Abstract

Visible light communications (VLC) can utilize light-emitting diodes (LEDs) to provide illumination and a safe and low-cost broadcasting network simultaneously. In the past decade, there has been a growing interest in using organic LEDs (OLEDs) for soft lighting and display applications in public places. Organic electronics can be mechanically flexible, thus the potential of curved OLED panels/displays devices. This paper provides unique characteristics of a flexible OLED-based VLC link in a shopping mall. We show that, for curved OLED the radiation pattern displays a symmetry, which is wider than Lambertian. A number of scenarios of VLC system with flexible OLED are analyzed. Numerical models for the delay spread and optical path loss are derived, which followed a 2-term power series model for both empty and furnished rooms. We show that using a full-circular OLED for both empty and furnished rooms offers a uniform distribution of emitted power for the same transmission link spans. The link performance using full and half-circular OLED in an empty room shows that the average optical path losses are lower by 5 and 4 dB, compared with the furnished room.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
CMOS camera based visible light communication (VLC) using grayscale value distribution and machine learning algorithm

Ke-Ling Hsu, Yu-Chun Wu, Yu-Cheng Chuang, Chi-Wai Chow, Yang Liu, Xin-Lan Liao, Kun-Hsien Lin, and Yi-Yuan Chen
Opt. Express 28(2) 2427-2432 (2020)

Orientation-induced link-blocked receiver for MIMO visible light communication

Manh Le Tran and Sunghwan Kim
Opt. Express 28(8) 12157-12173 (2020)

On the Coverage of Multiple-Input Multiple-Output Visible Light Communications [Invited]

Chen Chen, Wen-De Zhong, and Dehao Wu
J. Opt. Commun. Netw. 9(9) D31-D41 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Z. Ghassemlooy, L. N. Alves, S. Zvanovec, and M.-A. Khalighi, Visible light communications: theory and applications (CRC press, 2017).
  2. Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications: system and channel modelling with Matlab® (CRC press, 2019).
  3. B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An indoor visible light positioning system based on optical camera communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
    [Crossref]
  4. S. Schmid, T. Richner, S. Mangold, and T. R. Gross, “Enlighting: An indoor visible light communication system based on networked light bulbs,” in 2016 13th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), (IEEE, 2016), pp. 1–9.
  5. B. Geffroy, P. Le Roy, and C. Prat, “Organic light-emitting diode (oled) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
    [Crossref]
  6. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
    [Crossref]
  7. J. Ràfols-Ribé, P.-A. Will, C. Hänisch, M. Gonzalez-Silveira, S. Lenk, J. Rodríguez-Viejo, and S. Reineke, “High-performance organic light-emitting diodes comprising ultrastable glass layers,” Sci. Adv. 4(5), eaar8332 (2018).
    [Crossref]
  8. Z. H. Kafafi, Organic electroluminescence (CRC Press, 2018).
  9. H. Chun, C.-J. Chiang, and D. C. O’Brien, “Visible light communication using oleds: Illumination and channel modeling,” in 2012 International Workshop on Optical Wireless Communications (IWOW), (IEEE, 2012), pp. 1–3.
  10. H. Nguyen, J.-H. Choi, M. Kang, Z. Ghassemlooy, D. Kim, S.-K. Lim, T.-G. Kang, and C. G. Lee, “A matlab-based simulation program for indoor visible light communication system,” in 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), (IEEE, 2010), pp. 537–541.
  11. T. Komine and M. Nakagawa, “Performance evaluation of visible-light wireless communication system using white led lightings,” in Proceedings. ISCC 2004. Ninth International Symposium on Computers And Communications (IEEE Cat. No. 04TH8769), vol. 1 (IEEE, 2004), pp. 258–263.
  12. J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Select. Areas Commun. 11(3), 367–379 (1993).
    [Crossref]
  13. K. Lee, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett. 15(2), 217–219 (2011).
    [Crossref]
  14. F. Miramirkhani and M. Uysal, “Channel modeling and characterization for visible light communications,” IEEE Photonics J. 7(6), 1–16 (2015).
    [Crossref]
  15. Zemax OpticStudio 18.9, https://www.zemax.com/products/opticstudio .
  16. M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “Ieee 802.15. 7r1 reference channel models for visible light communications,” IEEE Commun. Mag. 55(1), 212–217 (2017).
    [Crossref]
  17. S. P. Rodríguez, R. P. Jiménez, B. R. Mendoza, F. J. L. Hernández, and A. J. A. Alfonso, “Simulation of impulse response for indoor visible light communications using 3d cad models,” J Wireless Com Network 2013(1), 7 (2013).
    [Crossref]
  18. H. Chen and Z. Xu, “Oled panel radiation pattern and its impact on vlc channel characteristics,” IEEE Photonics J. 10(2), 1–10 (2018).
    [Crossref]
  19. S. Long, M.-A. Khalighi, M. Wolf, Z. Ghassemlooy, and S. Bourennane, “Performance of carrier-less amplitude and phase modulation with frequency domain equalization for indoor visible light communications,” in 2015 4th International Workshop on Optical Wireless Communications (IWOW), (IEEE, 2015), pp. 16–20.
  20. Z. Wang, Q. Wang, W. Huang, and Z. Xu, Visible light communications: Modulation and signal processing (John Wiley & Sons, 2017).
  21. J. Kalinowski, Organic Light-Emitting Diodes: Principles, Characteristics & Processes (CRC press, 2018).
  22. Z. N. Chaleshtori, A. Burton, Z. Ghassemlooy, and S. Zvanovec, “A flexible oled based vlc link with m-cap modulation,” in 2019 15th International Conference on Telecommunications (ConTEL), (IEEE, 2019), pp. 1–6.
  23. H. B. Eldeeb, F. Miramirkhani, and M. Uysal, “A path loss model for vehicle-to-vehicle visible light communications,” in 2019 15th International Conference on Telecommunications (ConTEL), (IEEE, 2019), pp. 1–5.
  24. ASTER Spectral Library-Version 2.0, http://speclib.jpl.nasa.gov .
  25. S. Lee, J. K. Kwon, S.-Y. Jung, and Y.-H. Kwon, “Evaluation of visible light communication channel delay profiles for automotive applications,” J Wireless Com Network 2012(1), 370 (2012).
    [Crossref]
  26. C. R. Lomba, R. T. Valadas, and A. de Oliveira Duarte, “Efficient simulation of the impulse response of the indoor wireless optical channel,” Int. J. Commun. Syst. 13(7-8), 537–549 (2000).
    [Crossref]
  27. C. R. Lomba, R. T. Valadas, and A. de Oliveira Duarte, “Experimental characterisation and modelling of the reflection of infrared signals on indoor surfaces,” IEE Proc.: Optoelectron. 145(3), 191–197 (1998).
    [Crossref]

2018 (2)

J. Ràfols-Ribé, P.-A. Will, C. Hänisch, M. Gonzalez-Silveira, S. Lenk, J. Rodríguez-Viejo, and S. Reineke, “High-performance organic light-emitting diodes comprising ultrastable glass layers,” Sci. Adv. 4(5), eaar8332 (2018).
[Crossref]

H. Chen and Z. Xu, “Oled panel radiation pattern and its impact on vlc channel characteristics,” IEEE Photonics J. 10(2), 1–10 (2018).
[Crossref]

2017 (2)

B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An indoor visible light positioning system based on optical camera communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
[Crossref]

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “Ieee 802.15. 7r1 reference channel models for visible light communications,” IEEE Commun. Mag. 55(1), 212–217 (2017).
[Crossref]

2015 (1)

F. Miramirkhani and M. Uysal, “Channel modeling and characterization for visible light communications,” IEEE Photonics J. 7(6), 1–16 (2015).
[Crossref]

2013 (1)

S. P. Rodríguez, R. P. Jiménez, B. R. Mendoza, F. J. L. Hernández, and A. J. A. Alfonso, “Simulation of impulse response for indoor visible light communications using 3d cad models,” J Wireless Com Network 2013(1), 7 (2013).
[Crossref]

2012 (1)

S. Lee, J. K. Kwon, S.-Y. Jung, and Y.-H. Kwon, “Evaluation of visible light communication channel delay profiles for automotive applications,” J Wireless Com Network 2012(1), 370 (2012).
[Crossref]

2011 (1)

K. Lee, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett. 15(2), 217–219 (2011).
[Crossref]

2010 (1)

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

2006 (1)

B. Geffroy, P. Le Roy, and C. Prat, “Organic light-emitting diode (oled) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[Crossref]

2000 (1)

C. R. Lomba, R. T. Valadas, and A. de Oliveira Duarte, “Efficient simulation of the impulse response of the indoor wireless optical channel,” Int. J. Commun. Syst. 13(7-8), 537–549 (2000).
[Crossref]

1998 (1)

C. R. Lomba, R. T. Valadas, and A. de Oliveira Duarte, “Experimental characterisation and modelling of the reflection of infrared signals on indoor surfaces,” IEE Proc.: Optoelectron. 145(3), 191–197 (1998).
[Crossref]

1993 (1)

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Select. Areas Commun. 11(3), 367–379 (1993).
[Crossref]

Alfonso, A. J. A.

S. P. Rodríguez, R. P. Jiménez, B. R. Mendoza, F. J. L. Hernández, and A. J. A. Alfonso, “Simulation of impulse response for indoor visible light communications using 3d cad models,” J Wireless Com Network 2013(1), 7 (2013).
[Crossref]

Alves, L. N.

Z. Ghassemlooy, L. N. Alves, S. Zvanovec, and M.-A. Khalighi, Visible light communications: theory and applications (CRC press, 2017).

Barry, J. R.

K. Lee, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett. 15(2), 217–219 (2011).
[Crossref]

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Select. Areas Commun. 11(3), 367–379 (1993).
[Crossref]

Baykas, T.

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “Ieee 802.15. 7r1 reference channel models for visible light communications,” IEEE Commun. Mag. 55(1), 212–217 (2017).
[Crossref]

Bourennane, S.

S. Long, M.-A. Khalighi, M. Wolf, Z. Ghassemlooy, and S. Bourennane, “Performance of carrier-less amplitude and phase modulation with frequency domain equalization for indoor visible light communications,” in 2015 4th International Workshop on Optical Wireless Communications (IWOW), (IEEE, 2015), pp. 16–20.

Burton, A.

Z. N. Chaleshtori, A. Burton, Z. Ghassemlooy, and S. Zvanovec, “A flexible oled based vlc link with m-cap modulation,” in 2019 15th International Conference on Telecommunications (ConTEL), (IEEE, 2019), pp. 1–6.

Chaleshtori, Z. N.

Z. N. Chaleshtori, A. Burton, Z. Ghassemlooy, and S. Zvanovec, “A flexible oled based vlc link with m-cap modulation,” in 2019 15th International Conference on Telecommunications (ConTEL), (IEEE, 2019), pp. 1–6.

Chen, H.

H. Chen and Z. Xu, “Oled panel radiation pattern and its impact on vlc channel characteristics,” IEEE Photonics J. 10(2), 1–10 (2018).
[Crossref]

Chiang, C.-J.

H. Chun, C.-J. Chiang, and D. C. O’Brien, “Visible light communication using oleds: Illumination and channel modeling,” in 2012 International Workshop on Optical Wireless Communications (IWOW), (IEEE, 2012), pp. 1–3.

Choi, J.-H.

H. Nguyen, J.-H. Choi, M. Kang, Z. Ghassemlooy, D. Kim, S.-K. Lim, T.-G. Kang, and C. G. Lee, “A matlab-based simulation program for indoor visible light communication system,” in 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), (IEEE, 2010), pp. 537–541.

Chun, H.

H. Chun, C.-J. Chiang, and D. C. O’Brien, “Visible light communication using oleds: Illumination and channel modeling,” in 2012 International Workshop on Optical Wireless Communications (IWOW), (IEEE, 2012), pp. 1–3.

Clark, J.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

de Oliveira Duarte, A.

C. R. Lomba, R. T. Valadas, and A. de Oliveira Duarte, “Efficient simulation of the impulse response of the indoor wireless optical channel,” Int. J. Commun. Syst. 13(7-8), 537–549 (2000).
[Crossref]

C. R. Lomba, R. T. Valadas, and A. de Oliveira Duarte, “Experimental characterisation and modelling of the reflection of infrared signals on indoor surfaces,” IEE Proc.: Optoelectron. 145(3), 191–197 (1998).
[Crossref]

Eldeeb, H. B.

H. B. Eldeeb, F. Miramirkhani, and M. Uysal, “A path loss model for vehicle-to-vehicle visible light communications,” in 2019 15th International Conference on Telecommunications (ConTEL), (IEEE, 2019), pp. 1–5.

Geffroy, B.

B. Geffroy, P. Le Roy, and C. Prat, “Organic light-emitting diode (oled) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[Crossref]

Ghassemlooy, Z.

B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An indoor visible light positioning system based on optical camera communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
[Crossref]

S. Long, M.-A. Khalighi, M. Wolf, Z. Ghassemlooy, and S. Bourennane, “Performance of carrier-less amplitude and phase modulation with frequency domain equalization for indoor visible light communications,” in 2015 4th International Workshop on Optical Wireless Communications (IWOW), (IEEE, 2015), pp. 16–20.

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications: system and channel modelling with Matlab® (CRC press, 2019).

H. Nguyen, J.-H. Choi, M. Kang, Z. Ghassemlooy, D. Kim, S.-K. Lim, T.-G. Kang, and C. G. Lee, “A matlab-based simulation program for indoor visible light communication system,” in 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), (IEEE, 2010), pp. 537–541.

Z. Ghassemlooy, L. N. Alves, S. Zvanovec, and M.-A. Khalighi, Visible light communications: theory and applications (CRC press, 2017).

Z. N. Chaleshtori, A. Burton, Z. Ghassemlooy, and S. Zvanovec, “A flexible oled based vlc link with m-cap modulation,” in 2019 15th International Conference on Telecommunications (ConTEL), (IEEE, 2019), pp. 1–6.

Gonzalez-Silveira, M.

J. Ràfols-Ribé, P.-A. Will, C. Hänisch, M. Gonzalez-Silveira, S. Lenk, J. Rodríguez-Viejo, and S. Reineke, “High-performance organic light-emitting diodes comprising ultrastable glass layers,” Sci. Adv. 4(5), eaar8332 (2018).
[Crossref]

Gross, T. R.

S. Schmid, T. Richner, S. Mangold, and T. R. Gross, “Enlighting: An indoor visible light communication system based on networked light bulbs,” in 2016 13th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), (IEEE, 2016), pp. 1–9.

Hänisch, C.

J. Ràfols-Ribé, P.-A. Will, C. Hänisch, M. Gonzalez-Silveira, S. Lenk, J. Rodríguez-Viejo, and S. Reineke, “High-performance organic light-emitting diodes comprising ultrastable glass layers,” Sci. Adv. 4(5), eaar8332 (2018).
[Crossref]

Hernández, F. J. L.

S. P. Rodríguez, R. P. Jiménez, B. R. Mendoza, F. J. L. Hernández, and A. J. A. Alfonso, “Simulation of impulse response for indoor visible light communications using 3d cad models,” J Wireless Com Network 2013(1), 7 (2013).
[Crossref]

Huang, W.

Z. Wang, Q. Wang, W. Huang, and Z. Xu, Visible light communications: Modulation and signal processing (John Wiley & Sons, 2017).

Jiménez, R. P.

S. P. Rodríguez, R. P. Jiménez, B. R. Mendoza, F. J. L. Hernández, and A. J. A. Alfonso, “Simulation of impulse response for indoor visible light communications using 3d cad models,” J Wireless Com Network 2013(1), 7 (2013).
[Crossref]

Jung, S.-Y.

S. Lee, J. K. Kwon, S.-Y. Jung, and Y.-H. Kwon, “Evaluation of visible light communication channel delay profiles for automotive applications,” J Wireless Com Network 2012(1), 370 (2012).
[Crossref]

Kafafi, Z. H.

Z. H. Kafafi, Organic electroluminescence (CRC Press, 2018).

Kahn, J. M.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Select. Areas Commun. 11(3), 367–379 (1993).
[Crossref]

Kalinowski, J.

J. Kalinowski, Organic Light-Emitting Diodes: Principles, Characteristics & Processes (CRC press, 2018).

Kang, M.

H. Nguyen, J.-H. Choi, M. Kang, Z. Ghassemlooy, D. Kim, S.-K. Lim, T.-G. Kang, and C. G. Lee, “A matlab-based simulation program for indoor visible light communication system,” in 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), (IEEE, 2010), pp. 537–541.

Kang, T.-G.

H. Nguyen, J.-H. Choi, M. Kang, Z. Ghassemlooy, D. Kim, S.-K. Lim, T.-G. Kang, and C. G. Lee, “A matlab-based simulation program for indoor visible light communication system,” in 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), (IEEE, 2010), pp. 537–541.

Khalighi, M.-A.

Z. Ghassemlooy, L. N. Alves, S. Zvanovec, and M.-A. Khalighi, Visible light communications: theory and applications (CRC press, 2017).

S. Long, M.-A. Khalighi, M. Wolf, Z. Ghassemlooy, and S. Bourennane, “Performance of carrier-less amplitude and phase modulation with frequency domain equalization for indoor visible light communications,” in 2015 4th International Workshop on Optical Wireless Communications (IWOW), (IEEE, 2015), pp. 16–20.

Kim, D.

H. Nguyen, J.-H. Choi, M. Kang, Z. Ghassemlooy, D. Kim, S.-K. Lim, T.-G. Kang, and C. G. Lee, “A matlab-based simulation program for indoor visible light communication system,” in 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), (IEEE, 2010), pp. 537–541.

Komine, T.

T. Komine and M. Nakagawa, “Performance evaluation of visible-light wireless communication system using white led lightings,” in Proceedings. ISCC 2004. Ninth International Symposium on Computers And Communications (IEEE Cat. No. 04TH8769), vol. 1 (IEEE, 2004), pp. 258–263.

Krause, W. J.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Select. Areas Commun. 11(3), 367–379 (1993).
[Crossref]

Kwon, J. K.

S. Lee, J. K. Kwon, S.-Y. Jung, and Y.-H. Kwon, “Evaluation of visible light communication channel delay profiles for automotive applications,” J Wireless Com Network 2012(1), 370 (2012).
[Crossref]

Kwon, Y.-H.

S. Lee, J. K. Kwon, S.-Y. Jung, and Y.-H. Kwon, “Evaluation of visible light communication channel delay profiles for automotive applications,” J Wireless Com Network 2012(1), 370 (2012).
[Crossref]

Lanzani, G.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Le Roy, P.

B. Geffroy, P. Le Roy, and C. Prat, “Organic light-emitting diode (oled) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[Crossref]

Lee, C. G.

H. Nguyen, J.-H. Choi, M. Kang, Z. Ghassemlooy, D. Kim, S.-K. Lim, T.-G. Kang, and C. G. Lee, “A matlab-based simulation program for indoor visible light communication system,” in 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), (IEEE, 2010), pp. 537–541.

Lee, E. A.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Select. Areas Commun. 11(3), 367–379 (1993).
[Crossref]

Lee, K.

K. Lee, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett. 15(2), 217–219 (2011).
[Crossref]

Lee, S.

S. Lee, J. K. Kwon, S.-Y. Jung, and Y.-H. Kwon, “Evaluation of visible light communication channel delay profiles for automotive applications,” J Wireless Com Network 2012(1), 370 (2012).
[Crossref]

Lenk, S.

J. Ràfols-Ribé, P.-A. Will, C. Hänisch, M. Gonzalez-Silveira, S. Lenk, J. Rodríguez-Viejo, and S. Reineke, “High-performance organic light-emitting diodes comprising ultrastable glass layers,” Sci. Adv. 4(5), eaar8332 (2018).
[Crossref]

Li, Y.

B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An indoor visible light positioning system based on optical camera communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
[Crossref]

Lim, S.-K.

H. Nguyen, J.-H. Choi, M. Kang, Z. Ghassemlooy, D. Kim, S.-K. Lim, T.-G. Kang, and C. G. Lee, “A matlab-based simulation program for indoor visible light communication system,” in 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), (IEEE, 2010), pp. 537–541.

Lin, B.

B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An indoor visible light positioning system based on optical camera communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
[Crossref]

Lin, C.

B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An indoor visible light positioning system based on optical camera communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
[Crossref]

Lomba, C. R.

C. R. Lomba, R. T. Valadas, and A. de Oliveira Duarte, “Efficient simulation of the impulse response of the indoor wireless optical channel,” Int. J. Commun. Syst. 13(7-8), 537–549 (2000).
[Crossref]

C. R. Lomba, R. T. Valadas, and A. de Oliveira Duarte, “Experimental characterisation and modelling of the reflection of infrared signals on indoor surfaces,” IEE Proc.: Optoelectron. 145(3), 191–197 (1998).
[Crossref]

Long, S.

S. Long, M.-A. Khalighi, M. Wolf, Z. Ghassemlooy, and S. Bourennane, “Performance of carrier-less amplitude and phase modulation with frequency domain equalization for indoor visible light communications,” in 2015 4th International Workshop on Optical Wireless Communications (IWOW), (IEEE, 2015), pp. 16–20.

Mangold, S.

S. Schmid, T. Richner, S. Mangold, and T. R. Gross, “Enlighting: An indoor visible light communication system based on networked light bulbs,” in 2016 13th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), (IEEE, 2016), pp. 1–9.

Mendoza, B. R.

S. P. Rodríguez, R. P. Jiménez, B. R. Mendoza, F. J. L. Hernández, and A. J. A. Alfonso, “Simulation of impulse response for indoor visible light communications using 3d cad models,” J Wireless Com Network 2013(1), 7 (2013).
[Crossref]

Messerschmitt, D. G.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Select. Areas Commun. 11(3), 367–379 (1993).
[Crossref]

Miramirkhani, F.

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “Ieee 802.15. 7r1 reference channel models for visible light communications,” IEEE Commun. Mag. 55(1), 212–217 (2017).
[Crossref]

F. Miramirkhani and M. Uysal, “Channel modeling and characterization for visible light communications,” IEEE Photonics J. 7(6), 1–16 (2015).
[Crossref]

H. B. Eldeeb, F. Miramirkhani, and M. Uysal, “A path loss model for vehicle-to-vehicle visible light communications,” in 2019 15th International Conference on Telecommunications (ConTEL), (IEEE, 2019), pp. 1–5.

Nakagawa, M.

T. Komine and M. Nakagawa, “Performance evaluation of visible-light wireless communication system using white led lightings,” in Proceedings. ISCC 2004. Ninth International Symposium on Computers And Communications (IEEE Cat. No. 04TH8769), vol. 1 (IEEE, 2004), pp. 258–263.

Narmanlioglu, O.

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “Ieee 802.15. 7r1 reference channel models for visible light communications,” IEEE Commun. Mag. 55(1), 212–217 (2017).
[Crossref]

Nguyen, H.

H. Nguyen, J.-H. Choi, M. Kang, Z. Ghassemlooy, D. Kim, S.-K. Lim, T.-G. Kang, and C. G. Lee, “A matlab-based simulation program for indoor visible light communication system,” in 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), (IEEE, 2010), pp. 537–541.

O’Brien, D. C.

H. Chun, C.-J. Chiang, and D. C. O’Brien, “Visible light communication using oleds: Illumination and channel modeling,” in 2012 International Workshop on Optical Wireless Communications (IWOW), (IEEE, 2012), pp. 1–3.

Panayirci, E.

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “Ieee 802.15. 7r1 reference channel models for visible light communications,” IEEE Commun. Mag. 55(1), 212–217 (2017).
[Crossref]

Park, H.

K. Lee, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett. 15(2), 217–219 (2011).
[Crossref]

Popoola, W.

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications: system and channel modelling with Matlab® (CRC press, 2019).

Prat, C.

B. Geffroy, P. Le Roy, and C. Prat, “Organic light-emitting diode (oled) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[Crossref]

Ràfols-Ribé, J.

J. Ràfols-Ribé, P.-A. Will, C. Hänisch, M. Gonzalez-Silveira, S. Lenk, J. Rodríguez-Viejo, and S. Reineke, “High-performance organic light-emitting diodes comprising ultrastable glass layers,” Sci. Adv. 4(5), eaar8332 (2018).
[Crossref]

Rajbhandari, S.

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications: system and channel modelling with Matlab® (CRC press, 2019).

Reineke, S.

J. Ràfols-Ribé, P.-A. Will, C. Hänisch, M. Gonzalez-Silveira, S. Lenk, J. Rodríguez-Viejo, and S. Reineke, “High-performance organic light-emitting diodes comprising ultrastable glass layers,” Sci. Adv. 4(5), eaar8332 (2018).
[Crossref]

Richner, T.

S. Schmid, T. Richner, S. Mangold, and T. R. Gross, “Enlighting: An indoor visible light communication system based on networked light bulbs,” in 2016 13th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), (IEEE, 2016), pp. 1–9.

Rodríguez, S. P.

S. P. Rodríguez, R. P. Jiménez, B. R. Mendoza, F. J. L. Hernández, and A. J. A. Alfonso, “Simulation of impulse response for indoor visible light communications using 3d cad models,” J Wireless Com Network 2013(1), 7 (2013).
[Crossref]

Rodríguez-Viejo, J.

J. Ràfols-Ribé, P.-A. Will, C. Hänisch, M. Gonzalez-Silveira, S. Lenk, J. Rodríguez-Viejo, and S. Reineke, “High-performance organic light-emitting diodes comprising ultrastable glass layers,” Sci. Adv. 4(5), eaar8332 (2018).
[Crossref]

Schmid, S.

S. Schmid, T. Richner, S. Mangold, and T. R. Gross, “Enlighting: An indoor visible light communication system based on networked light bulbs,” in 2016 13th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), (IEEE, 2016), pp. 1–9.

Tang, X.

B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An indoor visible light positioning system based on optical camera communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
[Crossref]

Uysal, M.

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “Ieee 802.15. 7r1 reference channel models for visible light communications,” IEEE Commun. Mag. 55(1), 212–217 (2017).
[Crossref]

F. Miramirkhani and M. Uysal, “Channel modeling and characterization for visible light communications,” IEEE Photonics J. 7(6), 1–16 (2015).
[Crossref]

H. B. Eldeeb, F. Miramirkhani, and M. Uysal, “A path loss model for vehicle-to-vehicle visible light communications,” in 2019 15th International Conference on Telecommunications (ConTEL), (IEEE, 2019), pp. 1–5.

Valadas, R. T.

C. R. Lomba, R. T. Valadas, and A. de Oliveira Duarte, “Efficient simulation of the impulse response of the indoor wireless optical channel,” Int. J. Commun. Syst. 13(7-8), 537–549 (2000).
[Crossref]

C. R. Lomba, R. T. Valadas, and A. de Oliveira Duarte, “Experimental characterisation and modelling of the reflection of infrared signals on indoor surfaces,” IEE Proc.: Optoelectron. 145(3), 191–197 (1998).
[Crossref]

Wang, Q.

Z. Wang, Q. Wang, W. Huang, and Z. Xu, Visible light communications: Modulation and signal processing (John Wiley & Sons, 2017).

Wang, Z.

Z. Wang, Q. Wang, W. Huang, and Z. Xu, Visible light communications: Modulation and signal processing (John Wiley & Sons, 2017).

Will, P.-A.

J. Ràfols-Ribé, P.-A. Will, C. Hänisch, M. Gonzalez-Silveira, S. Lenk, J. Rodríguez-Viejo, and S. Reineke, “High-performance organic light-emitting diodes comprising ultrastable glass layers,” Sci. Adv. 4(5), eaar8332 (2018).
[Crossref]

Wolf, M.

S. Long, M.-A. Khalighi, M. Wolf, Z. Ghassemlooy, and S. Bourennane, “Performance of carrier-less amplitude and phase modulation with frequency domain equalization for indoor visible light communications,” in 2015 4th International Workshop on Optical Wireless Communications (IWOW), (IEEE, 2015), pp. 16–20.

Xu, Z.

H. Chen and Z. Xu, “Oled panel radiation pattern and its impact on vlc channel characteristics,” IEEE Photonics J. 10(2), 1–10 (2018).
[Crossref]

Z. Wang, Q. Wang, W. Huang, and Z. Xu, Visible light communications: Modulation and signal processing (John Wiley & Sons, 2017).

Zhang, S.

B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An indoor visible light positioning system based on optical camera communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
[Crossref]

Zvanovec, S.

Z. Ghassemlooy, L. N. Alves, S. Zvanovec, and M.-A. Khalighi, Visible light communications: theory and applications (CRC press, 2017).

Z. N. Chaleshtori, A. Burton, Z. Ghassemlooy, and S. Zvanovec, “A flexible oled based vlc link with m-cap modulation,” in 2019 15th International Conference on Telecommunications (ConTEL), (IEEE, 2019), pp. 1–6.

IEE Proc.: Optoelectron. (1)

C. R. Lomba, R. T. Valadas, and A. de Oliveira Duarte, “Experimental characterisation and modelling of the reflection of infrared signals on indoor surfaces,” IEE Proc.: Optoelectron. 145(3), 191–197 (1998).
[Crossref]

IEEE Commun. Lett. (1)

K. Lee, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett. 15(2), 217–219 (2011).
[Crossref]

IEEE Commun. Mag. (1)

M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “Ieee 802.15. 7r1 reference channel models for visible light communications,” IEEE Commun. Mag. 55(1), 212–217 (2017).
[Crossref]

IEEE J. Select. Areas Commun. (1)

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Select. Areas Commun. 11(3), 367–379 (1993).
[Crossref]

IEEE Photonics J. (2)

F. Miramirkhani and M. Uysal, “Channel modeling and characterization for visible light communications,” IEEE Photonics J. 7(6), 1–16 (2015).
[Crossref]

H. Chen and Z. Xu, “Oled panel radiation pattern and its impact on vlc channel characteristics,” IEEE Photonics J. 10(2), 1–10 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. Lin, Z. Ghassemlooy, C. Lin, X. Tang, Y. Li, and S. Zhang, “An indoor visible light positioning system based on optical camera communications,” IEEE Photonics Technol. Lett. 29(7), 579–582 (2017).
[Crossref]

Int. J. Commun. Syst. (1)

C. R. Lomba, R. T. Valadas, and A. de Oliveira Duarte, “Efficient simulation of the impulse response of the indoor wireless optical channel,” Int. J. Commun. Syst. 13(7-8), 537–549 (2000).
[Crossref]

J Wireless Com Network (2)

S. Lee, J. K. Kwon, S.-Y. Jung, and Y.-H. Kwon, “Evaluation of visible light communication channel delay profiles for automotive applications,” J Wireless Com Network 2012(1), 370 (2012).
[Crossref]

S. P. Rodríguez, R. P. Jiménez, B. R. Mendoza, F. J. L. Hernández, and A. J. A. Alfonso, “Simulation of impulse response for indoor visible light communications using 3d cad models,” J Wireless Com Network 2013(1), 7 (2013).
[Crossref]

Nat. Photonics (1)

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Polym. Int. (1)

B. Geffroy, P. Le Roy, and C. Prat, “Organic light-emitting diode (oled) technology: materials, devices and display technologies,” Polym. Int. 55(6), 572–582 (2006).
[Crossref]

Sci. Adv. (1)

J. Ràfols-Ribé, P.-A. Will, C. Hänisch, M. Gonzalez-Silveira, S. Lenk, J. Rodríguez-Viejo, and S. Reineke, “High-performance organic light-emitting diodes comprising ultrastable glass layers,” Sci. Adv. 4(5), eaar8332 (2018).
[Crossref]

Other (14)

Z. H. Kafafi, Organic electroluminescence (CRC Press, 2018).

H. Chun, C.-J. Chiang, and D. C. O’Brien, “Visible light communication using oleds: Illumination and channel modeling,” in 2012 International Workshop on Optical Wireless Communications (IWOW), (IEEE, 2012), pp. 1–3.

H. Nguyen, J.-H. Choi, M. Kang, Z. Ghassemlooy, D. Kim, S.-K. Lim, T.-G. Kang, and C. G. Lee, “A matlab-based simulation program for indoor visible light communication system,” in 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), (IEEE, 2010), pp. 537–541.

T. Komine and M. Nakagawa, “Performance evaluation of visible-light wireless communication system using white led lightings,” in Proceedings. ISCC 2004. Ninth International Symposium on Computers And Communications (IEEE Cat. No. 04TH8769), vol. 1 (IEEE, 2004), pp. 258–263.

S. Schmid, T. Richner, S. Mangold, and T. R. Gross, “Enlighting: An indoor visible light communication system based on networked light bulbs,” in 2016 13th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), (IEEE, 2016), pp. 1–9.

Z. Ghassemlooy, L. N. Alves, S. Zvanovec, and M.-A. Khalighi, Visible light communications: theory and applications (CRC press, 2017).

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications: system and channel modelling with Matlab® (CRC press, 2019).

Zemax OpticStudio 18.9, https://www.zemax.com/products/opticstudio .

S. Long, M.-A. Khalighi, M. Wolf, Z. Ghassemlooy, and S. Bourennane, “Performance of carrier-less amplitude and phase modulation with frequency domain equalization for indoor visible light communications,” in 2015 4th International Workshop on Optical Wireless Communications (IWOW), (IEEE, 2015), pp. 16–20.

Z. Wang, Q. Wang, W. Huang, and Z. Xu, Visible light communications: Modulation and signal processing (John Wiley & Sons, 2017).

J. Kalinowski, Organic Light-Emitting Diodes: Principles, Characteristics & Processes (CRC press, 2018).

Z. N. Chaleshtori, A. Burton, Z. Ghassemlooy, and S. Zvanovec, “A flexible oled based vlc link with m-cap modulation,” in 2019 15th International Conference on Telecommunications (ConTEL), (IEEE, 2019), pp. 1–6.

H. B. Eldeeb, F. Miramirkhani, and M. Uysal, “A path loss model for vehicle-to-vehicle visible light communications,” in 2019 15th International Conference on Telecommunications (ConTEL), (IEEE, 2019), pp. 1–5.

ASTER Spectral Library-Version 2.0, http://speclib.jpl.nasa.gov .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. OLED structure
Fig. 2.
Fig. 2. Characteristics of the flexible OLED adopted in the work: (a) the normalized optical spectrum of the flexible OLED. The peak wavelengths is marked and the legend color scale represents $I_B$ [22]. (b) The intensity pattern of OLED panel bent in different curvature such that we have a quadrature, half and three-quadrature-circle of lighting.
Fig. 3.
Fig. 3. The major steps followed in the channel modeling methodology.
Fig. 4.
Fig. 4. (a) The three-dimensional indoor environment in Zemax and proposed scenarios; showing the location of curved OLED giving (b) a full-circular lighting and (c) a half-circular lighting.
Fig. 5.
Fig. 5. Emission pattern of the light source used in simulation for: (a) a half-circular OLED and (b) a full-circular OLED.
Fig. 6.
Fig. 6. Spectral reflectance of various materials used in simulation [13,24].
Fig. 7.
Fig. 7. Comparison of inorganic LED with half-circular OLED (i.e., ${\textrm S}_{4}$) in the furnished room in term of: (a) OPL and (b) $\tau _{\textrm {RMS}}$.
Fig. 8.
Fig. 8. Comparison of empty and furnished room where a full-circular OLED is employed (i.e., ${\textrm S}_{1}$ and ${\textrm S}_{2}$) in term of: (a) OPL and (b) $\tau _{\textrm {RMS}}$. The CIR plots for distance of 2 m and 4 m are shown in inset.
Fig. 9.
Fig. 9. Comparison of empty and furnished room where a half-circular OLED is employed (i.e., ${\textrm S}_{3}$ and ${\textrm S}_{4}$) in term of: (a) OPL and (b) $\tau _{\textrm {RMS}}$. The CIR plots for distance of 1 m and 4.5 m are shown in inset.
Fig. 10.
Fig. 10. The BER performance versus $R_{b}$ for different $d_{\textrm {LOS}}$ in cases of: (a) ${\textrm S}_{1}$ (solid blue line), ${\textrm S}_{2}$ (dashed red line) and (b) ${\textrm S}_{3}$ (solid blue line), ${\textrm S}_{4}$ (dashed red line).
Fig. 11.
Fig. 11. The channel capacity versus $P_{E}$ for different $d_{\textrm {LOS}}$ at $R_{b}$ of 4 Mb/s and $B_{\textrm {mod}}$ of 50 kHz for: (a) ${\textrm S}_{1}$ (solid blue line), ${\textrm S}_{2}$ (dashed red line) and (b) ${\textrm S}_{3}$ (solid blue line), ${\textrm S}_{4}$ (dashed red line).

Tables (3)

Tables Icon

Table 1. System and Simulation Parameters

Tables Icon

Table 2. Numerical modeling parameters for τ RMS in all proposed scenarios ( S 1 , S 2 , S 3 , S 4 ).

Tables Icon

Table 3. Numerical modeling parameters for OPL in all proposed scenarios ( S 1 , S 2 , S 3 , S 4 ).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

y ( t ) = γ x ( t ) h ( t ) + n ( t ) ,
τ = 0 t × h ( t ) d t 0 h ( t ) d t ,
τ R M S = 0 ( t τ ) 2 × h ( t ) d t 0 h ( t ) d t .
I ( θ ) = m L + 1 2 π I ( 0 ) cos m L ( θ ) θ = [ π 2 , π 2 ] ,
m L = ln ( 2 ) ln [ cos ( θ 1 / 2 ) ] .
f c = 1 2 π R C o ,
τ RMS = t 1 d LOS t 2 + t 3 ,
OPL = o 1 d LOS o 2 + o 3 ,

Metrics