Abstract

Single-photon light detection and ranging (LiDAR), offering single-photon sensitivity and picosecond time resolution, has been widely adopted for active imaging applications. Long-range active imaging is a great challenge, because the spatial resolution degrades significantly with the imaging range due to the diffraction limit of the optics, and only weak echo signal photons can return but mixed with a strong background noise. Here we propose and demonstrate a photon-efficient LiDAR approach that can achieve sub-Rayleigh resolution imaging over long ranges. This approach exploits fine sub-pixel scanning and a deconvolution algorithm tailored to this long-range application. Using this approach, we experimentally demonstrated active three-dimensional (3D) single-photon imaging by recognizing different postures of a mannequin model at a stand-off distance of 8.2 km in both daylight and night. The observed spatial (transversal) resolution is ∼5.5 cm at 8.2 km, which is about twice of the system’s resolution. This also beats the optical system’s Rayleigh criterion. The results are valuable for geosciences and target recognition over long ranges.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single-photon three-dimensional imaging at up to 10 kilometers range

Agata M. Pawlikowska, Abderrahim Halimi, Robert A. Lamb, and Gerald S. Buller
Opt. Express 25(10) 11919-11931 (2017)

Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection

Aongus McCarthy, Nils J. Krichel, Nathan R. Gemmell, Ximing Ren, Michael G. Tanner, Sander N. Dorenbos, Val Zwiller, Robert H. Hadfield, and Gerald S. Buller
Opt. Express 21(7) 8904-8915 (2013)

Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector

Aongus McCarthy, Ximing Ren, Adriano Della Frera, Nathan R. Gemmell, Nils J. Krichel, Carmelo Scarcella, Alessandro Ruggeri, Alberto Tosi, and Gerald S. Buller
Opt. Express 21(19) 22098-22113 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
    [Crossref]
  2. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
    [Crossref]
  3. A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
    [Crossref]
  4. F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 spads and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
    [Crossref]
  5. H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015).
    [Crossref]
  6. Z. Li, E. Wu, C. Pang, B. Du, Y. Tao, H. Peng, H. Zeng, and G. Wu, “Multi-beam single-photon-counting three-dimensional imaging lidar,” Opt. Express 25(9), 10189–10195 (2017).
    [Crossref]
  7. A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25(10), 11919–11931 (2017).
    [Crossref]
  8. X. Ren, P. W. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS spad quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
    [Crossref]
  9. S. Chan, A. Halimi, F. Zhu, I. Gyongy, R. K. Henderson, R. Bowman, S. McLaughlin, G. S. Buller, and J. Leach, “Long-range depth imaging using a single-photon detector array and non-local data fusion,” Sci. Rep. 9(1), 8075 (2019).
    [Crossref]
  10. Z.-P. Li, X. Huang, Y. Cao, B. Wang, Y.-H. Li, W. Jin, C. Yu, J. Zhang, Q. Zhang, C.-Z. Peng, F. Xu, and J.-W. Pan, “Single-photon computational 3D imaging at 45 km,” arXiv preprint arXiv:1904.10341 (2019).
  11. Y. Altmann, S. McLaughlin, M. J. Padgett, V. K. Goyal, A. O. Hero, and D. Faccio, “Quantum-inspired computational imaging,” Science 361(6403), eaat2298 (2018).
    [Crossref]
  12. A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
    [Crossref]
  13. D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Comput. Imaging 1(2), 112–125 (2015).
    [Crossref]
  14. Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. on Image Process. 25(5), 1935–1946 (2016).
    [Crossref]
  15. D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7(1), 12046 (2016).
    [Crossref]
  16. J. Rapp and V. K. Goyal, “A few photons among many: Unmixing signal and noise for photon-efficient active imaging,” IEEE Trans. Comput. Imaging 3(3), 445–459 (2017).
    [Crossref]
  17. D. B. Lindell, M. O’Toole, and G. Wetzstein, “Single-photon 3D imaging with deep sensor fusion,” ACM Trans. Graph. 37(4), 1–12 (2018).
    [Crossref]
  18. H. Ur and D. Gross, “Improved resolution from subpixel shifted pictures,” CVGIP: Graph. Model. Image Process. 54(2), 181–186 (1992).
    [Crossref]
  19. S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
    [Crossref]
  20. S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Advances and challenges in super-resolution,” Int. J. Imaging Syst. Technol. 14(2), 47–57 (2004).
    [Crossref]
  21. M.-J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
    [Crossref]
  22. E. Choi, J. Choi, and M. G. Kang, “Super-resolution approach to overcome physical limitations of imaging sensors: An overview,” International Journal of Imaging Systems and Technology 14(2), 36–46 (2004).
    [Crossref]
  23. S. Jiang, X. Li, Z. Zhang, W. Jiang, Y. Wang, G. He, Y. Wang, and B. Sun, “Scan efficiency of structured illumination in iterative single pixel imaging,” Opt. Express 27(16), 22499–22507 (2019).
    [Crossref]
  24. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
    [Crossref]
  25. D. Shin, F. Xu, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24(3), 1873–1888 (2016).
    [Crossref]
  26. J. Tachella, Y. Altmann, S. McLaughlin, and J.-Y. Tourneret, “3D reconstruction using single-photon lidar data exploiting the widths of the returns,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (IEEE, 2019), pp. 7815–7819.
  27. J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12(1), 521–550 (2019).
    [Crossref]
  28. J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,” Nat. Commun. 10(1), 4984–4986 (2019).
    [Crossref]
  29. D. L. Snyder and M. I. Miller, Random point processes in time and space (Springer Science & Business Media, 2012).
  30. Z. T. Harmany, R. F. Marcia, and R. M. Willett, “This is SPIRAL-TAP: Sparse poisson intensity reconstruction algorithms–theory and practice,” IEEE Trans. on Image Process. 21(3), 1084–1096 (2012).
    [Crossref]
  31. D. Scharstein and C. Pal, “Learning conditional random fields for stereo,” in 2007 IEEE Conference on Computer Vision and Pattern Recognition, (IEEE, 2007), pp. 1–8.
  32. C. Yu, M. Shangguan, H. Xia, J. Zhang, X. Dou, and J. W. Pan, “Fully integrated free-running InGaAs/InP single-photon detector for accurate lidar applications,” Opt. Express 25(13), 14611–14620 (2017).
    [Crossref]

2019 (4)

S. Chan, A. Halimi, F. Zhu, I. Gyongy, R. K. Henderson, R. Bowman, S. McLaughlin, G. S. Buller, and J. Leach, “Long-range depth imaging using a single-photon detector array and non-local data fusion,” Sci. Rep. 9(1), 8075 (2019).
[Crossref]

S. Jiang, X. Li, Z. Zhang, W. Jiang, Y. Wang, G. He, Y. Wang, and B. Sun, “Scan efficiency of structured illumination in iterative single pixel imaging,” Opt. Express 27(16), 22499–22507 (2019).
[Crossref]

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12(1), 521–550 (2019).
[Crossref]

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,” Nat. Commun. 10(1), 4984–4986 (2019).
[Crossref]

2018 (3)

Y. Altmann, S. McLaughlin, M. J. Padgett, V. K. Goyal, A. O. Hero, and D. Faccio, “Quantum-inspired computational imaging,” Science 361(6403), eaat2298 (2018).
[Crossref]

D. B. Lindell, M. O’Toole, and G. Wetzstein, “Single-photon 3D imaging with deep sensor fusion,” ACM Trans. Graph. 37(4), 1–12 (2018).
[Crossref]

X. Ren, P. W. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS spad quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref]

2017 (4)

2016 (4)

D. Shin, F. Xu, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24(3), 1873–1888 (2016).
[Crossref]

M.-J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. on Image Process. 25(5), 1935–1946 (2016).
[Crossref]

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7(1), 12046 (2016).
[Crossref]

2015 (2)

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Comput. Imaging 1(2), 112–125 (2015).
[Crossref]

H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015).
[Crossref]

2014 (2)

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 spads and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref]

2013 (2)

2012 (1)

Z. T. Harmany, R. F. Marcia, and R. M. Willett, “This is SPIRAL-TAP: Sparse poisson intensity reconstruction algorithms–theory and practice,” IEEE Trans. on Image Process. 21(3), 1084–1096 (2012).
[Crossref]

2009 (1)

2007 (1)

G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

2004 (2)

E. Choi, J. Choi, and M. G. Kang, “Super-resolution approach to overcome physical limitations of imaging sensors: An overview,” International Journal of Imaging Systems and Technology 14(2), 36–46 (2004).
[Crossref]

S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Advances and challenges in super-resolution,” Int. J. Imaging Syst. Technol. 14(2), 47–57 (2004).
[Crossref]

2003 (1)

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

1992 (1)

H. Ur and D. Gross, “Improved resolution from subpixel shifted pictures,” CVGIP: Graph. Model. Image Process. 54(2), 181–186 (1992).
[Crossref]

Altmann, Y.

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,” Nat. Commun. 10(1), 4984–4986 (2019).
[Crossref]

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12(1), 521–550 (2019).
[Crossref]

Y. Altmann, S. McLaughlin, M. J. Padgett, V. K. Goyal, A. O. Hero, and D. Faccio, “Quantum-inspired computational imaging,” Science 361(6403), eaat2298 (2018).
[Crossref]

X. Ren, P. W. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS spad quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. on Image Process. 25(5), 1935–1946 (2016).
[Crossref]

J. Tachella, Y. Altmann, S. McLaughlin, and J.-Y. Tourneret, “3D reconstruction using single-photon lidar data exploiting the widths of the returns,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (IEEE, 2019), pp. 7815–7819.

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Bowman, R.

S. Chan, A. Halimi, F. Zhu, I. Gyongy, R. K. Henderson, R. Bowman, S. McLaughlin, G. S. Buller, and J. Leach, “Long-range depth imaging using a single-photon detector array and non-local data fusion,” Sci. Rep. 9(1), 8075 (2019).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Brockherde, W.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 spads and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

Bronzi, D.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 spads and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

Buller, G.

G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

Buller, G. S.

S. Chan, A. Halimi, F. Zhu, I. Gyongy, R. K. Henderson, R. Bowman, S. McLaughlin, G. S. Buller, and J. Leach, “Long-range depth imaging using a single-photon detector array and non-local data fusion,” Sci. Rep. 9(1), 8075 (2019).
[Crossref]

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,” Nat. Commun. 10(1), 4984–4986 (2019).
[Crossref]

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12(1), 521–550 (2019).
[Crossref]

X. Ren, P. W. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS spad quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref]

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25(10), 11919–11931 (2017).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. on Image Process. 25(5), 1935–1946 (2016).
[Crossref]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
[Crossref]

Cao, Y.

Z.-P. Li, X. Huang, Y. Cao, B. Wang, Y.-H. Li, W. Jin, C. Yu, J. Zhang, Q. Zhang, C.-Z. Peng, F. Xu, and J.-W. Pan, “Single-photon computational 3D imaging at 45 km,” arXiv preprint arXiv:1904.10341 (2019).

Chan, S.

S. Chan, A. Halimi, F. Zhu, I. Gyongy, R. K. Henderson, R. Bowman, S. McLaughlin, G. S. Buller, and J. Leach, “Long-range depth imaging using a single-photon detector array and non-local data fusion,” Sci. Rep. 9(1), 8075 (2019).
[Crossref]

Chen, S.

Choi, E.

E. Choi, J. Choi, and M. G. Kang, “Super-resolution approach to overcome physical limitations of imaging sensors: An overview,” International Journal of Imaging Systems and Technology 14(2), 36–46 (2004).
[Crossref]

Choi, J.

E. Choi, J. Choi, and M. G. Kang, “Super-resolution approach to overcome physical limitations of imaging sensors: An overview,” International Journal of Imaging Systems and Technology 14(2), 36–46 (2004).
[Crossref]

Colaço, A.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref]

Collins, R. J.

Connolly, P. W.

Contini, D.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 spads and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

Dalla Mora, A.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 spads and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

Della Frera, A.

Dou, X.

Du, B.

Durini, D.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 spads and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

Edgar, M. P.

M.-J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Elad, M.

S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Advances and challenges in super-resolution,” Int. J. Imaging Syst. Technol. 14(2), 47–57 (2004).
[Crossref]

Faccio, D.

Y. Altmann, S. McLaughlin, M. J. Padgett, V. K. Goyal, A. O. Hero, and D. Faccio, “Quantum-inspired computational imaging,” Science 361(6403), eaat2298 (2018).
[Crossref]

Farsiu, S.

S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Advances and challenges in super-resolution,” Int. J. Imaging Syst. Technol. 14(2), 47–57 (2004).
[Crossref]

Fernández, V.

Gemmell, N. R.

Gibson, G. M.

Goyal, V. K.

Y. Altmann, S. McLaughlin, M. J. Padgett, V. K. Goyal, A. O. Hero, and D. Faccio, “Quantum-inspired computational imaging,” Science 361(6403), eaat2298 (2018).
[Crossref]

J. Rapp and V. K. Goyal, “A few photons among many: Unmixing signal and noise for photon-efficient active imaging,” IEEE Trans. Comput. Imaging 3(3), 445–459 (2017).
[Crossref]

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7(1), 12046 (2016).
[Crossref]

D. Shin, F. Xu, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24(3), 1873–1888 (2016).
[Crossref]

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Comput. Imaging 1(2), 112–125 (2015).
[Crossref]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref]

Gross, D.

H. Ur and D. Gross, “Improved resolution from subpixel shifted pictures,” CVGIP: Graph. Model. Image Process. 54(2), 181–186 (1992).
[Crossref]

Gyongy, I.

S. Chan, A. Halimi, F. Zhu, I. Gyongy, R. K. Henderson, R. Bowman, S. McLaughlin, G. S. Buller, and J. Leach, “Long-range depth imaging using a single-photon detector array and non-local data fusion,” Sci. Rep. 9(1), 8075 (2019).
[Crossref]

X. Ren, P. W. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS spad quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref]

Halimi, A.

Harmany, Z. T.

Z. T. Harmany, R. F. Marcia, and R. M. Willett, “This is SPIRAL-TAP: Sparse poisson intensity reconstruction algorithms–theory and practice,” IEEE Trans. on Image Process. 21(3), 1084–1096 (2012).
[Crossref]

He, G.

He, Y.

Henderson, R. K.

S. Chan, A. Halimi, F. Zhu, I. Gyongy, R. K. Henderson, R. Bowman, S. McLaughlin, G. S. Buller, and J. Leach, “Long-range depth imaging using a single-photon detector array and non-local data fusion,” Sci. Rep. 9(1), 8075 (2019).
[Crossref]

X. Ren, P. W. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS spad quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref]

Hero, A. O.

Y. Altmann, S. McLaughlin, M. J. Padgett, V. K. Goyal, A. O. Hero, and D. Faccio, “Quantum-inspired computational imaging,” Science 361(6403), eaat2298 (2018).
[Crossref]

Huang, X.

Z.-P. Li, X. Huang, Y. Cao, B. Wang, Y.-H. Li, W. Jin, C. Yu, J. Zhang, Q. Zhang, C.-Z. Peng, F. Xu, and J.-W. Pan, “Single-photon computational 3D imaging at 45 km,” arXiv preprint arXiv:1904.10341 (2019).

Jiang, S.

Jiang, W.

Jin, W.

Z.-P. Li, X. Huang, Y. Cao, B. Wang, Y.-H. Li, W. Jin, C. Yu, J. Zhang, Q. Zhang, C.-Z. Peng, F. Xu, and J.-W. Pan, “Single-photon computational 3D imaging at 45 km,” arXiv preprint arXiv:1904.10341 (2019).

Kang, M. G.

E. Choi, J. Choi, and M. G. Kang, “Super-resolution approach to overcome physical limitations of imaging sensors: An overview,” International Journal of Imaging Systems and Technology 14(2), 36–46 (2004).
[Crossref]

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

Kirmani, A.

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Comput. Imaging 1(2), 112–125 (2015).
[Crossref]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref]

Krichel, N. J.

Lamb, R. A.

Leach, J.

S. Chan, A. Halimi, F. Zhu, I. Gyongy, R. K. Henderson, R. Bowman, S. McLaughlin, G. S. Buller, and J. Leach, “Long-range depth imaging using a single-photon detector array and non-local data fusion,” Sci. Rep. 9(1), 8075 (2019).
[Crossref]

Li, X.

Li, Y.-H.

Z.-P. Li, X. Huang, Y. Cao, B. Wang, Y.-H. Li, W. Jin, C. Yu, J. Zhang, Q. Zhang, C.-Z. Peng, F. Xu, and J.-W. Pan, “Single-photon computational 3D imaging at 45 km,” arXiv preprint arXiv:1904.10341 (2019).

Li, Z.

Li, Z.-P.

Z.-P. Li, X. Huang, Y. Cao, B. Wang, Y.-H. Li, W. Jin, C. Yu, J. Zhang, Q. Zhang, C.-Z. Peng, F. Xu, and J.-W. Pan, “Single-photon computational 3D imaging at 45 km,” arXiv preprint arXiv:1904.10341 (2019).

Lindell, D. B.

D. B. Lindell, M. O’Toole, and G. Wetzstein, “Single-photon 3D imaging with deep sensor fusion,” ACM Trans. Graph. 37(4), 1–12 (2018).
[Crossref]

Lussana, R.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7(1), 12046 (2016).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 spads and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

Marcia, R. F.

Z. T. Harmany, R. F. Marcia, and R. M. Willett, “This is SPIRAL-TAP: Sparse poisson intensity reconstruction algorithms–theory and practice,” IEEE Trans. on Image Process. 21(3), 1084–1096 (2012).
[Crossref]

McCarthy, A.

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,” Nat. Commun. 10(1), 4984–4986 (2019).
[Crossref]

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12(1), 521–550 (2019).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. on Image Process. 25(5), 1935–1946 (2016).
[Crossref]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
[Crossref]

McLaughlin, S.

S. Chan, A. Halimi, F. Zhu, I. Gyongy, R. K. Henderson, R. Bowman, S. McLaughlin, G. S. Buller, and J. Leach, “Long-range depth imaging using a single-photon detector array and non-local data fusion,” Sci. Rep. 9(1), 8075 (2019).
[Crossref]

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12(1), 521–550 (2019).
[Crossref]

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,” Nat. Commun. 10(1), 4984–4986 (2019).
[Crossref]

Y. Altmann, S. McLaughlin, M. J. Padgett, V. K. Goyal, A. O. Hero, and D. Faccio, “Quantum-inspired computational imaging,” Science 361(6403), eaat2298 (2018).
[Crossref]

X. Ren, P. W. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS spad quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. on Image Process. 25(5), 1935–1946 (2016).
[Crossref]

J. Tachella, Y. Altmann, S. McLaughlin, and J.-Y. Tourneret, “3D reconstruction using single-photon lidar data exploiting the widths of the returns,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (IEEE, 2019), pp. 7815–7819.

Mellado, N.

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,” Nat. Commun. 10(1), 4984–4986 (2019).
[Crossref]

Milanfar, P.

S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Advances and challenges in super-resolution,” Int. J. Imaging Syst. Technol. 14(2), 47–57 (2004).
[Crossref]

Miller, M. I.

D. L. Snyder and M. I. Miller, Random point processes in time and space (Springer Science & Business Media, 2012).

O’Toole, M.

D. B. Lindell, M. O’Toole, and G. Wetzstein, “Single-photon 3D imaging with deep sensor fusion,” ACM Trans. Graph. 37(4), 1–12 (2018).
[Crossref]

Padgett, M.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Padgett, M. J.

Y. Altmann, S. McLaughlin, M. J. Padgett, V. K. Goyal, A. O. Hero, and D. Faccio, “Quantum-inspired computational imaging,” Science 361(6403), eaat2298 (2018).
[Crossref]

M.-J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
[Crossref]

Pal, C.

D. Scharstein and C. Pal, “Learning conditional random fields for stereo,” in 2007 IEEE Conference on Computer Vision and Pattern Recognition, (IEEE, 2007), pp. 1–8.

Pan, J. W.

Pan, J.-W.

Z.-P. Li, X. Huang, Y. Cao, B. Wang, Y.-H. Li, W. Jin, C. Yu, J. Zhang, Q. Zhang, C.-Z. Peng, F. Xu, and J.-W. Pan, “Single-photon computational 3D imaging at 45 km,” arXiv preprint arXiv:1904.10341 (2019).

Pang, C.

Park, M. K.

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

Park, S. C.

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

Pawlikowska, A. M.

Peng, C.-Z.

Z.-P. Li, X. Huang, Y. Cao, B. Wang, Y.-H. Li, W. Jin, C. Yu, J. Zhang, Q. Zhang, C.-Z. Peng, F. Xu, and J.-W. Pan, “Single-photon computational 3D imaging at 45 km,” arXiv preprint arXiv:1904.10341 (2019).

Peng, H.

Phillips, D. B.

Rapp, J.

J. Rapp and V. K. Goyal, “A few photons among many: Unmixing signal and noise for photon-efficient active imaging,” IEEE Trans. Comput. Imaging 3(3), 445–459 (2017).
[Crossref]

Ren, X.

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12(1), 521–550 (2019).
[Crossref]

X. Ren, P. W. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS spad quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. on Image Process. 25(5), 1935–1946 (2016).
[Crossref]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref]

Robinson, D.

S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Advances and challenges in super-resolution,” Int. J. Imaging Syst. Technol. 14(2), 47–57 (2004).
[Crossref]

Ruggeri, A.

Scarcella, C.

Scharstein, D.

D. Scharstein and C. Pal, “Learning conditional random fields for stereo,” in 2007 IEEE Conference on Computer Vision and Pattern Recognition, (IEEE, 2007), pp. 1–8.

Shangguan, M.

Shapiro, J. H.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7(1), 12046 (2016).
[Crossref]

D. Shin, F. Xu, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24(3), 1873–1888 (2016).
[Crossref]

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Comput. Imaging 1(2), 112–125 (2015).
[Crossref]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref]

Shin, D.

D. Shin, F. Xu, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24(3), 1873–1888 (2016).
[Crossref]

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7(1), 12046 (2016).
[Crossref]

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Comput. Imaging 1(2), 112–125 (2015).
[Crossref]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref]

Snyder, D. L.

D. L. Snyder and M. I. Miller, Random point processes in time and space (Springer Science & Business Media, 2012).

Sun, B.

S. Jiang, X. Li, Z. Zhang, W. Jiang, Y. Wang, G. He, Y. Wang, and B. Sun, “Scan efficiency of structured illumination in iterative single pixel imaging,” Opt. Express 27(16), 22499–22507 (2019).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Sun, M.-J.

Tachella, J.

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,” Nat. Commun. 10(1), 4984–4986 (2019).
[Crossref]

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12(1), 521–550 (2019).
[Crossref]

J. Tachella, Y. Altmann, S. McLaughlin, and J.-Y. Tourneret, “3D reconstruction using single-photon lidar data exploiting the widths of the returns,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (IEEE, 2019), pp. 7815–7819.

Tao, Y.

Tisa, S.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 spads and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

Tobin, R.

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,” Nat. Commun. 10(1), 4984–4986 (2019).
[Crossref]

Tosi, A.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 spads and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref]

Tourneret, J.-Y.

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12(1), 521–550 (2019).
[Crossref]

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,” Nat. Commun. 10(1), 4984–4986 (2019).
[Crossref]

J. Tachella, Y. Altmann, S. McLaughlin, and J.-Y. Tourneret, “3D reconstruction using single-photon lidar data exploiting the widths of the returns,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (IEEE, 2019), pp. 7815–7819.

Ur, H.

H. Ur and D. Gross, “Improved resolution from subpixel shifted pictures,” CVGIP: Graph. Model. Image Process. 54(2), 181–186 (1992).
[Crossref]

Venkatraman, D.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7(1), 12046 (2016).
[Crossref]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref]

Villa, F.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7(1), 12046 (2016).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 spads and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Wallace, A.

G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

Wallace, A. M.

Wang, B.

Z.-P. Li, X. Huang, Y. Cao, B. Wang, Y.-H. Li, W. Jin, C. Yu, J. Zhang, Q. Zhang, C.-Z. Peng, F. Xu, and J.-W. Pan, “Single-photon computational 3D imaging at 45 km,” arXiv preprint arXiv:1904.10341 (2019).

Wang, Y.

Wang, Z.

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Wetzstein, G.

D. B. Lindell, M. O’Toole, and G. Wetzstein, “Single-photon 3D imaging with deep sensor fusion,” ACM Trans. Graph. 37(4), 1–12 (2018).
[Crossref]

Weyers, S.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 spads and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

Willett, R. M.

Z. T. Harmany, R. F. Marcia, and R. M. Willett, “This is SPIRAL-TAP: Sparse poisson intensity reconstruction algorithms–theory and practice,” IEEE Trans. on Image Process. 21(3), 1084–1096 (2012).
[Crossref]

Wong, F. N.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7(1), 12046 (2016).
[Crossref]

D. Shin, F. Xu, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24(3), 1873–1888 (2016).
[Crossref]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref]

Wu, E.

Wu, G.

Wu, J.

Xia, H.

Xie, X.

Xu, F.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7(1), 12046 (2016).
[Crossref]

D. Shin, F. Xu, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24(3), 1873–1888 (2016).
[Crossref]

Z.-P. Li, X. Huang, Y. Cao, B. Wang, Y.-H. Li, W. Jin, C. Yu, J. Zhang, Q. Zhang, C.-Z. Peng, F. Xu, and J.-W. Pan, “Single-photon computational 3D imaging at 45 km,” arXiv preprint arXiv:1904.10341 (2019).

You, L.

Yu, C.

C. Yu, M. Shangguan, H. Xia, J. Zhang, X. Dou, and J. W. Pan, “Fully integrated free-running InGaAs/InP single-photon detector for accurate lidar applications,” Opt. Express 25(13), 14611–14620 (2017).
[Crossref]

Z.-P. Li, X. Huang, Y. Cao, B. Wang, Y.-H. Li, W. Jin, C. Yu, J. Zhang, Q. Zhang, C.-Z. Peng, F. Xu, and J.-W. Pan, “Single-photon computational 3D imaging at 45 km,” arXiv preprint arXiv:1904.10341 (2019).

Zappa, F.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7(1), 12046 (2016).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 spads and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

Zeng, H.

Zhang, J.

C. Yu, M. Shangguan, H. Xia, J. Zhang, X. Dou, and J. W. Pan, “Fully integrated free-running InGaAs/InP single-photon detector for accurate lidar applications,” Opt. Express 25(13), 14611–14620 (2017).
[Crossref]

Z.-P. Li, X. Huang, Y. Cao, B. Wang, Y.-H. Li, W. Jin, C. Yu, J. Zhang, Q. Zhang, C.-Z. Peng, F. Xu, and J.-W. Pan, “Single-photon computational 3D imaging at 45 km,” arXiv preprint arXiv:1904.10341 (2019).

Zhang, Q.

Z.-P. Li, X. Huang, Y. Cao, B. Wang, Y.-H. Li, W. Jin, C. Yu, J. Zhang, Q. Zhang, C.-Z. Peng, F. Xu, and J.-W. Pan, “Single-photon computational 3D imaging at 45 km,” arXiv preprint arXiv:1904.10341 (2019).

Zhang, W.

Zhang, Z.

Zhou, H.

Zhu, F.

S. Chan, A. Halimi, F. Zhu, I. Gyongy, R. K. Henderson, R. Bowman, S. McLaughlin, G. S. Buller, and J. Leach, “Long-range depth imaging using a single-photon detector array and non-local data fusion,” Sci. Rep. 9(1), 8075 (2019).
[Crossref]

ACM Trans. Graph. (1)

D. B. Lindell, M. O’Toole, and G. Wetzstein, “Single-photon 3D imaging with deep sensor fusion,” ACM Trans. Graph. 37(4), 1–12 (2018).
[Crossref]

Appl. Opt. (1)

CVGIP: Graph. Model. Image Process. (1)

H. Ur and D. Gross, “Improved resolution from subpixel shifted pictures,” CVGIP: Graph. Model. Image Process. 54(2), 181–186 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 spads and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

IEEE Signal Process. Mag. (1)

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

IEEE Trans. Comput. Imaging (2)

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Comput. Imaging 1(2), 112–125 (2015).
[Crossref]

J. Rapp and V. K. Goyal, “A few photons among many: Unmixing signal and noise for photon-efficient active imaging,” IEEE Trans. Comput. Imaging 3(3), 445–459 (2017).
[Crossref]

IEEE Trans. on Image Process. (2)

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. on Image Process. 25(5), 1935–1946 (2016).
[Crossref]

Z. T. Harmany, R. F. Marcia, and R. M. Willett, “This is SPIRAL-TAP: Sparse poisson intensity reconstruction algorithms–theory and practice,” IEEE Trans. on Image Process. 21(3), 1084–1096 (2012).
[Crossref]

Int. J. Imaging Syst. Technol. (1)

S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Advances and challenges in super-resolution,” Int. J. Imaging Syst. Technol. 14(2), 47–57 (2004).
[Crossref]

International Journal of Imaging Systems and Technology (1)

E. Choi, J. Choi, and M. G. Kang, “Super-resolution approach to overcome physical limitations of imaging sensors: An overview,” International Journal of Imaging Systems and Technology 14(2), 36–46 (2004).
[Crossref]

Nat. Commun. (2)

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7(1), 12046 (2016).
[Crossref]

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,” Nat. Commun. 10(1), 4984–4986 (2019).
[Crossref]

Opt. Express (9)

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref]

H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015).
[Crossref]

D. Shin, F. Xu, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24(3), 1873–1888 (2016).
[Crossref]

M.-J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
[Crossref]

Z. Li, E. Wu, C. Pang, B. Du, Y. Tao, H. Peng, H. Zeng, and G. Wu, “Multi-beam single-photon-counting three-dimensional imaging lidar,” Opt. Express 25(9), 10189–10195 (2017).
[Crossref]

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25(10), 11919–11931 (2017).
[Crossref]

C. Yu, M. Shangguan, H. Xia, J. Zhang, X. Dou, and J. W. Pan, “Fully integrated free-running InGaAs/InP single-photon detector for accurate lidar applications,” Opt. Express 25(13), 14611–14620 (2017).
[Crossref]

X. Ren, P. W. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS spad quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref]

S. Jiang, X. Li, Z. Zhang, W. Jiang, Y. Wang, G. He, Y. Wang, and B. Sun, “Scan efficiency of structured illumination in iterative single pixel imaging,” Opt. Express 27(16), 22499–22507 (2019).
[Crossref]

Sci. Rep. (1)

S. Chan, A. Halimi, F. Zhu, I. Gyongy, R. K. Henderson, R. Bowman, S. McLaughlin, G. S. Buller, and J. Leach, “Long-range depth imaging using a single-photon detector array and non-local data fusion,” Sci. Rep. 9(1), 8075 (2019).
[Crossref]

Science (3)

Y. Altmann, S. McLaughlin, M. J. Padgett, V. K. Goyal, A. O. Hero, and D. Faccio, “Quantum-inspired computational imaging,” Science 361(6403), eaat2298 (2018).
[Crossref]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

SIAM J. Imaging Sci. (1)

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12(1), 521–550 (2019).
[Crossref]

Other (4)

J. Tachella, Y. Altmann, S. McLaughlin, and J.-Y. Tourneret, “3D reconstruction using single-photon lidar data exploiting the widths of the returns,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (IEEE, 2019), pp. 7815–7819.

Z.-P. Li, X. Huang, Y. Cao, B. Wang, Y.-H. Li, W. Jin, C. Yu, J. Zhang, Q. Zhang, C.-Z. Peng, F. Xu, and J.-W. Pan, “Single-photon computational 3D imaging at 45 km,” arXiv preprint arXiv:1904.10341 (2019).

D. L. Snyder and M. I. Miller, Random point processes in time and space (Springer Science & Business Media, 2012).

D. Scharstein and C. Pal, “Learning conditional random fields for stereo,” in 2007 IEEE Conference on Computer Vision and Pattern Recognition, (IEEE, 2007), pp. 1–8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of the sub-pixel scanning method. (a). Over long-range, even a very small FoV becomes a large patch projected on the target in far field. The spatial resolution deteriorates with the imaging distance. (b). Standard point-by-point scanning scheme. (c). The inter-pixel scanning space is set to be 1/8 FoV. (d). The sub-pixel scanning is performed in both $x$ and $y$ directions.
Fig. 2.
Fig. 2. Ideal simulations on a resolution chart. This simulation only takes the Poisson noise and system jitter into account. We simulated the FoV of two different sizes, 5$\times$5 and 15$\times$15, to illustrate the FoV for short and long distance. The first column shows the results without sub-pixel scanning. The second column shows the results with sub-pixel scanning and conventional pixelwise ML processing. The third column shows the results with sub-pixel scanning and our 3D deconvolutional processing. The step of the sub-pixel scanning is set to 1 pixel of the chart, i.e., the inter-pixel spacing is set to the size of the 1/4 FoV and 1/14 FoV respectively for the 5$\times$5 FoV and the 15$\times$15 FoV. From the results, we can get three inferences. First, when the imaging distance is becoming farther, the size of the FoV is becoming larger, and the resolution of the image becomes worse, as shown in the first column. Second, with the sub-pixel scanning scheme, the resolution becomes better, as shown in the second column. Third, our 3D deconvolutional algorithm substantially outperforms pixelwise ML.
Fig. 3.
Fig. 3. Low-light-level simulation. The size of FoV is 9$\times$9, the SBR is 0.2, the average number of detected signal photons are 1, 5, 10 PPP. The sub-pixel scanning data is also processed by algorithms of log-match (LM) filter, Shin et al. 2016 [15], Rapp and Goyal 2017 [16] and Tachella et al. 2019 [27]. Quantitative results in terms of root mean square error (RMSE) are shown in the bottom of each figure. Clearly, our 3D deconvolutional algorithm has a smaller RMSE and superior performance to exhibit the details of the images.
Fig. 4.
Fig. 4. Schematic diagram of experimental setup. AOM, acoustic-optical modulator; MMF, multimode fiber; PMF, polarization-maintaining fiber; AFG, Arbitrary Function Generator; TDC, time digital converter. A scanning mirror mounted on a piezo tip-tilt platform is used to steer the beam in both x and y axial directions. The optics is designed to near-diffraction limit. The transmitting divergence is about 35$\mu rad$. The receive fiber is a multi-mode fiber (MMF) with a core diameter of 62.5 $\mu m$ before the detector. It ensures a small FoV of 22.3 $\mu rad$. Both transmitter and receiver path pass through the same 28x expander coaxially which is the combination of the telescope (f = 2800 mm) and eyepiece (f = 100 mm). With this configuration, the receiver’s FoV is slightly smaller than transmitter divergence. In addition, a standard camera (f=700 mm) was paraxially mounted on the telescope to provide a convenient direction and alignment aid for long distances.
Fig. 5.
Fig. 5. Experimental results. (a), Satellite image of the topology of the experiment in Shanghai city. (b), Visible-band image of the target scene taken by a standard astronomical camera at a stand-off distance of 8.2 km. The red rectangle indicates the approximate LiDAR’s FoV. (c), Visible-band image of the target taken by a camera from a nearby building. A mannequin model with human size is placed in a room nearby the front window on 17-level floor of a tall building. (d) Imaging results of the different postures of the mannequin over 8.2 km range at night. The first column is the ground truth photon. The second column is the results without sub-pixel scanning. The third column is the reconstructed results with sub-pixel scanning and pixelwise ML. The forth column is the results with sub-pixel scanning and the 3D deconvolutional algorithm, where different postures of the human-size mannequin can be clearly recognized. The average signal photons of these results are $\sim$1 to 6 PPP and the SBR is $\sim$0.24.
Fig. 6.
Fig. 6. Experimental results in daylight. Similar to Fig. 5, different postures of the mannequin at 8.2 km were taken by our single-photon LiDAR in daylight. The last column shows the results with sub-pixel scanning and the 3D deconvolutional algorithm. The average signal photons are $\sim$1 to 6 PPP and the SBR is $\sim$0.16.

Tables (1)

Tables Icon

Table 1. Summary of the system parameters.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ θ = 2.44 λ D .
F ( t ; θ x , θ y ) = θ x , θ y F o V g x y ( θ x θ x ) r ( θ x , θ y ) g t ( t 2 d ( θ x , θ y ) / c ) d θ x d θ y + b ,
Y Poisson ( g R D + B ) ,
minimize R D L R D ( R D ; Y , g , B ) + β p e n a l t y ( R D ) subject to R D i , j , k 0 , i , j , k .

Metrics