiconductor optical waveguides,” Opt. Lett. 16(21), 1659–1661 (1991).
    [Crossref]
  35. W. McKinnon, D.-X. Xu, C. Storey, E. Post, A. Densmore, A. Delâge, P. Waldron, J. Schmid, and S. Janz, “Extracting coupling and loss coefficients from a ring resonator,” Opt. Express 17(21), 18971–18982 (2009).
    [Crossref]
  36. G. Gupta, Y.-H. Kuo, H. Tazawa, W. H. Steier, A. Stapleton, and J. D. O’Brien, “Analysis and demonstration of coupling control in polymer microring resonators using photobleaching,” Appl. Opt. 48(28), 5324–5336 (2009).
    [Crossref]
  37. J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
    [Crossref]
  38. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  39. Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
    [Crossref]
  40. E. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48(7), 2103–2132 (1969).
    [Crossref]
  41. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
    [Crossref]
  42. H. Jayatilleka, K. Murray, M. Caverley, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Crosstalk in SOI microring resonator-based filters,” J. Lightwave Technol. 34(12), 2886–2896 (2016).
    [Crossref]
  43. R. G. Hunsperger, “Integrated optics," (Springer, 1995), p. 130.
  44. M. Jacques, A. Samani, E. El-Fiky, D. Patel, Z. Xing, and D. V. Plant, “Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform,” Opt. Express 27(8), 10456–10471 (2019).
    [Crossref]
  45. A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photonics Rev. 10(3), 420–431 (2016).
    [Crossref]
  46. Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and L. Chrostowski, “Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability,” Opt. Express 25(9), 9712–9733 (2017).
    [Crossref]
  47. L. Yu, Q. Liu, S. Pappert, P. Yu, and S. Lau, “Laser spectral linewidth dependence on waveguide loss measurements using the Fabry–Perot method,” Appl. Phys. Lett. 64(5), 536–538 (1994).
    [Crossref]
  48. Z. Ou and L. Mandel, “Derivation of reciprocity relations for a beam splitter from energy balance,” Am. J. Phys. 57(1), 66–67 (1989).
    [Crossref]
  49. H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, 1984).
  50. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
    [Crossref]
  51. C. K. Madsen and J. H. Zhao, Optical filter design and analysis (Wiley, 1999).

2019 (5)

2018 (4)

2017 (2)

2016 (5)

H. Jayatilleka, K. Murray, M. Caverley, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Crosstalk in SOI microring resonator-based filters,” J. Lightwave Technol. 34(12), 2886–2896 (2016).
[Crossref]

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A robust method for characterization of optical waveguides and couplers,” IEEE Photonics Technol. Lett. 28(14), 1517–1520 (2016).
[Crossref]

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photonics Rev. 10(3), 420–431 (2016).
[Crossref]

H. Gevorgyan, K. Al Qubaisi, M. S. Dahlem, and A. Khilo, “Silicon photonic time-wavelength pulse interleaver for photonic analog-to-digital converters,” Opt. Express 24(12), 13489–13499 (2016).
[Crossref]

A. H. Ahmed, A. Sharkia, B. Casper, S. Mirabbasi, and S. Shekhar, “Silicon-photonics microring links for datacenters - challenges and opportunities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 194–203 (2016).
[Crossref]

2012 (2)

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

2011 (1)

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

2009 (4)

2006 (2)

F. Grillot, L. Vivien, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol. 24(2), 891–896 (2006).
[Crossref]

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).
[Crossref]

2004 (3)

2000 (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

1998 (1)

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

1996 (1)

1994 (2)

F. Payne and J. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

L. Yu, Q. Liu, S. Pappert, P. Yu, and S. Lau, “Laser spectral linewidth dependence on waveguide loss measurements using the Fabry–Perot method,” Appl. Phys. Lett. 64(5), 536–538 (1994).
[Crossref]

1991 (1)

1990 (2)

D. Clark and M. Iqbal, “Simple extension to the Fabry–Perot technique for accurate measurement of losses in semiconductor waveguides,” Opt. Lett. 15(22), 1291–1293 (1990).
[Crossref]

J. Lacey and F. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc.-J: Optoelectron. 137(4), 282–288 (1990).
[Crossref]

1989 (1)

Z. Ou and L. Mandel, “Derivation of reciprocity relations for a beam splitter from energy balance,” Am. J. Phys. 57(1), 66–67 (1989).
[Crossref]

1985 (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

1983 (1)

R. Walker and R. Goodfellow, “Attenuation measurements on MOCVD-grown GaAs/GaAlAs optical waveguides,” Electron. Lett. 19(15), 590–592 (1983).
[Crossref]

1971 (1)

1969 (2)

E. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48(7), 2103–2132 (1969).
[Crossref]

D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48(10), 3187–3215 (1969).
[Crossref]

Ahmed, A. H.

A. H. Ahmed, A. Sharkia, B. Casper, S. Mirabbasi, and S. Shekhar, “Silicon-photonics microring links for datacenters - challenges and opportunities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 194–203 (2016).
[Crossref]

Aktary, M.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Al Qubaisi, K.

Armenise, M. N.

C. Ciminelli, F. Dell’Olio, V. M. Passaro, and M. N. Armenise, “Fully three-dimensional accurate modeling of scattering loss in optical waveguides,” Opt. Quantum Electron. 41(4), 285–298 (2009).
[Crossref]

B.-de Villers, S.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bienstman, P.

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photonics Rev. 10(3), 420–431 (2016).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Boeck, R.

Bogaerts, W.

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photonics Rev. 10(3), 420–431 (2016).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bojko, R. J.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Bolivar, P. H.

Bowers, J. E.

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A robust method for characterization of optical waveguides and couplers,” IEEE Photonics Technol. Lett. 28(14), 1517–1520 (2016).
[Crossref]

Boyd, R. W.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[Crossref]

Boynton, N.

Cai, H.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Carpenter, L. G.

Casper, B.

A. H. Ahmed, A. Sharkia, B. Casper, S. Mirabbasi, and S. Shekhar, “Silicon-photonics microring links for datacenters - challenges and opportunities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 194–203 (2016).
[Crossref]

Cassan, E.

Cauchon, J.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Caverley, M.

Cheung, K. C.

E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic biosensors using label-free detection,” Sensors 18(10), 3519–3560 (2018).
[Crossref]

Chin, M.

Chrostowski, L.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

A. H. Park, H. Shoman, M. Ma, S. Shekhar, and L. Chrostowski, “Ring resonator based polarization diversity WDM receiver,” Opt. Express 27(5), 6147–6157 (2019).
[Crossref]

H. Shoman, H. Jayatilleka, A. H. Park, A. Mistry, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Compact wavelength-and bandwidth-tunable microring modulator,” Opt. Express 27(19), 26661–26675 (2019).
[Crossref]

H. Jayatilleka, H. Shoman, L. Chrostowski, and S. Shekhar, “Photoconductive heaters enable control of large-scale silicon photonic ring resonator circuits,” Optica 6(1), 84–91 (2019).
[Crossref]

A. N. Tait, H. Jayatilleka, T. F. De Lima, P. Y. Ma, M. A. Nahmias, B. J. Shastri, S. Shekhar, L. Chrostowski, and P. R. Prucnal, “Feedback control for microring weight banks,” Opt. Express 26(20), 26422–26443 (2018).
[Crossref]

H. Jayatilleka, H. Shoman, R. Boeck, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Automatic configuration and wavelength locking of coupled silicon ring resonators,” J. Lightwave Technol. 36(2), 210–218 (2018).
[Crossref]

E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic biosensors using label-free detection,” Sensors 18(10), 3519–3560 (2018).
[Crossref]

Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and L. Chrostowski, “Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability,” Opt. Express 25(9), 9712–9733 (2017).
[Crossref]

H. Jayatilleka, K. Murray, M. Caverley, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Crosstalk in SOI microring resonator-based filters,” J. Lightwave Technol. 34(12), 2886–2896 (2016).
[Crossref]

L. Chrostowski and M. Hochberg, Silicon photonics design: from devices to systems (Cambridge University, 2015).

H. Shoman, H. Jayatilleka, A. H. Park, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Compact silicon microring modulator with tunable extinction ratio and wide FSR,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

L. Dias, E. Luan, H. Shoman, H. Jayatilleka, S. Shekhar, L. Chrostowski, and N. A. F. Jaeger, “Cost-effective, CMOS-compatible, label-free biosensors using doped silicon detectors and a broadband source,” in CLEO: Applications and Technology, (Optical Society of America, 2019), pp. ATu4K–5.

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Ciminelli, C.

C. Ciminelli, F. Dell’Olio, V. M. Passaro, and M. N. Armenise, “Fully three-dimensional accurate modeling of scattering loss in optical waveguides,” Opt. Quantum Electron. 41(4), 285–298 (2009).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Clark, D.

Dahlem, M. S.

Dallo, C.

Davenport, M. L.

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A robust method for characterization of optical waveguides and couplers,” IEEE Photonics Technol. Lett. 28(14), 1517–1520 (2016).
[Crossref]

De Heyn, P.

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photonics Rev. 10(3), 420–431 (2016).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Lima, T. F.

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Delâge, A.

Dell’Olio, F.

C. Ciminelli, F. Dell’Olio, V. M. Passaro, and M. N. Armenise, “Fully three-dimensional accurate modeling of scattering loss in optical waveguides,” Opt. Quantum Electron. 41(4), 285–298 (2009).
[Crossref]

Densmore, A.

Deri, R. J.

DeRose, C. T.

Dias, L.

L. Dias, E. Luan, H. Shoman, H. Jayatilleka, S. Shekhar, L. Chrostowski, and N. A. F. Jaeger, “Cost-effective, CMOS-compatible, label-free biosensors using doped silicon detectors and a broadband source,” in CLEO: Applications and Technology, (Optical Society of America, 2019), pp. ATu4K–5.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

El-Fiky, E.

Fan, L.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref]

Fang, Q.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Ferreira de Lima, T.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Flueckiger, J.

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Freude, W.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).
[Crossref]

Fujii, M.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).
[Crossref]

Gawith, C. B.

Gehl, M.

Gevorgyan, H.

Goodfellow, R.

R. Walker and R. Goodfellow, “Attenuation measurements on MOCVD-grown GaAs/GaAlAs optical waveguides,” Electron. Lett. 19(15), 590–592 (1983).
[Crossref]

Grillot, F.

Gupta, G.

Hagan, D. E.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Hammood, M.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, 1984).

Heebner, J. E.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[Crossref]

Henschel, W.

Ho, S.-T.

Hochberg, M.

L. Chrostowski and M. Hochberg, Silicon photonics design: from devices to systems (Cambridge University, 2015).

Hood, D.

Horvath, C.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Hulme, J. C.

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A robust method for characterization of optical waveguides and couplers,” IEEE Photonics Technol. Lett. 28(14), 1517–1520 (2016).
[Crossref]

Hunsperger, R. G.

R. G. Hunsperger, “Integrated optics," (Springer, 1995), p. 130.

Iqbal, M.

Jackson, D. J.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[Crossref]

Jacques, M.

Jaeger, N. A. F.

H. Shoman, H. Jayatilleka, A. H. Park, A. Mistry, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Compact wavelength-and bandwidth-tunable microring modulator,” Opt. Express 27(19), 26661–26675 (2019).
[Crossref]

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

H. Jayatilleka, H. Shoman, R. Boeck, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Automatic configuration and wavelength locking of coupled silicon ring resonators,” J. Lightwave Technol. 36(2), 210–218 (2018).
[Crossref]

H. Jayatilleka, K. Murray, M. Caverley, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Crosstalk in SOI microring resonator-based filters,” J. Lightwave Technol. 34(12), 2886–2896 (2016).
[Crossref]

H. Shoman, H. Jayatilleka, A. H. Park, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Compact silicon microring modulator with tunable extinction ratio and wide FSR,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

L. Dias, E. Luan, H. Shoman, H. Jayatilleka, S. Shekhar, L. Chrostowski, and N. A. F. Jaeger, “Cost-effective, CMOS-compatible, label-free biosensors using doped silicon detectors and a broadband source,” in CLEO: Applications and Technology, (Optical Society of America, 2019), pp. ATu4K–5.

Janz, S.

Jayatilleka, H.

H. Jayatilleka, H. Shoman, L. Chrostowski, and S. Shekhar, “Photoconductive heaters enable control of large-scale silicon photonic ring resonator circuits,” Optica 6(1), 84–91 (2019).
[Crossref]

H. Shoman, H. Jayatilleka, A. H. Park, A. Mistry, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Compact wavelength-and bandwidth-tunable microring modulator,” Opt. Express 27(19), 26661–26675 (2019).
[Crossref]

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

H. Jayatilleka, H. Shoman, R. Boeck, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Automatic configuration and wavelength locking of coupled silicon ring resonators,” J. Lightwave Technol. 36(2), 210–218 (2018).
[Crossref]

A. N. Tait, H. Jayatilleka, T. F. De Lima, P. Y. Ma, M. A. Nahmias, B. J. Shastri, S. Shekhar, L. Chrostowski, and P. R. Prucnal, “Feedback control for microring weight banks,” Opt. Express 26(20), 26422–26443 (2018).
[Crossref]

H. Jayatilleka, K. Murray, M. Caverley, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Crosstalk in SOI microring resonator-based filters,” J. Lightwave Technol. 34(12), 2886–2896 (2016).
[Crossref]

H. Shoman, H. Jayatilleka, A. H. Park, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Compact silicon microring modulator with tunable extinction ratio and wide FSR,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

L. Dias, E. Luan, H. Shoman, H. Jayatilleka, S. Shekhar, L. Chrostowski, and N. A. F. Jaeger, “Cost-effective, CMOS-compatible, label-free biosensors using doped silicon detectors and a broadband source,” in CLEO: Applications and Technology, (Optical Society of America, 2019), pp. ATu4K–5.

Jean, P.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Jhoja, J.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and L. Chrostowski, “Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability,” Opt. Express 25(9), 9712–9733 (2017).
[Crossref]

Khavasi, A.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Khilo, A.

Khokhar, A. Z.

Klein, J.

Knights, A. P.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Komljenovic, T.

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A robust method for characterization of optical waveguides and couplers,” IEEE Photonics Technol. Lett. 28(14), 1517–1520 (2016).
[Crossref]

Koos, C.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).
[Crossref]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Kuo, Y.-H.

Kurz, H.

Kwong, D.-L.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Lacey, J.

F. Payne and J. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

J. Lacey and F. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc.-J: Optoelectron. 137(4), 282–288 (1990).
[Crossref]

Ladouceur, F.

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Lamontagne, B.

Lapointe, J.

Lau, S.

L. Yu, Q. Liu, S. Pappert, P. Yu, and S. Lau, “Laser spectral linewidth dependence on waveguide loss measurements using the Fabry–Perot method,” Appl. Phys. Lett. 64(5), 536–538 (1994).
[Crossref]

Laval, S.

Lentine, A.

Leuthold, J.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).
[Crossref]

Li, A.

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photonics Rev. 10(3), 420–431 (2016).
[Crossref]

Lin, S.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Liow, T.-Y.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Littlejohns, C.

Liu, A.

Liu, Q.

L. Yu, Q. Liu, S. Pappert, P. Yu, and S. Lau, “Laser spectral linewidth dependence on waveguide loss measurements using the Fabry–Perot method,” Appl. Phys. Lett. 64(5), 536–538 (1994).
[Crossref]

Lo, G. Q.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Lu, Z.

Luan, E.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic biosensors using label-free detection,” Sensors 18(10), 3519–3560 (2018).
[Crossref]

L. Dias, E. Luan, H. Shoman, H. Jayatilleka, S. Shekhar, L. Chrostowski, and N. A. F. Jaeger, “Cost-effective, CMOS-compatible, label-free biosensors using doped silicon detectors and a broadband source,” in CLEO: Applications and Technology, (Optical Society of America, 2019), pp. ATu4K–5.

Ma, M.

Ma, P. Y.

Madsen, C. K.

C. K. Madsen and J. H. Zhao, Optical filter design and analysis (Wiley, 1999).

Mandel, L.

Z. Ou and L. Mandel, “Derivation of reciprocity relations for a beam splitter from energy balance,” Am. J. Phys. 57(1), 66–67 (1989).
[Crossref]

Marcatili, E.

E. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48(7), 2103–2132 (1969).
[Crossref]

Marcuse, D.

D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48(10), 3187–3215 (1969).
[Crossref]

Mashanovich, G. Z.

McKinnon, W.

McNab, S. J.

Mirabbasi, S.

A. H. Ahmed, A. Sharkia, B. Casper, S. Mirabbasi, and S. Shekhar, “Silicon-photonics microring links for datacenters - challenges and opportunities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 194–203 (2016).
[Crossref]

Mistry, A.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

H. Shoman, H. Jayatilleka, A. H. Park, A. Mistry, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Compact wavelength-and bandwidth-tunable microring modulator,” Opt. Express 27(19), 26661–26675 (2019).
[Crossref]

Mittal, V.

Murray, K.

Murugan, G. S.

Nahmias, M. A.

Nedeljkovic, M.

Niehusmann, J.

Niu, B.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref]

O’Brien, J. D.

Ou, Z.

Z. Ou and L. Mandel, “Derivation of reciprocity relations for a beam splitter from energy balance,” Am. J. Phys. 57(1), 66–67 (1989).
[Crossref]

Pappert, S.

L. Yu, Q. Liu, S. Pappert, P. Yu, and S. Lau, “Laser spectral linewidth dependence on waveguide loss measurements using the Fabry–Perot method,” Appl. Phys. Lett. 64(5), 536–538 (1994).
[Crossref]

Park, A. H.

A. H. Park, H. Shoman, M. Ma, S. Shekhar, and L. Chrostowski, “Ring resonator based polarization diversity WDM receiver,” Opt. Express 27(5), 6147–6157 (2019).
[Crossref]

H. Shoman, H. Jayatilleka, A. H. Park, A. Mistry, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Compact wavelength-and bandwidth-tunable microring modulator,” Opt. Express 27(19), 26661–26675 (2019).
[Crossref]

H. Shoman, H. Jayatilleka, A. H. Park, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Compact silicon microring modulator with tunable extinction ratio and wide FSR,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Passaro, V. M.

C. Ciminelli, F. Dell’Olio, V. M. Passaro, and M. N. Armenise, “Fully three-dimensional accurate modeling of scattering loss in optical waveguides,” Opt. Quantum Electron. 41(4), 285–298 (2009).
[Crossref]

Patel, D.

Patrick, N. S.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Payne, F.

F. Payne and J. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

J. Lacey and F. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc.-J: Optoelectron. 137(4), 282–288 (1990).
[Crossref]

Penades, J. S.

Pfrang, A.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).
[Crossref]

Plant, D. V.

Poladian, L.

Pomerene, A.

Pond, J.

Popovic, M.

M. Popović, “Theory and design of high-index-contrast microphotonic circuits,” Ph.D. thesis, Massachusetts Institute of Technology (2008).

Post, E.

Poulton, C. G.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).
[Crossref]

Prucnal, P. R.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

A. N. Tait, H. Jayatilleka, T. F. De Lima, P. Y. Ma, M. A. Nahmias, B. J. Shastri, S. Shekhar, L. Chrostowski, and P. R. Prucnal, “Feedback control for microring weight banks,” Opt. Express 26(20), 26422–26443 (2018).
[Crossref]

Qi, M.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref]

Rakich, P. T.

P. T. Rakich, “Optical studies of photonic crystals and high index-contrast microphotonic circuits,” Ph.D. thesis, Massachusetts Institute of Technology (2006).

Ratner, D. M.

E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic biosensors using label-free detection,” Sensors 18(10), 3519–3560 (2018).
[Crossref]

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Samani, A.

Schimmel, T.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).
[Crossref]

Schmid, J.

Schmid, J. H.

Schweinsberg, A.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[Crossref]

Setzer, K.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Sharkia, A.

A. H. Ahmed, A. Sharkia, B. Casper, S. Mirabbasi, and S. Shekhar, “Silicon-photonics microring links for datacenters - challenges and opportunities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 194–203 (2016).
[Crossref]

Shastri, B. J.

Shekhar, S.

H. Jayatilleka, H. Shoman, L. Chrostowski, and S. Shekhar, “Photoconductive heaters enable control of large-scale silicon photonic ring resonator circuits,” Optica 6(1), 84–91 (2019).
[Crossref]

H. Shoman, H. Jayatilleka, A. H. Park, A. Mistry, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Compact wavelength-and bandwidth-tunable microring modulator,” Opt. Express 27(19), 26661–26675 (2019).
[Crossref]

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

A. H. Park, H. Shoman, M. Ma, S. Shekhar, and L. Chrostowski, “Ring resonator based polarization diversity WDM receiver,” Opt. Express 27(5), 6147–6157 (2019).
[Crossref]

H. Jayatilleka, H. Shoman, R. Boeck, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Automatic configuration and wavelength locking of coupled silicon ring resonators,” J. Lightwave Technol. 36(2), 210–218 (2018).
[Crossref]

A. N. Tait, H. Jayatilleka, T. F. De Lima, P. Y. Ma, M. A. Nahmias, B. J. Shastri, S. Shekhar, L. Chrostowski, and P. R. Prucnal, “Feedback control for microring weight banks,” Opt. Express 26(20), 26422–26443 (2018).
[Crossref]

H. Jayatilleka, K. Murray, M. Caverley, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Crosstalk in SOI microring resonator-based filters,” J. Lightwave Technol. 34(12), 2886–2896 (2016).
[Crossref]

A. H. Ahmed, A. Sharkia, B. Casper, S. Mirabbasi, and S. Shekhar, “Silicon-photonics microring links for datacenters - challenges and opportunities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 194–203 (2016).
[Crossref]

L. Dias, E. Luan, H. Shoman, H. Jayatilleka, S. Shekhar, L. Chrostowski, and N. A. F. Jaeger, “Cost-effective, CMOS-compatible, label-free biosensors using doped silicon detectors and a broadband source,” in CLEO: Applications and Technology, (Optical Society of America, 2019), pp. ATu4K–5.

H. Shoman, H. Jayatilleka, A. H. Park, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Compact silicon microring modulator with tunable extinction ratio and wide FSR,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Shen, H.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref]

Shi, W.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Shoman, H.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

A. H. Park, H. Shoman, M. Ma, S. Shekhar, and L. Chrostowski, “Ring resonator based polarization diversity WDM receiver,” Opt. Express 27(5), 6147–6157 (2019).
[Crossref]

H. Shoman, H. Jayatilleka, A. H. Park, A. Mistry, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Compact wavelength-and bandwidth-tunable microring modulator,” Opt. Express 27(19), 26661–26675 (2019).
[Crossref]

H. Jayatilleka, H. Shoman, L. Chrostowski, and S. Shekhar, “Photoconductive heaters enable control of large-scale silicon photonic ring resonator circuits,” Optica 6(1), 84–91 (2019).
[Crossref]

H. Jayatilleka, H. Shoman, R. Boeck, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Automatic configuration and wavelength locking of coupled silicon ring resonators,” J. Lightwave Technol. 36(2), 210–218 (2018).
[Crossref]

E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic biosensors using label-free detection,” Sensors 18(10), 3519–3560 (2018).
[Crossref]

L. Dias, E. Luan, H. Shoman, H. Jayatilleka, S. Shekhar, L. Chrostowski, and N. A. F. Jaeger, “Cost-effective, CMOS-compatible, label-free biosensors using doped silicon detectors and a broadband source,” in CLEO: Applications and Technology, (Optical Society of America, 2019), pp. ATu4K–5.

H. Shoman, H. Jayatilleka, A. H. Park, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Compact silicon microring modulator with tunable extinction ratio and wide FSR,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Sohler, W.

R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Song, J. F.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Stapleton, A.

Starbuck, A.

Steier, W. H.

Stevanovic, D.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Storey, C.

Syrett, B. A.

Tait, A. N.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

A. N. Tait, H. Jayatilleka, T. F. De Lima, P. Y. Ma, M. A. Nahmias, B. J. Shastri, S. Shekhar, L. Chrostowski, and P. R. Prucnal, “Feedback control for microring weight banks,” Opt. Express 26(20), 26422–26443 (2018).
[Crossref]

Tazawa, H.

Tien, P. K.

Tomlinson, W.

Tran, M. A.

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A robust method for characterization of optical waveguides and couplers,” IEEE Photonics Technol. Lett. 28(14), 1517–1520 (2016).
[Crossref]

Trotter, D. C.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photonics Rev. 10(3), 420–431 (2016).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Varghese, L. T.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref]

Vivien, L.

Vlasov, Y. A.

Vörckel, A.

Wahlbrink, T.

Waldron, P.

Walker, R.

R. Walker and R. Goodfellow, “Attenuation measurements on MOCVD-grown GaAs/GaAlAs optical waveguides,” Electron. Lett. 19(15), 590–592 (1983).
[Crossref]

Wang, J.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref]

Wang, X.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and L. Chrostowski, “Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability,” Opt. Express 25(9), 9712–9733 (2017).
[Crossref]

Weiner, A. M.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref]

Westwood-Bachman, J. N.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Wilkinson, J. S.

Witt, D.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Wong, V.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[Crossref]

Xing, Z.

Xu, D.-X.

Xuan, Y.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref]

Yap, K. P.

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

Yu, L.

L. Yu, Q. Liu, S. Pappert, P. Yu, and S. Lau, “Laser spectral linewidth dependence on waveguide loss measurements using the Fabry–Perot method,” Appl. Phys. Lett. 64(5), 536–538 (1994).
[Crossref]

Yu, M. B.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Yu, P.

L. Yu, Q. Liu, S. Pappert, P. Yu, and S. Lau, “Laser spectral linewidth dependence on waveguide loss measurements using the Fabry–Perot method,” Appl. Phys. Lett. 64(5), 536–538 (1994).
[Crossref]

Yun, H.

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

Zhao, J. H.

C. K. Madsen and J. H. Zhao, Optical filter design and analysis (Wiley, 1999).

Am. J. Phys. (1)

Z. Ou and L. Mandel, “Derivation of reciprocity relations for a beam splitter from energy balance,” Am. J. Phys. 57(1), 66–67 (1989).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Appl. Phys. Lett. (1)

L. Yu, Q. Liu, S. Pappert, P. Yu, and S. Lau, “Laser spectral linewidth dependence on waveguide loss measurements using the Fabry–Perot method,” Appl. Phys. Lett. 64(5), 536–538 (1994).
[Crossref]

Bell Syst. Tech. J. (2)

E. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48(7), 2103–2132 (1969).
[Crossref]

D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48(10), 3187–3215 (1969).
[Crossref]

Electron. Lett. (2)

R. Walker and R. Goodfellow, “Attenuation measurements on MOCVD-grown GaAs/GaAlAs optical waveguides,” Electron. Lett. 19(15), 590–592 (1983).
[Crossref]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

IEE Proc.-J: Optoelectron. (1)

J. Lacey and F. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc.-J: Optoelectron. 137(4), 282–288 (1990).
[Crossref]

IEEE J. Quantum Electron. (1)

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

L. Chrostowski, H. Shoman, M. Hammood, H. Yun, J. Jhoja, E. Luan, S. Lin, A. Mistry, D. Witt, N. A. F. Jaeger, S. Shekhar, H. Jayatilleka, P. Jean, S. B.-de Villers, J. Cauchon, W. Shi, C. Horvath, J. N. Westwood-Bachman, K. Setzer, M. Aktary, N. S. Patrick, R. J. Bojko, A. Khavasi, X. Wang, T. Ferreira de Lima, A. N. Tait, P. R. Prucnal, D. E. Hagan, D. Stevanovic, and A. P. Knights, “Silicon photonic circuit design using rapid prototyping foundry process design kits,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–26 (2019).
[Crossref]

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1306–1321 (2006).
[Crossref]

A. H. Ahmed, A. Sharkia, B. Casper, S. Mirabbasi, and S. Shekhar, “Silicon-photonics microring links for datacenters - challenges and opportunities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 194–203 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. A. Tran, T. Komljenovic, J. C. Hulme, M. L. Davenport, and J. E. Bowers, “A robust method for characterization of optical waveguides and couplers,” IEEE Photonics Technol. Lett. 28(14), 1517–1520 (2016).
[Crossref]

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

J. Lightwave Technol. (6)

Laser Photonics Rev. (2)

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photonics Rev. 10(3), 420–431 (2016).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Opt. Express (10)

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
[Crossref]

Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and L. Chrostowski, “Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability,” Opt. Express 25(9), 9712–9733 (2017).
[Crossref]

M. Nedeljkovic, J. S. Penades, V. Mittal, G. S. Murugan, A. Z. Khokhar, C. Littlejohns, L. G. Carpenter, C. B. Gawith, J. S. Wilkinson, and G. Z. Mashanovich, “Germanium-on-silicon waveguides operating at mid-infrared wavelengths up to 8.5 µm,” Opt. Express 25(22), 27431–27441 (2017).
[Crossref]

A. H. Park, H. Shoman, M. Ma, S. Shekhar, and L. Chrostowski, “Ring resonator based polarization diversity WDM receiver,” Opt. Express 27(5), 6147–6157 (2019).
[Crossref]

M. Jacques, A. Samani, E. El-Fiky, D. Patel, Z. Xing, and D. V. Plant, “Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform,” Opt. Express 27(8), 10456–10471 (2019).
[Crossref]

H. Shoman, H. Jayatilleka, A. H. Park, A. Mistry, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Compact wavelength-and bandwidth-tunable microring modulator,” Opt. Express 27(19), 26661–26675 (2019).
[Crossref]

M. Gehl, N. Boynton, C. Dallo, A. Pomerene, A. Starbuck, D. Hood, D. C. Trotter, A. Lentine, and C. T. DeRose, “Accurate photonic waveguide characterization using an arrayed waveguide structure,” Opt. Express 26(14), 18082–18095 (2018).
[Crossref]

A. N. Tait, H. Jayatilleka, T. F. De Lima, P. Y. Ma, M. A. Nahmias, B. J. Shastri, S. Shekhar, L. Chrostowski, and P. R. Prucnal, “Feedback control for microring weight banks,” Opt. Express 26(20), 26422–26443 (2018).
[Crossref]

H. Gevorgyan, K. Al Qubaisi, M. S. Dahlem, and A. Khilo, “Silicon photonic time-wavelength pulse interleaver for photonic analog-to-digital converters,” Opt. Express 24(12), 13489–13499 (2016).
[Crossref]

W. McKinnon, D.-X. Xu, C. Storey, E. Post, A. Densmore, A. Delâge, P. Waldron, J. Schmid, and S. Janz, “Extracting coupling and loss coefficients from a ring resonator,” Opt. Express 17(21), 18971–18982 (2009).
[Crossref]

Opt. Lett. (4)

Opt. Quantum Electron. (2)

F. Payne and J. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

C. Ciminelli, F. Dell’Olio, V. M. Passaro, and M. N. Armenise, “Fully three-dimensional accurate modeling of scattering loss in optical waveguides,” Opt. Quantum Electron. 41(4), 285–298 (2009).
[Crossref]

Optica (1)

Science (1)

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref]

Sensors (1)

E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic biosensors using label-free detection,” Sensors 18(10), 3519–3560 (2018).
[Crossref]

Other (8)

L. Dias, E. Luan, H. Shoman, H. Jayatilleka, S. Shekhar, L. Chrostowski, and N. A. F. Jaeger, “Cost-effective, CMOS-compatible, label-free biosensors using doped silicon detectors and a broadband source,” in CLEO: Applications and Technology, (Optical Society of America, 2019), pp. ATu4K–5.

M. Popović, “Theory and design of high-index-contrast microphotonic circuits,” Ph.D. thesis, Massachusetts Institute of Technology (2008).

L. Chrostowski and M. Hochberg, Silicon photonics design: from devices to systems (Cambridge University, 2015).

H. Shoman, H. Jayatilleka, A. H. Park, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Compact silicon microring modulator with tunable extinction ratio and wide FSR,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

P. T. Rakich, “Optical studies of photonic crystals and high index-contrast microphotonic circuits,” Ph.D. thesis, Massachusetts Institute of Technology (2006).

C. K. Madsen and J. H. Zhao, Optical filter design and analysis (Wiley, 1999).

R. G. Hunsperger, “Integrated optics," (Springer, 1995), p. 130.

H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Various devices for measuring on-chip waveguide losses: (a) rectangular spirals to measure the losses using the cut-back method, (b) Archimedean spirals to measure the losses using the cut-back method, (c) several MRRs where each MRR has a different bus-ring coupling gap, (d) our proposed single, two-point coupled microring resonator.
Fig. 2.
Fig. 2. A simple all-pass MRR with a fixed field coupling of $\kappa$.
Fig. 3.
Fig. 3. (a) Schematic of the two-point coupled MRR. The design parameters are shown within the figure. The electric field intensity pattern for the fundamental TE-mode is also shown for the two oppositely rotating arcs forming the longer arm of the tunable coupler. (b) A model of the asymmetric coupling-tunable MRR. (c) Simulation of the MRR radiation loss (in dB/cm) as functions of the bend radius for various Si rib waveguide core width, $W=400$-$600$ nm. The markers are the simulation results and the dotted lines are exponential fittings of the results [40,41]. The figure in the left shows the cross-section of the waveguide geometry and the simulated electric field intensity pattern.
Fig. 4.
Fig. 4. Optical microgragh of the fabricated coupling-tunable MRRs. The waveguide width (mentioned above the respective device) was varied from $W=400$-$600$ nm in steps of 50 nm. The inset shows a zoomed-in view of a single device.
Fig. 5.
Fig. 5. (a) The through-port optical spectra of the coupling-tunable MRR with $W=400$ nm at various heater biases. (b) The measured FWHMs and ERs from the optical spectra in Fig. 5(a).
Fig. 6.
Fig. 6. (a) The extracted $t$ and $\alpha$ from the FWHMs and ERs shown in Fig. 5(b) using Eq. (2). $t$ and $\alpha$ are interchanged when the MRR is under-coupled (indicated with a dotted circle). (b) Top plot: the measured propagation losses ($\alpha _{\textrm {dB}}$) obtained using Eq. (7) as functions of the heater power for each MRR waveguide core width. The legend within the figure indicates the corresponding MRR waveguide core width. Bottom plot: The averaged measured ($\alpha _{\textrm {dB}}$) and actual ($\alpha _{\textrm {dB, actual}}$) propagation loss (indicated with markers) and the $\pm \sigma$ measurement error (indicated with error bars) for each waveguide core width.
Fig. 7.
Fig. 7. Steps required to measure the propagation loss using the coupling-tunable MRR.

Tables (1)

Tables Icon

Table 1. The simulated point couplers’ normalized power coupling coefficient ( κ 2 , for a fixed coupling gap of 200 nm) and the simulated mode mismatch loss, at the junctions of the oppositely oriented arcs, for a 20 µm-radius MRR rib waveguide (see Fig. 3) with core widths of W = 400 - 600 nm. These parameters were simulated using a wavelength of 1550 nm. The last two columns show the measured ( α dB ) and actual ( α dB, actual ) averaged propagation loss. The standard deviation propagation loss measurement error for each waveguide width is also shown.

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

T | b a | 2 = t 2 + α 2 2 α t cos ( ϕ ) 1 + ( α t ) 2 2 α t cos ( ϕ )
( α , t ) = A B ± A B A ,
A = cos ( π / F ) 1 + sin ( π / F ) ,
B = 1 ( 1 cos ( π / F ) 1 + cos ( π / F ) ) 1 E ,
F Δ λ FSR Δ λ FWHM ,
E T max T min .
α = | t r | α c
α c = | t c | 2 + | κ c | 2 .
| t c | 2 + | κ c | 2 = | α 1 | 2 κ 2 + | α 2 | 2 ( 1 κ 2 ) .
| α 1 | = α 1,p α 1,m 2
α 2 = 10 ( 3 π R α dB + 2 α m ) / 10 κ 2 + 10 π R α dB / 5 ( 1 κ 2 ) .
t c κ c + κ c t c = 0 ,
t c κ c + κ c t c = 0.
α n t c κ c + κ c t c ,
b a = t c t r ( t c / t c ) [ α c 2 α n ( κ c / t c ) ] 1 t c t r .
T | b a | 2 = A B + C D 1 + | t c t r | 2 2 | t c t r | cos ( ϕ r + ϕ c ) ,
A = | t r κ c 2 | 2 + | t c | 2 + | t c t c t r | 2 ,
B = 2 | t c 2 t c t r | cos ( ϕ r + ϕ c ) ,
C = 2 | t r t c κ c 2 | cos ( 2 ϕ s + ϕ r ϕ c ) ,
D = 2 | t c t c t r 2 κ c 2 | cos ( 2 ϕ s ϕ c ϕ c ) ,
α c | κ c | 2 + | t c t c | ,
t 1 | t c | / α c ,
t 2 | t c | / α c ,
α N | t r | α c ,
ϕ ϕ r + ϕ c
T = ( α c ) 2 T ,
T = t 1 2 + α N 2 2 α N t 1 cos ( ϕ ) 1 + ( α N t 2 ) 2 2 α N t 2 cos ( ϕ ) .
α n ( κ c / t c ) = ( t c κ c + κ c t c ) ( κ c / t c ) = | κ c | 2 e j ϕ s | t c | e j ϕ c ( | t c | e j ( ϕ s ϕ c ) + | t c | e j ( ϕ c ϕ s ) ) ,
| κ c | 2 = κ 2 ( 1 κ 2 ) [ α 1 2 + α 2 2 + 2 α 1 α 2 cos ( Δ ϕ ) ] ,
lim κ 0 α n ( κ c / t c ) = 0 ,
T = | t c t c | 2 α c 2 T ,
T = t 2 + α 2 2 α t cos ( ϕ ) 1 + ( α t ) 2 2 α t cos ( ϕ ) ,
T = | S 11 + S 12 2 1 / t r S 22 | 2 ,
S 11 = ( 1 κ 2 ) α 1 κ 2 α 2 ,
S 12 = j κ 1 κ 2 ( α 1 + α 2 ) ,
S 22 = κ 2 α 1 + ( 1 κ 2 ) α 2 ,

Metrics