Abstract

Light-field microscopy is a scanless volumetric imaging technique. Conventional color light microscope employs a micro-lens array at the image plane and samples the spatial, angular, and color information by a pixelated two-dimensional (2D) sensor (such as CCD). However, the space bandwidth product of the pixelated 2D sensor is a fixed value determined by its parameters, leading to the trade-offs between the spatial, angular, and color resolutions. In addition, the inherent chromatic aberration of the micro-lens array also reduces the viewing quality. Here we propose full-color light-field microscopy via single-pixel imaging that can distribute the sampling tasks of the spatial, angular, and color information to both illumination and detection sides, rather than condense on the detection side. Therefore, the space bandwidth product of the light-field microscope is increased and the spatial resolution of the reconstructed light-field can be improved. In addition, the proposed method can reconstruct full-color light-field without using a micro-lens array, thereby the chromatic aberration induced by the micro-lens array is avoided. Because distributing the three sampling tasks to both the illumination and detection sides has different possible sampling schemes, we present two sampling schemes and compare their advantages and disadvantages via several experiments. Our work provides insight for developing a high-resolution full-color light-field microscope. It may find potential applications in the biomedical and material sciences.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reflection light-field microscope with a digitally tunable aperture by single-pixel imaging

Manhong Yao, Jiajian Cheng, Zhuobin Huang, Zibang Zhang, Shiping Li, Junzheng Peng, and Jingang Zhong
Opt. Express 27(23) 33040-33050 (2019)

Wide-field computational color imaging using pixel super-resolved on-chip microscopy

Alon Greenbaum, Alborz Feizi, Najva Akbari, and Aydogan Ozcan
Opt. Express 21(10) 12469-12483 (2013)

Micro-tomography via single-pixel imaging

Junzheng Peng, Manhong Yao, Jiajian Cheng, Zibang Zhang, Shiping Li, Guoan Zheng, and Jingang Zhong
Opt. Express 26(24) 31094-31105 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Wu, B. Masia, S. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light Field Image Processing: An Overview,” IEEE J. Sel. Top. Signal Process. 11(7), 926–954 (2017).
    [Crossref]
  2. M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM T. Graphic. 25(3), 924–934 (2006).
    [Crossref]
  3. M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
    [Crossref]
  4. M. Broxton, L. Grosenick, S. l. Yang, N. Cohen, A. Andalman, K. Deisseroth, and M. Levoy, “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).
    [Crossref]
  5. J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005).
  6. X. Lin, J. Wu, G. Zheng, and Q. Dai, “Camera array based light field microscopy,” Biomed. Opt. Express 6(9), 3179–3189 (2015).
    [Crossref]
  7. R. Lin, V. Su, S. Wang, M. Chen, T. Chung, Y. Chen, H. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. Chu, P. Wu, T. Li, Z. Wang, S. Zhu, and D. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
    [Crossref]
  8. Z. Fan, H. Qiu, H. Zhang, X. Pang, L. Zhou, L. Liu, H. Ren, Q. Wang, and J. Dong, “A broadband achromatic metalens array for integral imaging in the visible,” Light: Sci. Appl. 8(1), 67 (2019).
    [Crossref]
  9. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag. 25(2), 83–91 (2008).
    [Crossref]
  10. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
    [Crossref]
  11. Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6(1), 6255 (2015).
    [Crossref]
  12. M. Sun, M. Edgar, G. Gibson, B. Sun, N. Radwell, R. Lamb, and M. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
    [Crossref]
  13. D. Phillips, M. Sun, J. Taylor, M. Edgar, S. Barnett, and G. Gibson, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3(4), e1601782 (2017).
    [Crossref]
  14. M. P. Edgar, G. M. Gibson, and M. J. Padgett, “Principles and prospects for single-pixel imaging,” Nat. Photonics 13(1), 13–20 (2019).
    [Crossref]
  15. M. Sun and J. Zhang, “Single-pixel imaging and its application in three-dimensional reconstruction: a brief review,” Sensors 19(3), 732 (2019).
    [Crossref]
  16. N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1(5), 285–289 (2014).
    [Crossref]
  17. S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
    [Crossref]
  18. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
    [Crossref]
  19. M. Yao, J. Cheng, Z. Huang, Z. Zhang, S. Li, J. Peng, and J. Zhong, “Reflection light-field microscope with a digitally tunable aperture by single-pixel imaging,” Opt. Express 27(23), 33040–33050 (2019).
    [Crossref]
  20. J. Peng, M. Yao, J. Cheng, Z. Zhang, S. Li, G. Zheng, and J. Zhong, “Micro-tomography by single-pixel imaging,” Opt. Express 26(24), 31094–31105 (2018).
    [Crossref]
  21. R. Usami, T. Nobukawa, M. Miura, N. Ishii, E. Watanabe, and T. Muroi, “Dense parallax image acquisition method using single-pixel imaging for integral photography,” Opt. Lett. 45(1), 25–28 (2020).
    [Crossref]
  22. M. Sun, W. Chen, T. Liu, and L. Li, “Image retrieval in spatial and temporal domains with a quadrant detector,” IEEE Photonics J. 9(5), 3901206 (2017).
    [Crossref]
  23. Z. Zhang, X. Wang, G. Zheng, and J. Zhong, “Hadamard single-pixel imaging versus Fourier single-pixel imaging,” Opt. Express 25(16), 19619–19639 (2017).
    [Crossref]
  24. R. Gonzalez and R. Woods, Digital imaging processing (Addison-Wesley, Massachusetts, 1992).
  25. Z. Zhang, X. Wang, G. Zheng, and J. Zhong, “Fast Fourier single-pixel imaging via binary illumination,” Sci. Rep. 7(1), 12029 (2017).
    [Crossref]
  26. Z. Zhang, S. Liu, J. Peng, M. Yao, G. Zheng, and J. Zhong, “Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements,” Optica 5(3), 315–319 (2018).
    [Crossref]
  27. H. S. Malvar, L. W. He, and R. Cutler, “High-quality linear interpolation for demosaicing of Bayer-patterned color images,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP, 2004), pp. 485–488.
  28. H. Navarro, E. Sánchez-Ortiga, G. Saavedra, A. Llavador, A. Dorado, M. Martínez-Corral, and B. Javidi, “Non-homogeneity of lateral resolution in integral imaging,” J. Disp. Technol. 9(1), 37–43 (2013).
    [Crossref]
  29. M. Martínez-Corral and B. Javidi, “Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems,” Adv. Opt. Photonics 10(3), 512–566 (2018).
    [Crossref]
  30. H. Wang, Z. Göröcs, W. Luo, Y. Zhang, Y. Rivenson, L. Bentolila, and A. Ozcan, “Computational out-of-focus imaging increases the space–bandwidth product in lens-based coherent microscopy,” Optica 3(12), 1422–1429 (2016).
    [Crossref]

2020 (1)

2019 (5)

M. Yao, J. Cheng, Z. Huang, Z. Zhang, S. Li, J. Peng, and J. Zhong, “Reflection light-field microscope with a digitally tunable aperture by single-pixel imaging,” Opt. Express 27(23), 33040–33050 (2019).
[Crossref]

R. Lin, V. Su, S. Wang, M. Chen, T. Chung, Y. Chen, H. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. Chu, P. Wu, T. Li, Z. Wang, S. Zhu, and D. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Z. Fan, H. Qiu, H. Zhang, X. Pang, L. Zhou, L. Liu, H. Ren, Q. Wang, and J. Dong, “A broadband achromatic metalens array for integral imaging in the visible,” Light: Sci. Appl. 8(1), 67 (2019).
[Crossref]

M. P. Edgar, G. M. Gibson, and M. J. Padgett, “Principles and prospects for single-pixel imaging,” Nat. Photonics 13(1), 13–20 (2019).
[Crossref]

M. Sun and J. Zhang, “Single-pixel imaging and its application in three-dimensional reconstruction: a brief review,” Sensors 19(3), 732 (2019).
[Crossref]

2018 (3)

2017 (5)

M. Sun, W. Chen, T. Liu, and L. Li, “Image retrieval in spatial and temporal domains with a quadrant detector,” IEEE Photonics J. 9(5), 3901206 (2017).
[Crossref]

Z. Zhang, X. Wang, G. Zheng, and J. Zhong, “Hadamard single-pixel imaging versus Fourier single-pixel imaging,” Opt. Express 25(16), 19619–19639 (2017).
[Crossref]

Z. Zhang, X. Wang, G. Zheng, and J. Zhong, “Fast Fourier single-pixel imaging via binary illumination,” Sci. Rep. 7(1), 12029 (2017).
[Crossref]

D. Phillips, M. Sun, J. Taylor, M. Edgar, S. Barnett, and G. Gibson, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3(4), e1601782 (2017).
[Crossref]

G. Wu, B. Masia, S. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light Field Image Processing: An Overview,” IEEE J. Sel. Top. Signal Process. 11(7), 926–954 (2017).
[Crossref]

2016 (2)

M. Sun, M. Edgar, G. Gibson, B. Sun, N. Radwell, R. Lamb, and M. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

H. Wang, Z. Göröcs, W. Luo, Y. Zhang, Y. Rivenson, L. Bentolila, and A. Ozcan, “Computational out-of-focus imaging increases the space–bandwidth product in lens-based coherent microscopy,” Optica 3(12), 1422–1429 (2016).
[Crossref]

2015 (2)

X. Lin, J. Wu, G. Zheng, and Q. Dai, “Camera array based light field microscopy,” Biomed. Opt. Express 6(9), 3179–3189 (2015).
[Crossref]

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6(1), 6255 (2015).
[Crossref]

2014 (1)

2013 (4)

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

M. Broxton, L. Grosenick, S. l. Yang, N. Cohen, A. Andalman, K. Deisseroth, and M. Levoy, “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).
[Crossref]

H. Navarro, E. Sánchez-Ortiga, G. Saavedra, A. Llavador, A. Dorado, M. Martínez-Corral, and B. Javidi, “Non-homogeneity of lateral resolution in integral imaging,” J. Disp. Technol. 9(1), 37–43 (2013).
[Crossref]

2009 (1)

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref]

2008 (2)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag. 25(2), 83–91 (2008).
[Crossref]

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

2006 (1)

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM T. Graphic. 25(3), 924–934 (2006).
[Crossref]

Adams, A.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM T. Graphic. 25(3), 924–934 (2006).
[Crossref]

Andalman, A.

Baraniuk, R. G.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag. 25(2), 83–91 (2008).
[Crossref]

Barnett, S.

D. Phillips, M. Sun, J. Taylor, M. Edgar, S. Barnett, and G. Gibson, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3(4), e1601782 (2017).
[Crossref]

Bentolila, L.

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Bowman, R.

Broxton, M.

Chai, T.

G. Wu, B. Masia, S. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light Field Image Processing: An Overview,” IEEE J. Sel. Top. Signal Process. 11(7), 926–954 (2017).
[Crossref]

Chan, W. L.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Charan, K.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Chen, J.

R. Lin, V. Su, S. Wang, M. Chen, T. Chung, Y. Chen, H. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. Chu, P. Wu, T. Li, Z. Wang, S. Zhu, and D. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

R. Lin, V. Su, S. Wang, M. Chen, T. Chung, Y. Chen, H. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. Chu, P. Wu, T. Li, Z. Wang, S. Zhu, and D. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Chen, M.

R. Lin, V. Su, S. Wang, M. Chen, T. Chung, Y. Chen, H. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. Chu, P. Wu, T. Li, Z. Wang, S. Zhu, and D. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Chen, W.

M. Sun, W. Chen, T. Liu, and L. Li, “Image retrieval in spatial and temporal domains with a quadrant detector,” IEEE Photonics J. 9(5), 3901206 (2017).
[Crossref]

Chen, Y.

R. Lin, V. Su, S. Wang, M. Chen, T. Chung, Y. Chen, H. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. Chu, P. Wu, T. Li, Z. Wang, S. Zhu, and D. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Cheng, J.

Chu, C.

R. Lin, V. Su, S. Wang, M. Chen, T. Chung, Y. Chen, H. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. Chu, P. Wu, T. Li, Z. Wang, S. Zhu, and D. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Chung, T.

R. Lin, V. Su, S. Wang, M. Chen, T. Chung, Y. Chen, H. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. Chu, P. Wu, T. Li, Z. Wang, S. Zhu, and D. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Cohen, N.

Cutler, R.

H. S. Malvar, L. W. He, and R. Cutler, “High-quality linear interpolation for demosaicing of Bayer-patterned color images,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP, 2004), pp. 485–488.

Dai, Q.

G. Wu, B. Masia, S. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light Field Image Processing: An Overview,” IEEE J. Sel. Top. Signal Process. 11(7), 926–954 (2017).
[Crossref]

X. Lin, J. Wu, G. Zheng, and Q. Dai, “Camera array based light field microscopy,” Biomed. Opt. Express 6(9), 3179–3189 (2015).
[Crossref]

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag. 25(2), 83–91 (2008).
[Crossref]

Deisseroth, K.

Dong, J.

Z. Fan, H. Qiu, H. Zhang, X. Pang, L. Zhou, L. Liu, H. Ren, Q. Wang, and J. Dong, “A broadband achromatic metalens array for integral imaging in the visible,” Light: Sci. Appl. 8(1), 67 (2019).
[Crossref]

Dorado, A.

H. Navarro, E. Sánchez-Ortiga, G. Saavedra, A. Llavador, A. Dorado, M. Martínez-Corral, and B. Javidi, “Non-homogeneity of lateral resolution in integral imaging,” J. Disp. Technol. 9(1), 37–43 (2013).
[Crossref]

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag. 25(2), 83–91 (2008).
[Crossref]

Edgar, M.

D. Phillips, M. Sun, J. Taylor, M. Edgar, S. Barnett, and G. Gibson, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3(4), e1601782 (2017).
[Crossref]

M. Sun, M. Edgar, G. Gibson, B. Sun, N. Radwell, R. Lamb, and M. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

Edgar, M. P.

M. P. Edgar, G. M. Gibson, and M. J. Padgett, “Principles and prospects for single-pixel imaging,” Nat. Photonics 13(1), 13–20 (2019).
[Crossref]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1(5), 285–289 (2014).
[Crossref]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Fan, Z.

Z. Fan, H. Qiu, H. Zhang, X. Pang, L. Zhou, L. Liu, H. Ren, Q. Wang, and J. Dong, “A broadband achromatic metalens array for integral imaging in the visible,” Light: Sci. Appl. 8(1), 67 (2019).
[Crossref]

Footer, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM T. Graphic. 25(3), 924–934 (2006).
[Crossref]

Gibson, G.

D. Phillips, M. Sun, J. Taylor, M. Edgar, S. Barnett, and G. Gibson, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3(4), e1601782 (2017).
[Crossref]

M. Sun, M. Edgar, G. Gibson, B. Sun, N. Radwell, R. Lamb, and M. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

Gibson, G. M.

M. P. Edgar, G. M. Gibson, and M. J. Padgett, “Principles and prospects for single-pixel imaging,” Nat. Photonics 13(1), 13–20 (2019).
[Crossref]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1(5), 285–289 (2014).
[Crossref]

Gonzalez, R.

R. Gonzalez and R. Woods, Digital imaging processing (Addison-Wesley, Massachusetts, 1992).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005).

Göröcs, Z.

Grosenick, L.

He, L. W.

H. S. Malvar, L. W. He, and R. Cutler, “High-quality linear interpolation for demosaicing of Bayer-patterned color images,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP, 2004), pp. 485–488.

Horowitz, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM T. Graphic. 25(3), 924–934 (2006).
[Crossref]

Huang, Y.

R. Lin, V. Su, S. Wang, M. Chen, T. Chung, Y. Chen, H. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. Chu, P. Wu, T. Li, Z. Wang, S. Zhu, and D. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Huang, Z.

Ishii, N.

Jarabo, S.

G. Wu, B. Masia, S. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light Field Image Processing: An Overview,” IEEE J. Sel. Top. Signal Process. 11(7), 926–954 (2017).
[Crossref]

Javidi, B.

M. Martínez-Corral and B. Javidi, “Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems,” Adv. Opt. Photonics 10(3), 512–566 (2018).
[Crossref]

H. Navarro, E. Sánchez-Ortiga, G. Saavedra, A. Llavador, A. Dorado, M. Martínez-Corral, and B. Javidi, “Non-homogeneity of lateral resolution in integral imaging,” J. Disp. Technol. 9(1), 37–43 (2013).
[Crossref]

Jonathan, P.

Kelly, K. F.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag. 25(2), 83–91 (2008).
[Crossref]

Kuo, H.

R. Lin, V. Su, S. Wang, M. Chen, T. Chung, Y. Chen, H. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. Chu, P. Wu, T. Li, Z. Wang, S. Zhu, and D. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Lamb, R.

M. Sun, M. Edgar, G. Gibson, B. Sun, N. Radwell, R. Lamb, and M. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag. 25(2), 83–91 (2008).
[Crossref]

Levoy, M.

M. Broxton, L. Grosenick, S. l. Yang, N. Cohen, A. Andalman, K. Deisseroth, and M. Levoy, “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).
[Crossref]

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref]

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM T. Graphic. 25(3), 924–934 (2006).
[Crossref]

Li, L.

M. Sun, W. Chen, T. Liu, and L. Li, “Image retrieval in spatial and temporal domains with a quadrant detector,” IEEE Photonics J. 9(5), 3901206 (2017).
[Crossref]

Li, S.

Li, T.

R. Lin, V. Su, S. Wang, M. Chen, T. Chung, Y. Chen, H. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. Chu, P. Wu, T. Li, Z. Wang, S. Zhu, and D. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Lin, R.

R. Lin, V. Su, S. Wang, M. Chen, T. Chung, Y. Chen, H. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. Chu, P. Wu, T. Li, Z. Wang, S. Zhu, and D. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Lin, X.

Liu, L.

Z. Fan, H. Qiu, H. Zhang, X. Pang, L. Zhou, L. Liu, H. Ren, Q. Wang, and J. Dong, “A broadband achromatic metalens array for integral imaging in the visible,” Light: Sci. Appl. 8(1), 67 (2019).
[Crossref]

Liu, S.

Liu, T.

M. Sun, W. Chen, T. Liu, and L. Li, “Image retrieval in spatial and temporal domains with a quadrant detector,” IEEE Photonics J. 9(5), 3901206 (2017).
[Crossref]

Liu, Y.

G. Wu, B. Masia, S. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light Field Image Processing: An Overview,” IEEE J. Sel. Top. Signal Process. 11(7), 926–954 (2017).
[Crossref]

Llavador, A.

H. Navarro, E. Sánchez-Ortiga, G. Saavedra, A. Llavador, A. Dorado, M. Martínez-Corral, and B. Javidi, “Non-homogeneity of lateral resolution in integral imaging,” J. Disp. Technol. 9(1), 37–43 (2013).
[Crossref]

Luo, W.

Ma, X.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6(1), 6255 (2015).
[Crossref]

Malvar, H. S.

H. S. Malvar, L. W. He, and R. Cutler, “High-quality linear interpolation for demosaicing of Bayer-patterned color images,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP, 2004), pp. 485–488.

Martínez-Corral, M.

M. Martínez-Corral and B. Javidi, “Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems,” Adv. Opt. Photonics 10(3), 512–566 (2018).
[Crossref]

H. Navarro, E. Sánchez-Ortiga, G. Saavedra, A. Llavador, A. Dorado, M. Martínez-Corral, and B. Javidi, “Non-homogeneity of lateral resolution in integral imaging,” J. Disp. Technol. 9(1), 37–43 (2013).
[Crossref]

Masia, B.

G. Wu, B. Masia, S. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light Field Image Processing: An Overview,” IEEE J. Sel. Top. Signal Process. 11(7), 926–954 (2017).
[Crossref]

McDowall, I.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref]

Mitchell, K. J.

Mittleman, D. M.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Miura, M.

Muroi, T.

Navarro, H.

H. Navarro, E. Sánchez-Ortiga, G. Saavedra, A. Llavador, A. Dorado, M. Martínez-Corral, and B. Javidi, “Non-homogeneity of lateral resolution in integral imaging,” J. Disp. Technol. 9(1), 37–43 (2013).
[Crossref]

Ng, R.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM T. Graphic. 25(3), 924–934 (2006).
[Crossref]

Nobukawa, T.

Ozcan, A.

Padgett, M.

M. Sun, M. Edgar, G. Gibson, B. Sun, N. Radwell, R. Lamb, and M. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

Padgett, M. J.

M. P. Edgar, G. M. Gibson, and M. J. Padgett, “Principles and prospects for single-pixel imaging,” Nat. Photonics 13(1), 13–20 (2019).
[Crossref]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1(5), 285–289 (2014).
[Crossref]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Pang, X.

Z. Fan, H. Qiu, H. Zhang, X. Pang, L. Zhou, L. Liu, H. Ren, Q. Wang, and J. Dong, “A broadband achromatic metalens array for integral imaging in the visible,” Light: Sci. Appl. 8(1), 67 (2019).
[Crossref]

Peng, J.

Phillips, D.

D. Phillips, M. Sun, J. Taylor, M. Edgar, S. Barnett, and G. Gibson, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3(4), e1601782 (2017).
[Crossref]

Qiu, H.

Z. Fan, H. Qiu, H. Zhang, X. Pang, L. Zhou, L. Liu, H. Ren, Q. Wang, and J. Dong, “A broadband achromatic metalens array for integral imaging in the visible,” Light: Sci. Appl. 8(1), 67 (2019).
[Crossref]

Radwell, N.

M. Sun, M. Edgar, G. Gibson, B. Sun, N. Radwell, R. Lamb, and M. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1(5), 285–289 (2014).
[Crossref]

Ren, H.

Z. Fan, H. Qiu, H. Zhang, X. Pang, L. Zhou, L. Liu, H. Ren, Q. Wang, and J. Dong, “A broadband achromatic metalens array for integral imaging in the visible,” Light: Sci. Appl. 8(1), 67 (2019).
[Crossref]

Rivenson, Y.

Saavedra, G.

H. Navarro, E. Sánchez-Ortiga, G. Saavedra, A. Llavador, A. Dorado, M. Martínez-Corral, and B. Javidi, “Non-homogeneity of lateral resolution in integral imaging,” J. Disp. Technol. 9(1), 37–43 (2013).
[Crossref]

Sánchez-Ortiga, E.

H. Navarro, E. Sánchez-Ortiga, G. Saavedra, A. Llavador, A. Dorado, M. Martínez-Corral, and B. Javidi, “Non-homogeneity of lateral resolution in integral imaging,” J. Disp. Technol. 9(1), 37–43 (2013).
[Crossref]

Su, V.

R. Lin, V. Su, S. Wang, M. Chen, T. Chung, Y. Chen, H. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. Chu, P. Wu, T. Li, Z. Wang, S. Zhu, and D. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Sun, B.

M. Sun, M. Edgar, G. Gibson, B. Sun, N. Radwell, R. Lamb, and M. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
[Crossref]

Sun, M.

M. Sun and J. Zhang, “Single-pixel imaging and its application in three-dimensional reconstruction: a brief review,” Sensors 19(3), 732 (2019).
[Crossref]

D. Phillips, M. Sun, J. Taylor, M. Edgar, S. Barnett, and G. Gibson, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3(4), e1601782 (2017).
[Crossref]

M. Sun, W. Chen, T. Liu, and L. Li, “Image retrieval in spatial and temporal domains with a quadrant detector,” IEEE Photonics J. 9(5), 3901206 (2017).
[Crossref]

M. Sun, M. Edgar, G. Gibson, B. Sun, N. Radwell, R. Lamb, and M. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag. 25(2), 83–91 (2008).
[Crossref]

Takhar, D.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag. 25(2), 83–91 (2008).
[Crossref]

Taylor, J.

D. Phillips, M. Sun, J. Taylor, M. Edgar, S. Barnett, and G. Gibson, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3(4), e1601782 (2017).
[Crossref]

Tsai, D.

R. Lin, V. Su, S. Wang, M. Chen, T. Chung, Y. Chen, H. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. Chu, P. Wu, T. Li, Z. Wang, S. Zhu, and D. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Usami, R.

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Wang, H.

Wang, J.

R. Lin, V. Su, S. Wang, M. Chen, T. Chung, Y. Chen, H. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. Chu, P. Wu, T. Li, Z. Wang, S. Zhu, and D. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Wang, L.

G. Wu, B. Masia, S. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light Field Image Processing: An Overview,” IEEE J. Sel. Top. Signal Process. 11(7), 926–954 (2017).
[Crossref]

Wang, Q.

Z. Fan, H. Qiu, H. Zhang, X. Pang, L. Zhou, L. Liu, H. Ren, Q. Wang, and J. Dong, “A broadband achromatic metalens array for integral imaging in the visible,” Light: Sci. Appl. 8(1), 67 (2019).
[Crossref]

Wang, S.

R. Lin, V. Su, S. Wang, M. Chen, T. Chung, Y. Chen, H. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. Chu, P. Wu, T. Li, Z. Wang, S. Zhu, and D. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Wang, X.

Z. Zhang, X. Wang, G. Zheng, and J. Zhong, “Hadamard single-pixel imaging versus Fourier single-pixel imaging,” Opt. Express 25(16), 19619–19639 (2017).
[Crossref]

Z. Zhang, X. Wang, G. Zheng, and J. Zhong, “Fast Fourier single-pixel imaging via binary illumination,” Sci. Rep. 7(1), 12029 (2017).
[Crossref]

Wang, Z.

R. Lin, V. Su, S. Wang, M. Chen, T. Chung, Y. Chen, H. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. Chu, P. Wu, T. Li, Z. Wang, S. Zhu, and D. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Watanabe, E.

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Welsh, S. S.

Woods, R.

R. Gonzalez and R. Woods, Digital imaging processing (Addison-Wesley, Massachusetts, 1992).

Wu, G.

G. Wu, B. Masia, S. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light Field Image Processing: An Overview,” IEEE J. Sel. Top. Signal Process. 11(7), 926–954 (2017).
[Crossref]

Wu, J.

Wu, P.

R. Lin, V. Su, S. Wang, M. Chen, T. Chung, Y. Chen, H. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. Chu, P. Wu, T. Li, Z. Wang, S. Zhu, and D. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Yang, S. l.

Yao, M.

Zhang, H.

Z. Fan, H. Qiu, H. Zhang, X. Pang, L. Zhou, L. Liu, H. Ren, Q. Wang, and J. Dong, “A broadband achromatic metalens array for integral imaging in the visible,” Light: Sci. Appl. 8(1), 67 (2019).
[Crossref]

Zhang, J.

M. Sun and J. Zhang, “Single-pixel imaging and its application in three-dimensional reconstruction: a brief review,” Sensors 19(3), 732 (2019).
[Crossref]

Zhang, Y.

G. Wu, B. Masia, S. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light Field Image Processing: An Overview,” IEEE J. Sel. Top. Signal Process. 11(7), 926–954 (2017).
[Crossref]

H. Wang, Z. Göröcs, W. Luo, Y. Zhang, Y. Rivenson, L. Bentolila, and A. Ozcan, “Computational out-of-focus imaging increases the space–bandwidth product in lens-based coherent microscopy,” Optica 3(12), 1422–1429 (2016).
[Crossref]

Zhang, Z.

Zheng, G.

Zhong, J.

Zhou, L.

Z. Fan, H. Qiu, H. Zhang, X. Pang, L. Zhou, L. Liu, H. Ren, Q. Wang, and J. Dong, “A broadband achromatic metalens array for integral imaging in the visible,” Light: Sci. Appl. 8(1), 67 (2019).
[Crossref]

Zhu, S.

R. Lin, V. Su, S. Wang, M. Chen, T. Chung, Y. Chen, H. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. Chu, P. Wu, T. Li, Z. Wang, S. Zhu, and D. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

ACM T. Graphic. (1)

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM T. Graphic. 25(3), 924–934 (2006).
[Crossref]

Adv. Opt. Photonics (1)

M. Martínez-Corral and B. Javidi, “Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems,” Adv. Opt. Photonics 10(3), 512–566 (2018).
[Crossref]

Appl. Phys. Lett. (1)

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Signal Process. (1)

G. Wu, B. Masia, S. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light Field Image Processing: An Overview,” IEEE J. Sel. Top. Signal Process. 11(7), 926–954 (2017).
[Crossref]

IEEE Photonics J. (1)

M. Sun, W. Chen, T. Liu, and L. Li, “Image retrieval in spatial and temporal domains with a quadrant detector,” IEEE Photonics J. 9(5), 3901206 (2017).
[Crossref]

IEEE Signal Proc. Mag. (1)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag. 25(2), 83–91 (2008).
[Crossref]

J. Disp. Technol. (1)

H. Navarro, E. Sánchez-Ortiga, G. Saavedra, A. Llavador, A. Dorado, M. Martínez-Corral, and B. Javidi, “Non-homogeneity of lateral resolution in integral imaging,” J. Disp. Technol. 9(1), 37–43 (2013).
[Crossref]

J. Microsc. (1)

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref]

Light: Sci. Appl. (1)

Z. Fan, H. Qiu, H. Zhang, X. Pang, L. Zhou, L. Liu, H. Ren, Q. Wang, and J. Dong, “A broadband achromatic metalens array for integral imaging in the visible,” Light: Sci. Appl. 8(1), 67 (2019).
[Crossref]

Nat. Commun. (2)

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6(1), 6255 (2015).
[Crossref]

M. Sun, M. Edgar, G. Gibson, B. Sun, N. Radwell, R. Lamb, and M. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

Nat. Nanotechnol. (1)

R. Lin, V. Su, S. Wang, M. Chen, T. Chung, Y. Chen, H. Kuo, J. Chen, J. Chen, Y. Huang, J. Wang, C. Chu, P. Wu, T. Li, Z. Wang, S. Zhu, and D. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref]

Nat. Photonics (1)

M. P. Edgar, G. M. Gibson, and M. J. Padgett, “Principles and prospects for single-pixel imaging,” Nat. Photonics 13(1), 13–20 (2019).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Optica (3)

Sci. Adv. (1)

D. Phillips, M. Sun, J. Taylor, M. Edgar, S. Barnett, and G. Gibson, “Adaptive foveated single-pixel imaging with dynamic supersampling,” Sci. Adv. 3(4), e1601782 (2017).
[Crossref]

Sci. Rep. (1)

Z. Zhang, X. Wang, G. Zheng, and J. Zhong, “Fast Fourier single-pixel imaging via binary illumination,” Sci. Rep. 7(1), 12029 (2017).
[Crossref]

Science (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Sensors (1)

M. Sun and J. Zhang, “Single-pixel imaging and its application in three-dimensional reconstruction: a brief review,” Sensors 19(3), 732 (2019).
[Crossref]

Other (3)

H. S. Malvar, L. W. He, and R. Cutler, “High-quality linear interpolation for demosaicing of Bayer-patterned color images,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP, 2004), pp. 485–488.

J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005).

R. Gonzalez and R. Woods, Digital imaging processing (Addison-Wesley, Massachusetts, 1992).

Supplementary Material (4)

NameDescription
» Visualization 1       Light-field refocusing of a transmitting specimen by using a while LED and structured patterns
» Visualization 2       Light-field refocusing of a reflective specimen by using structured patterns and color 2D sensor
» Visualization 3       light-field refocusing of transmitted specimen by using color-coded structured patterns and monochromatic camera
» Visualization 4       light-field refocusing of a reflective specimen by using color-coded structured patterns and monochromatic camera

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1. Schematic diagram of the experimental setup used for generating Fourier basis patterns and imaging transmitted specimens. (RFP: rear focal plane)
Fig. 2.
Fig. 2. (a1)–(a3) Three sets of 1D intensity sequences recorded by the center single-pixel detector, corresponding to red, green, and blue channels, respectively; (b1)–(b3) red, green, and blue perspective images recovered from the 1D intensity sequences; (c) color-perspective image synthesized by Figs. 2(b1)–2(b3).
Fig. 3.
Fig. 3. Reconstruction procedure of full-color light-field microscopy by using Fourier basis patterns and color camera.
Fig. 4.
Fig. 4. (a1)–(a4) Locations of the single-pixel detectors; (b1)–(b4) color-perspective images retrieved from the rightmost, topmost, leftmost, and bottommost single-pixel detectors, respectively.
Fig. 5.
Fig. 5. Digitally refocused images (Visualization 1). (a) $z ={-} 77$ µm; (b) $z ={-} 10$ µm; (c) $z = 37$ µm.
Fig. 6.
Fig. 6. Schematic diagram of the experimental setup used for generating Fourier basis patterns and imaging reflective specimen. (RFP: rear focal plane; BS: beam splitter)
Fig. 7.
Fig. 7. (a1)–(a4) Locations of the single-pixel detectors; (b1)–(b4) color-perspective images retrieved from the rightmost, topmost, leftmost, and bottommost single-pixel detectors, respectively.
Fig. 8.
Fig. 8. Digitally refocused images (Visualization 2). (a) $z ={-} 14$ µm; (b) $z = 15$ µm; (c) $z = 38$ µm.
Fig. 9.
Fig. 9. Schematic diagram of the experimental setup used for generating color-coded Fourier basis patterns and imaging transmitted specimens. (RFP: rear focal plane)
Fig. 10.
Fig. 10. Principle of generating color-coded Fourier basis pattern [25].
Fig. 11.
Fig. 11. (a) 1D intensity sequence recorded by the center single-pixel detector; (b) mosaic-like image recovered from the 1D intensity sequence; (c) partially enlarged view of Fig. 11(b); (d) color image recovered from Fig. 11(b).
Fig. 12.
Fig. 12. Reconstruction procedure of full-color light-field microscopy by using color-coded Fourier basis patterns and monochrome camera.
Fig. 13.
Fig. 13. (a1)–(a4) Locations of the single-pixel detectors; (b1)–(b4) perspective images retrieved from the rightmost, topmost, leftmost, and bottommost single-pixel detectors, respectively.
Fig. 14.
Fig. 14. Digitally refocused images (Visualization 3). (a) $z ={-} 53$ µm; (b) $z = 22$ µm; (c) $z = 59$ µm.
Fig. 15.
Fig. 15. Schematic diagram of the experimental used for generating color-code Fourier basis patterns and imaging reflective specimen. (RFP: rear focal plane; BS: beam splitter)
Fig. 16.
Fig. 16. (a1)–(a4) Locations of the single-pixel detectors; (b1)–(b4) perspective images retrieved from the rightmost, topmost, leftmost, and bottommost single-pixel detectors, respectively.
Fig. 17.
Fig. 17. Digitally refocused images (Visualization 4). (a) $z ={-} 22$ µm; (b) $z ={-} 1$ µm; (c) $z = 15$ µm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

{ Δ x i = x i x c e n t e r Δ y i = y i y c e n t e r .
{ θ x i = arctan ( Δ x i tan ( arcsin ( N A / N A n n ) ) R ) θ y i = arctan ( Δ y i tan ( arcsin ( N A / N A n n ) ) R ) ,
{ Δ s x i = M Δ z tan ( θ x i ) s D M D = M Δ z Δ x i tan ( arcsin ( N A / N A n n ) ) s D M D R Δ s y i = M Δ z tan ( θ y i ) s D M D = M Δ z Δ y i tan ( arcsin ( N A / N A n n ) ) s D M D R ,
ρ g e o = 2 p F p M .
ρ d i f = 0.61 λ N A .
ρ p e r s _ i m g = max { ρ g e o ,   ρ d i f } .
ρ r e f o c [ ρ p e r s _ i m g 2 ,   ρ p e r s _ i m g ] .

Metrics