Abstract

We present and characterize a narrow-linewidth external-cavity diode laser at 2 μm, and show that it represents a low-cost, high-performance alternative to fiber lasers for research into 2 μm photonic technologies for next-generation gravitational-wave detectors. A linewidth of 20 kHz for a 10 ms integration time was measured without any active stabilization, with frequency noise of ∼ 15 Hz/$\sqrt {\textrm {Hz}}$ between 3 kHz and 100 kHz. This performance is suitable for the generation of quantum squeezed light, and we measure intensity noise comparable to that of master oscillators used in current gravitational wave interferometers. The laser wavelength is tunable over a 120 nm range, and both the frequency and intensity can be modulated at up to 10 MHz by modulating the diode current. These features also make it suitable for other emerging applications in the 2 μm wavelength region including gas sensing, optical communications and LIDAR.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Widely tunable, narrow linewidth external-cavity gain chip laser for spectroscopy between 1.0 – 1.1 µm

Dong K. Shin, Bryce M. Henson, Roman I. Khakimov, Jacob A. Ross, Colin J. Dedman, Sean S. Hodgman, Kenneth G. H. Baldwin, and Andrew G. Truscott
Opt. Express 24(24) 27403-27414 (2016)

External cavity diode lasers with 5kHz linewidth and 200nm tuning range at 1.55μm and methods for linewidth measurement

Shayne Bennetts, Gordon D. McDonald, Kyle S. Hardman, John E. Debs, Carlos C. N. Kuhn, John D. Close, and Nicholas P Robins
Opt. Express 22(9) 10642-10654 (2014)

Narrow-linewidth fiber amplifier for gravitational-wave detectors

Aaron Buikema, Franklin Jose, Steven J. Augst, Peter Fritschel, and Nergis Mavalvala
Opt. Lett. 44(15) 3833-3836 (2019)

References

  • View by:
  • |
  • |
  • |

  1. LIGO Scientific Collaboration and Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116(6), 061102 (2016).
    [Crossref]
  2. LIGO Scientific Collaboration and Virgo Collaboration, “GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs,” Phys. Rev. X 9(3), 031040 (2019).
    [Crossref]
  3. LIGO Scientific Collaboration and Virgo Collaboration, “Binary black hole population properties inferred from the first and second observing runs of advanced LIGO and advanced Virgo,” Astrophys. J., Lett. 882(2), L24 (2019).
    [Crossref]
  4. M. Agathos, J. Meidam, W. Del Pozzo, T. G. F. Li, M. Tompitak, J. Veitch, S. Vitale, and C. Van Den Broeck, “Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars,” Phys. Rev. D 92(2), 023012 (2015).
    [Crossref]
  5. E. Berti, A. Sesana, E. Barausse, V. Cardoso, and K. Belczynski, “Spectroscopy of Kerr black holes with earth and space-based interferometers,” Phys. Rev. Lett. 117(10), 101102 (2016).
    [Crossref]
  6. S. Rowan, R. L. Byer, M. M. Fejer, R. K. Route, G. Cagnoli, D. R. Crooks, J. Hough, P. H. Sneddon, and W. Winkler, “Test mass materials for a new generation of gravitational wave detectors,” in Gravitational-Wave Detection, vol. 4856P. Saulson and A. M. Cruise, eds., International Society for Optics and Photonics (SPIE, 2003), pp. 292–297.
  7. J. Steinlechner, I. W. Martin, A. S. Bell, J. Hough, M. Fletcher, P. G. Murray, R. Robie, S. Rowan, and R. Schnabel, “Silicon-based optical mirror coatings for ultrahigh precision metrology and sensing,” Phys. Rev. Lett. 120(26), 263602 (2018).
    [Crossref]
  8. P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, and A. Rogalski, “New concepts in infrared photodetector designs,” Appl. Phys. Rev. 1(4), 041102 (2014).
    [Crossref]
  9. The LIGO Scientific Collaboration, LIGO Voyager upgrade design concept, LIGO Technical Note No. T1400226 (2019).
  10. The LIGO Scientific Collaboration, Instrument science white paper, LIGO Technical Note No. T1900409 (2019).
  11. G. L. Mansell, T. G. McRae, P. A. Altin, M. J. Yap, R. L. Ward, B. J. J. Slagmolen, D. A. Shaddock, and D. E. McClelland, “Observation of squeezed light in the 2 μm region,” Phys. Rev. Lett. 120(20), 203603 (2018).
    [Crossref]
  12. M. J. Yap, D. W. Gould, T. G. McRae, P. A. Altin, N. Kijbunchoo, G. L. Mansell, R. L. Ward, D. A. Shaddock, B. J. J. Slagmolen, and D. E. McClelland, “Squeezed vacuum phase control at 2 μm,” Opt. Lett. 44(21), 5386 (2019).
    [Crossref]
  13. The LIGO Scientific Collaboration, “Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy,” Phys. Rev. Lett. 123(23), 231107 (2019).
    [Crossref]
  14. Collaboration Virgo, “Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light,” Phys. Rev. Lett. 123(23), 231108 (2019).
    [Crossref]
  15. N. Simakov, A. V. Hemming, A. Carter, K. Farley, A. Davidson, N. Carmody, M. Hughes, J. M. O. Daniel, L. Corena, D. Stepanov, and J. Haub, “Design and experimental demonstration of a large pedestal thulium-doped fibre,” Opt. Express 23(3), 3126 (2015).
    [Crossref]
  16. Sang Eon Park, Yong Kwon Taeg, Shin Eun-Joo, and Seong Lee Ho, “A compact extended-cavity diode laser with a Littman configuration,” IEEE Trans. Instrum. Meas. 52(2), 280–283 (2003).
    [Crossref]
  17. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
    [Crossref]
  18. K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60(12), 1098–1111 (1992).
    [Crossref]
  19. B. Pal, “Frontiers in guided wave optics and optoelectronics,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (IntechOpen, 2010), Chap. 1.
  20. J. Geng, Q. Wang, and S. Jiang, “2 μm fiber laser sources and their applications,” in Nanophotonics and Macrophotonics for Space Environments V, vol. 8164E. W. Taylor and D. A. Cardimona, eds., International Society for Optics and Photonics (SPIE, 2011), pp. 79–88.
  21. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (IntechOpen, 2010), Chap. 22.
  22. A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
    [Crossref]
  23. D. K. Shin, B. M. Henson, R. I. Khakimov, J. A. Ross, C. J. Dedman, S. S. Hodgman, K. G. H. Baldwin, and A. G. Truscott, “Widely tunable, narrow linewidth external-cavity gain chip laser for spectroscopy between 1.0 - 1.1 μm,” Opt. Express 24(24), 27403 (2016).
    [Crossref]
  24. S. Bennetts, G. D. McDonald, K. S. Hardman, J. E. Debs, C. C. N. Kuhn, J. D. Close, and N. P. Robins, “External cavity diode lasers with 5 kHz linewidth and 200 nm tuning range at 1.55 μm and methods for linewidth measurement,” Opt. Express 22(9), 10642 (2014).
    [Crossref]
  25. “Mephisto Applications in Gravitational Waves Detection,” Coherent white paper, 2016 ( www.coherent.com ).
  26. G. L. Mansell, “Squeezed light sources for current and future interferometric gravitational-wave detectors,” Ph.D. thesis (Australian National University, 2018.
  27. P. Kwee and B. Willke, “Automatic laser beam characterization of monolithic Nd:YAG nonplanar ring lasers,” Appl. Opt. 47(32), 6022 (2008).
    [Crossref]
  28. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630 (1980).
    [Crossref]
  29. L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
    [Crossref]
  30. K. Kikuchi and T. Okoshi, “Dependence of semiconductor laser linewidth on measurement time: evidence of predominance of 1/f noise,” Electron. Lett. 21(22), 1011 (1985).
    [Crossref]
  31. D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band shape and bandwidth modification,” Phys. Rev. A 26(1), 12–18 (1982).
    [Crossref]
  32. G. D. Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49(25), 4801 (2010).
    [Crossref]
  33. C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991).
    [Crossref]

2019 (5)

LIGO Scientific Collaboration and Virgo Collaboration, “GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs,” Phys. Rev. X 9(3), 031040 (2019).
[Crossref]

LIGO Scientific Collaboration and Virgo Collaboration, “Binary black hole population properties inferred from the first and second observing runs of advanced LIGO and advanced Virgo,” Astrophys. J., Lett. 882(2), L24 (2019).
[Crossref]

M. J. Yap, D. W. Gould, T. G. McRae, P. A. Altin, N. Kijbunchoo, G. L. Mansell, R. L. Ward, D. A. Shaddock, B. J. J. Slagmolen, and D. E. McClelland, “Squeezed vacuum phase control at 2 μm,” Opt. Lett. 44(21), 5386 (2019).
[Crossref]

The LIGO Scientific Collaboration, “Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy,” Phys. Rev. Lett. 123(23), 231107 (2019).
[Crossref]

Collaboration Virgo, “Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light,” Phys. Rev. Lett. 123(23), 231108 (2019).
[Crossref]

2018 (2)

J. Steinlechner, I. W. Martin, A. S. Bell, J. Hough, M. Fletcher, P. G. Murray, R. Robie, S. Rowan, and R. Schnabel, “Silicon-based optical mirror coatings for ultrahigh precision metrology and sensing,” Phys. Rev. Lett. 120(26), 263602 (2018).
[Crossref]

G. L. Mansell, T. G. McRae, P. A. Altin, M. J. Yap, R. L. Ward, B. J. J. Slagmolen, D. A. Shaddock, and D. E. McClelland, “Observation of squeezed light in the 2 μm region,” Phys. Rev. Lett. 120(20), 203603 (2018).
[Crossref]

2016 (3)

D. K. Shin, B. M. Henson, R. I. Khakimov, J. A. Ross, C. J. Dedman, S. S. Hodgman, K. G. H. Baldwin, and A. G. Truscott, “Widely tunable, narrow linewidth external-cavity gain chip laser for spectroscopy between 1.0 - 1.1 μm,” Opt. Express 24(24), 27403 (2016).
[Crossref]

LIGO Scientific Collaboration and Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116(6), 061102 (2016).
[Crossref]

E. Berti, A. Sesana, E. Barausse, V. Cardoso, and K. Belczynski, “Spectroscopy of Kerr black holes with earth and space-based interferometers,” Phys. Rev. Lett. 117(10), 101102 (2016).
[Crossref]

2015 (2)

M. Agathos, J. Meidam, W. Del Pozzo, T. G. F. Li, M. Tompitak, J. Veitch, S. Vitale, and C. Van Den Broeck, “Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars,” Phys. Rev. D 92(2), 023012 (2015).
[Crossref]

N. Simakov, A. V. Hemming, A. Carter, K. Farley, A. Davidson, N. Carmody, M. Hughes, J. M. O. Daniel, L. Corena, D. Stepanov, and J. Haub, “Design and experimental demonstration of a large pedestal thulium-doped fibre,” Opt. Express 23(3), 3126 (2015).
[Crossref]

2014 (3)

S. Bennetts, G. D. McDonald, K. S. Hardman, J. E. Debs, C. C. N. Kuhn, J. D. Close, and N. P. Robins, “External cavity diode lasers with 5 kHz linewidth and 200 nm tuning range at 1.55 μm and methods for linewidth measurement,” Opt. Express 22(9), 10642 (2014).
[Crossref]

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, and A. Rogalski, “New concepts in infrared photodetector designs,” Appl. Phys. Rev. 1(4), 041102 (2014).
[Crossref]

2010 (1)

2008 (1)

2003 (1)

Sang Eon Park, Yong Kwon Taeg, Shin Eun-Joo, and Seong Lee Ho, “A compact extended-cavity diode laser with a Littman configuration,” IEEE Trans. Instrum. Meas. 52(2), 280–283 (2003).
[Crossref]

1995 (1)

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[Crossref]

1992 (1)

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60(12), 1098–1111 (1992).
[Crossref]

1991 (1)

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991).
[Crossref]

1986 (1)

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

1985 (1)

K. Kikuchi and T. Okoshi, “Dependence of semiconductor laser linewidth on measurement time: evidence of predominance of 1/f noise,” Electron. Lett. 21(22), 1011 (1985).
[Crossref]

1982 (1)

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band shape and bandwidth modification,” Phys. Rev. A 26(1), 12–18 (1982).
[Crossref]

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630 (1980).
[Crossref]

Agathos, M.

M. Agathos, J. Meidam, W. Del Pozzo, T. G. F. Li, M. Tompitak, J. Veitch, S. Vitale, and C. Van Den Broeck, “Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars,” Phys. Rev. D 92(2), 023012 (2015).
[Crossref]

Altin, P. A.

M. J. Yap, D. W. Gould, T. G. McRae, P. A. Altin, N. Kijbunchoo, G. L. Mansell, R. L. Ward, D. A. Shaddock, B. J. J. Slagmolen, and D. E. McClelland, “Squeezed vacuum phase control at 2 μm,” Opt. Lett. 44(21), 5386 (2019).
[Crossref]

G. L. Mansell, T. G. McRae, P. A. Altin, M. J. Yap, R. L. Ward, B. J. J. Slagmolen, D. A. Shaddock, and D. E. McClelland, “Observation of squeezed light in the 2 μm region,” Phys. Rev. Lett. 120(20), 203603 (2018).
[Crossref]

Antoszewski, J.

P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, and A. Rogalski, “New concepts in infrared photodetector designs,” Appl. Phys. Rev. 1(4), 041102 (2014).
[Crossref]

Baldwin, K. G. H.

Barausse, E.

E. Berti, A. Sesana, E. Barausse, V. Cardoso, and K. Belczynski, “Spectroscopy of Kerr black holes with earth and space-based interferometers,” Phys. Rev. Lett. 117(10), 101102 (2016).
[Crossref]

Belczynski, K.

E. Berti, A. Sesana, E. Barausse, V. Cardoso, and K. Belczynski, “Spectroscopy of Kerr black holes with earth and space-based interferometers,” Phys. Rev. Lett. 117(10), 101102 (2016).
[Crossref]

Bell, A. S.

J. Steinlechner, I. W. Martin, A. S. Bell, J. Hough, M. Fletcher, P. G. Murray, R. Robie, S. Rowan, and R. Schnabel, “Silicon-based optical mirror coatings for ultrahigh precision metrology and sensing,” Phys. Rev. Lett. 120(26), 263602 (2018).
[Crossref]

Bennetts, S.

Berti, E.

E. Berti, A. Sesana, E. Barausse, V. Cardoso, and K. Belczynski, “Spectroscopy of Kerr black holes with earth and space-based interferometers,” Phys. Rev. Lett. 117(10), 101102 (2016).
[Crossref]

Byer, R. L.

S. Rowan, R. L. Byer, M. M. Fejer, R. K. Route, G. Cagnoli, D. R. Crooks, J. Hough, P. H. Sneddon, and W. Winkler, “Test mass materials for a new generation of gravitational wave detectors,” in Gravitational-Wave Detection, vol. 4856P. Saulson and A. M. Cruise, eds., International Society for Optics and Photonics (SPIE, 2003), pp. 292–297.

Cagnoli, G.

S. Rowan, R. L. Byer, M. M. Fejer, R. K. Route, G. Cagnoli, D. R. Crooks, J. Hough, P. H. Sneddon, and W. Winkler, “Test mass materials for a new generation of gravitational wave detectors,” in Gravitational-Wave Detection, vol. 4856P. Saulson and A. M. Cruise, eds., International Society for Optics and Photonics (SPIE, 2003), pp. 292–297.

Cardoso, V.

E. Berti, A. Sesana, E. Barausse, V. Cardoso, and K. Belczynski, “Spectroscopy of Kerr black holes with earth and space-based interferometers,” Phys. Rev. Lett. 117(10), 101102 (2016).
[Crossref]

Carmody, N.

Carter, A.

Close, J. D.

Corena, L.

Crooks, D. R.

S. Rowan, R. L. Byer, M. M. Fejer, R. K. Route, G. Cagnoli, D. R. Crooks, J. Hough, P. H. Sneddon, and W. Winkler, “Test mass materials for a new generation of gravitational wave detectors,” in Gravitational-Wave Detection, vol. 4856P. Saulson and A. M. Cruise, eds., International Society for Optics and Photonics (SPIE, 2003), pp. 292–297.

Daniel, J. M. O.

Davidson, A.

Debs, J. E.

Dedman, C. J.

Del Pozzo, W.

M. Agathos, J. Meidam, W. Del Pozzo, T. G. F. Li, M. Tompitak, J. Veitch, S. Vitale, and C. Van Den Broeck, “Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars,” Phys. Rev. D 92(2), 023012 (2015).
[Crossref]

Domenico, G. D.

Elliott, D. S.

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band shape and bandwidth modification,” Phys. Rev. A 26(1), 12–18 (1982).
[Crossref]

Esslinger, T.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[Crossref]

Eun-Joo, Shin

Sang Eon Park, Yong Kwon Taeg, Shin Eun-Joo, and Seong Lee Ho, “A compact extended-cavity diode laser with a Littman configuration,” IEEE Trans. Instrum. Meas. 52(2), 280–283 (2003).
[Crossref]

Faraone, L.

P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, and A. Rogalski, “New concepts in infrared photodetector designs,” Appl. Phys. Rev. 1(4), 041102 (2014).
[Crossref]

Farley, K.

Fejer, M. M.

S. Rowan, R. L. Byer, M. M. Fejer, R. K. Route, G. Cagnoli, D. R. Crooks, J. Hough, P. H. Sneddon, and W. Winkler, “Test mass materials for a new generation of gravitational wave detectors,” in Gravitational-Wave Detection, vol. 4856P. Saulson and A. M. Cruise, eds., International Society for Optics and Photonics (SPIE, 2003), pp. 292–297.

Fletcher, M.

J. Steinlechner, I. W. Martin, A. S. Bell, J. Hough, M. Fletcher, P. G. Murray, R. Robie, S. Rowan, and R. Schnabel, “Silicon-based optical mirror coatings for ultrahigh precision metrology and sensing,” Phys. Rev. Lett. 120(26), 263602 (2018).
[Crossref]

Fuhrberg, P.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (IntechOpen, 2010), Chap. 22.

Geng, J.

J. Geng, Q. Wang, and S. Jiang, “2 μm fiber laser sources and their applications,” in Nanophotonics and Macrophotonics for Space Environments V, vol. 8164E. W. Taylor and D. A. Cardimona, eds., International Society for Optics and Photonics (SPIE, 2011), pp. 79–88.

Gould, D. W.

Hänsch, T.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[Crossref]

Hardman, K. S.

Haub, J.

Hemmerich, A.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[Crossref]

Hemming, A.

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

Hemming, A. V.

Henson, B. M.

Ho, Seong Lee

Sang Eon Park, Yong Kwon Taeg, Shin Eun-Joo, and Seong Lee Ho, “A compact extended-cavity diode laser with a Littman configuration,” IEEE Trans. Instrum. Meas. 52(2), 280–283 (2003).
[Crossref]

Hodgman, S. S.

Hollberg, L.

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991).
[Crossref]

Hough, J.

J. Steinlechner, I. W. Martin, A. S. Bell, J. Hough, M. Fletcher, P. G. Murray, R. Robie, S. Rowan, and R. Schnabel, “Silicon-based optical mirror coatings for ultrahigh precision metrology and sensing,” Phys. Rev. Lett. 120(26), 263602 (2018).
[Crossref]

S. Rowan, R. L. Byer, M. M. Fejer, R. K. Route, G. Cagnoli, D. R. Crooks, J. Hough, P. H. Sneddon, and W. Winkler, “Test mass materials for a new generation of gravitational wave detectors,” in Gravitational-Wave Detection, vol. 4856P. Saulson and A. M. Cruise, eds., International Society for Optics and Photonics (SPIE, 2003), pp. 292–297.

Hughes, M.

Jiang, S.

J. Geng, Q. Wang, and S. Jiang, “2 μm fiber laser sources and their applications,” in Nanophotonics and Macrophotonics for Space Environments V, vol. 8164E. W. Taylor and D. A. Cardimona, eds., International Society for Optics and Photonics (SPIE, 2011), pp. 79–88.

Khakimov, R. I.

Kijbunchoo, N.

Kikuchi, K.

K. Kikuchi and T. Okoshi, “Dependence of semiconductor laser linewidth on measurement time: evidence of predominance of 1/f noise,” Electron. Lett. 21(22), 1011 (1985).
[Crossref]

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630 (1980).
[Crossref]

König, W.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[Crossref]

Koopmann, P.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (IntechOpen, 2010), Chap. 22.

Kruger, M.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Kuhn, C. C. N.

Kwee, P.

Lamrini, S.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (IntechOpen, 2010), Chap. 22.

Li, T. G. F.

M. Agathos, J. Meidam, W. Del Pozzo, T. G. F. Li, M. Tompitak, J. Veitch, S. Vitale, and C. Van Den Broeck, “Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars,” Phys. Rev. D 92(2), 023012 (2015).
[Crossref]

MacAdam, K. B.

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60(12), 1098–1111 (1992).
[Crossref]

Mandelberg, H.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Mansell, G. L.

M. J. Yap, D. W. Gould, T. G. McRae, P. A. Altin, N. Kijbunchoo, G. L. Mansell, R. L. Ward, D. A. Shaddock, B. J. J. Slagmolen, and D. E. McClelland, “Squeezed vacuum phase control at 2 μm,” Opt. Lett. 44(21), 5386 (2019).
[Crossref]

G. L. Mansell, T. G. McRae, P. A. Altin, M. J. Yap, R. L. Ward, B. J. J. Slagmolen, D. A. Shaddock, and D. E. McClelland, “Observation of squeezed light in the 2 μm region,” Phys. Rev. Lett. 120(20), 203603 (2018).
[Crossref]

G. L. Mansell, “Squeezed light sources for current and future interferometric gravitational-wave detectors,” Ph.D. thesis (Australian National University, 2018.

Martin, I. W.

J. Steinlechner, I. W. Martin, A. S. Bell, J. Hough, M. Fletcher, P. G. Murray, R. Robie, S. Rowan, and R. Schnabel, “Silicon-based optical mirror coatings for ultrahigh precision metrology and sensing,” Phys. Rev. Lett. 120(26), 263602 (2018).
[Crossref]

Martyniuk, M.

P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, and A. Rogalski, “New concepts in infrared photodetector designs,” Appl. Phys. Rev. 1(4), 041102 (2014).
[Crossref]

Martyniuk, P.

P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, and A. Rogalski, “New concepts in infrared photodetector designs,” Appl. Phys. Rev. 1(4), 041102 (2014).
[Crossref]

McClelland, D. E.

M. J. Yap, D. W. Gould, T. G. McRae, P. A. Altin, N. Kijbunchoo, G. L. Mansell, R. L. Ward, D. A. Shaddock, B. J. J. Slagmolen, and D. E. McClelland, “Squeezed vacuum phase control at 2 μm,” Opt. Lett. 44(21), 5386 (2019).
[Crossref]

G. L. Mansell, T. G. McRae, P. A. Altin, M. J. Yap, R. L. Ward, B. J. J. Slagmolen, D. A. Shaddock, and D. E. McClelland, “Observation of squeezed light in the 2 μm region,” Phys. Rev. Lett. 120(20), 203603 (2018).
[Crossref]

McDonald, G. D.

McGrath, P.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

McRae, T. G.

M. J. Yap, D. W. Gould, T. G. McRae, P. A. Altin, N. Kijbunchoo, G. L. Mansell, R. L. Ward, D. A. Shaddock, B. J. J. Slagmolen, and D. E. McClelland, “Squeezed vacuum phase control at 2 μm,” Opt. Lett. 44(21), 5386 (2019).
[Crossref]

G. L. Mansell, T. G. McRae, P. A. Altin, M. J. Yap, R. L. Ward, B. J. J. Slagmolen, D. A. Shaddock, and D. E. McClelland, “Observation of squeezed light in the 2 μm region,” Phys. Rev. Lett. 120(20), 203603 (2018).
[Crossref]

Meidam, J.

M. Agathos, J. Meidam, W. Del Pozzo, T. G. F. Li, M. Tompitak, J. Veitch, S. Vitale, and C. Van Den Broeck, “Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars,” Phys. Rev. D 92(2), 023012 (2015).
[Crossref]

Murray, P. G.

J. Steinlechner, I. W. Martin, A. S. Bell, J. Hough, M. Fletcher, P. G. Murray, R. Robie, S. Rowan, and R. Schnabel, “Silicon-based optical mirror coatings for ultrahigh precision metrology and sensing,” Phys. Rev. Lett. 120(26), 263602 (2018).
[Crossref]

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630 (1980).
[Crossref]

Okoshi, T.

K. Kikuchi and T. Okoshi, “Dependence of semiconductor laser linewidth on measurement time: evidence of predominance of 1/f noise,” Electron. Lett. 21(22), 1011 (1985).
[Crossref]

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630 (1980).
[Crossref]

Pal, B.

B. Pal, “Frontiers in guided wave optics and optoelectronics,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (IntechOpen, 2010), Chap. 1.

Park, Sang Eon

Sang Eon Park, Yong Kwon Taeg, Shin Eun-Joo, and Seong Lee Ho, “A compact extended-cavity diode laser with a Littman configuration,” IEEE Trans. Instrum. Meas. 52(2), 280–283 (2003).
[Crossref]

Ricci, L.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[Crossref]

Richter, L.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Robie, R.

J. Steinlechner, I. W. Martin, A. S. Bell, J. Hough, M. Fletcher, P. G. Murray, R. Robie, S. Rowan, and R. Schnabel, “Silicon-based optical mirror coatings for ultrahigh precision metrology and sensing,” Phys. Rev. Lett. 120(26), 263602 (2018).
[Crossref]

Robins, N. P.

Rogalski, A.

P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, and A. Rogalski, “New concepts in infrared photodetector designs,” Appl. Phys. Rev. 1(4), 041102 (2014).
[Crossref]

Ross, J. A.

Route, R. K.

S. Rowan, R. L. Byer, M. M. Fejer, R. K. Route, G. Cagnoli, D. R. Crooks, J. Hough, P. H. Sneddon, and W. Winkler, “Test mass materials for a new generation of gravitational wave detectors,” in Gravitational-Wave Detection, vol. 4856P. Saulson and A. M. Cruise, eds., International Society for Optics and Photonics (SPIE, 2003), pp. 292–297.

Rowan, S.

J. Steinlechner, I. W. Martin, A. S. Bell, J. Hough, M. Fletcher, P. G. Murray, R. Robie, S. Rowan, and R. Schnabel, “Silicon-based optical mirror coatings for ultrahigh precision metrology and sensing,” Phys. Rev. Lett. 120(26), 263602 (2018).
[Crossref]

S. Rowan, R. L. Byer, M. M. Fejer, R. K. Route, G. Cagnoli, D. R. Crooks, J. Hough, P. H. Sneddon, and W. Winkler, “Test mass materials for a new generation of gravitational wave detectors,” in Gravitational-Wave Detection, vol. 4856P. Saulson and A. M. Cruise, eds., International Society for Optics and Photonics (SPIE, 2003), pp. 292–297.

Roy, R.

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band shape and bandwidth modification,” Phys. Rev. A 26(1), 12–18 (1982).
[Crossref]

Schilt, S.

Schnabel, R.

J. Steinlechner, I. W. Martin, A. S. Bell, J. Hough, M. Fletcher, P. G. Murray, R. Robie, S. Rowan, and R. Schnabel, “Silicon-based optical mirror coatings for ultrahigh precision metrology and sensing,” Phys. Rev. Lett. 120(26), 263602 (2018).
[Crossref]

Scholle, K.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (IntechOpen, 2010), Chap. 22.

Sesana, A.

E. Berti, A. Sesana, E. Barausse, V. Cardoso, and K. Belczynski, “Spectroscopy of Kerr black holes with earth and space-based interferometers,” Phys. Rev. Lett. 117(10), 101102 (2016).
[Crossref]

Shaddock, D. A.

M. J. Yap, D. W. Gould, T. G. McRae, P. A. Altin, N. Kijbunchoo, G. L. Mansell, R. L. Ward, D. A. Shaddock, B. J. J. Slagmolen, and D. E. McClelland, “Squeezed vacuum phase control at 2 μm,” Opt. Lett. 44(21), 5386 (2019).
[Crossref]

G. L. Mansell, T. G. McRae, P. A. Altin, M. J. Yap, R. L. Ward, B. J. J. Slagmolen, D. A. Shaddock, and D. E. McClelland, “Observation of squeezed light in the 2 μm region,” Phys. Rev. Lett. 120(20), 203603 (2018).
[Crossref]

Shin, D. K.

Simakov, N.

Slagmolen, B. J. J.

M. J. Yap, D. W. Gould, T. G. McRae, P. A. Altin, N. Kijbunchoo, G. L. Mansell, R. L. Ward, D. A. Shaddock, B. J. J. Slagmolen, and D. E. McClelland, “Squeezed vacuum phase control at 2 μm,” Opt. Lett. 44(21), 5386 (2019).
[Crossref]

G. L. Mansell, T. G. McRae, P. A. Altin, M. J. Yap, R. L. Ward, B. J. J. Slagmolen, D. A. Shaddock, and D. E. McClelland, “Observation of squeezed light in the 2 μm region,” Phys. Rev. Lett. 120(20), 203603 (2018).
[Crossref]

Smith, S. J.

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band shape and bandwidth modification,” Phys. Rev. A 26(1), 12–18 (1982).
[Crossref]

Sneddon, P. H.

S. Rowan, R. L. Byer, M. M. Fejer, R. K. Route, G. Cagnoli, D. R. Crooks, J. Hough, P. H. Sneddon, and W. Winkler, “Test mass materials for a new generation of gravitational wave detectors,” in Gravitational-Wave Detection, vol. 4856P. Saulson and A. M. Cruise, eds., International Society for Optics and Photonics (SPIE, 2003), pp. 292–297.

Steinbach, A.

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60(12), 1098–1111 (1992).
[Crossref]

Steinlechner, J.

J. Steinlechner, I. W. Martin, A. S. Bell, J. Hough, M. Fletcher, P. G. Murray, R. Robie, S. Rowan, and R. Schnabel, “Silicon-based optical mirror coatings for ultrahigh precision metrology and sensing,” Phys. Rev. Lett. 120(26), 263602 (2018).
[Crossref]

Stepanov, D.

Taeg, Yong Kwon

Sang Eon Park, Yong Kwon Taeg, Shin Eun-Joo, and Seong Lee Ho, “A compact extended-cavity diode laser with a Littman configuration,” IEEE Trans. Instrum. Meas. 52(2), 280–283 (2003).
[Crossref]

Thomann, P.

Tompitak, M.

M. Agathos, J. Meidam, W. Del Pozzo, T. G. F. Li, M. Tompitak, J. Veitch, S. Vitale, and C. Van Den Broeck, “Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars,” Phys. Rev. D 92(2), 023012 (2015).
[Crossref]

Truscott, A. G.

Van Den Broeck, C.

M. Agathos, J. Meidam, W. Del Pozzo, T. G. F. Li, M. Tompitak, J. Veitch, S. Vitale, and C. Van Den Broeck, “Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars,” Phys. Rev. D 92(2), 023012 (2015).
[Crossref]

Veitch, J.

M. Agathos, J. Meidam, W. Del Pozzo, T. G. F. Li, M. Tompitak, J. Veitch, S. Vitale, and C. Van Den Broeck, “Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars,” Phys. Rev. D 92(2), 023012 (2015).
[Crossref]

Virgo, Collaboration

Collaboration Virgo, “Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light,” Phys. Rev. Lett. 123(23), 231108 (2019).
[Crossref]

Vitale, S.

M. Agathos, J. Meidam, W. Del Pozzo, T. G. F. Li, M. Tompitak, J. Veitch, S. Vitale, and C. Van Den Broeck, “Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars,” Phys. Rev. D 92(2), 023012 (2015).
[Crossref]

Vuletic, V.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[Crossref]

Wang, Q.

J. Geng, Q. Wang, and S. Jiang, “2 μm fiber laser sources and their applications,” in Nanophotonics and Macrophotonics for Space Environments V, vol. 8164E. W. Taylor and D. A. Cardimona, eds., International Society for Optics and Photonics (SPIE, 2011), pp. 79–88.

Ward, R. L.

M. J. Yap, D. W. Gould, T. G. McRae, P. A. Altin, N. Kijbunchoo, G. L. Mansell, R. L. Ward, D. A. Shaddock, B. J. J. Slagmolen, and D. E. McClelland, “Squeezed vacuum phase control at 2 μm,” Opt. Lett. 44(21), 5386 (2019).
[Crossref]

G. L. Mansell, T. G. McRae, P. A. Altin, M. J. Yap, R. L. Ward, B. J. J. Slagmolen, D. A. Shaddock, and D. E. McClelland, “Observation of squeezed light in the 2 μm region,” Phys. Rev. Lett. 120(20), 203603 (2018).
[Crossref]

Weidemüller, M.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[Crossref]

Wieman, C.

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60(12), 1098–1111 (1992).
[Crossref]

Wieman, C. E.

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991).
[Crossref]

Willke, B.

Winkler, W.

S. Rowan, R. L. Byer, M. M. Fejer, R. K. Route, G. Cagnoli, D. R. Crooks, J. Hough, P. H. Sneddon, and W. Winkler, “Test mass materials for a new generation of gravitational wave detectors,” in Gravitational-Wave Detection, vol. 4856P. Saulson and A. M. Cruise, eds., International Society for Optics and Photonics (SPIE, 2003), pp. 292–297.

Yap, M. J.

M. J. Yap, D. W. Gould, T. G. McRae, P. A. Altin, N. Kijbunchoo, G. L. Mansell, R. L. Ward, D. A. Shaddock, B. J. J. Slagmolen, and D. E. McClelland, “Squeezed vacuum phase control at 2 μm,” Opt. Lett. 44(21), 5386 (2019).
[Crossref]

G. L. Mansell, T. G. McRae, P. A. Altin, M. J. Yap, R. L. Ward, B. J. J. Slagmolen, D. A. Shaddock, and D. E. McClelland, “Observation of squeezed light in the 2 μm region,” Phys. Rev. Lett. 120(20), 203603 (2018).
[Crossref]

Zimmermann, C.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[Crossref]

Am. J. Phys. (1)

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60(12), 1098–1111 (1992).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Rev. (1)

P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, and A. Rogalski, “New concepts in infrared photodetector designs,” Appl. Phys. Rev. 1(4), 041102 (2014).
[Crossref]

Astrophys. J., Lett. (1)

LIGO Scientific Collaboration and Virgo Collaboration, “Binary black hole population properties inferred from the first and second observing runs of advanced LIGO and advanced Virgo,” Astrophys. J., Lett. 882(2), L24 (2019).
[Crossref]

Electron. Lett. (2)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630 (1980).
[Crossref]

K. Kikuchi and T. Okoshi, “Dependence of semiconductor laser linewidth on measurement time: evidence of predominance of 1/f noise,” Electron. Lett. 21(22), 1011 (1985).
[Crossref]

IEEE J. Quantum Electron. (1)

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

Sang Eon Park, Yong Kwon Taeg, Shin Eun-Joo, and Seong Lee Ho, “A compact extended-cavity diode laser with a Littman configuration,” IEEE Trans. Instrum. Meas. 52(2), 280–283 (2003).
[Crossref]

Opt. Commun. (1)

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117(5-6), 541–549 (1995).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

Opt. Lett. (1)

Phys. Rev. A (1)

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band shape and bandwidth modification,” Phys. Rev. A 26(1), 12–18 (1982).
[Crossref]

Phys. Rev. D (1)

M. Agathos, J. Meidam, W. Del Pozzo, T. G. F. Li, M. Tompitak, J. Veitch, S. Vitale, and C. Van Den Broeck, “Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars,” Phys. Rev. D 92(2), 023012 (2015).
[Crossref]

Phys. Rev. Lett. (6)

E. Berti, A. Sesana, E. Barausse, V. Cardoso, and K. Belczynski, “Spectroscopy of Kerr black holes with earth and space-based interferometers,” Phys. Rev. Lett. 117(10), 101102 (2016).
[Crossref]

LIGO Scientific Collaboration and Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116(6), 061102 (2016).
[Crossref]

J. Steinlechner, I. W. Martin, A. S. Bell, J. Hough, M. Fletcher, P. G. Murray, R. Robie, S. Rowan, and R. Schnabel, “Silicon-based optical mirror coatings for ultrahigh precision metrology and sensing,” Phys. Rev. Lett. 120(26), 263602 (2018).
[Crossref]

G. L. Mansell, T. G. McRae, P. A. Altin, M. J. Yap, R. L. Ward, B. J. J. Slagmolen, D. A. Shaddock, and D. E. McClelland, “Observation of squeezed light in the 2 μm region,” Phys. Rev. Lett. 120(20), 203603 (2018).
[Crossref]

The LIGO Scientific Collaboration, “Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy,” Phys. Rev. Lett. 123(23), 231107 (2019).
[Crossref]

Collaboration Virgo, “Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light,” Phys. Rev. Lett. 123(23), 231108 (2019).
[Crossref]

Phys. Rev. X (1)

LIGO Scientific Collaboration and Virgo Collaboration, “GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs,” Phys. Rev. X 9(3), 031040 (2019).
[Crossref]

Rev. Sci. Instrum. (1)

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62(1), 1–20 (1991).
[Crossref]

Other (8)

“Mephisto Applications in Gravitational Waves Detection,” Coherent white paper, 2016 ( www.coherent.com ).

G. L. Mansell, “Squeezed light sources for current and future interferometric gravitational-wave detectors,” Ph.D. thesis (Australian National University, 2018.

The LIGO Scientific Collaboration, LIGO Voyager upgrade design concept, LIGO Technical Note No. T1400226 (2019).

The LIGO Scientific Collaboration, Instrument science white paper, LIGO Technical Note No. T1900409 (2019).

S. Rowan, R. L. Byer, M. M. Fejer, R. K. Route, G. Cagnoli, D. R. Crooks, J. Hough, P. H. Sneddon, and W. Winkler, “Test mass materials for a new generation of gravitational wave detectors,” in Gravitational-Wave Detection, vol. 4856P. Saulson and A. M. Cruise, eds., International Society for Optics and Photonics (SPIE, 2003), pp. 292–297.

B. Pal, “Frontiers in guided wave optics and optoelectronics,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (IntechOpen, 2010), Chap. 1.

J. Geng, Q. Wang, and S. Jiang, “2 μm fiber laser sources and their applications,” in Nanophotonics and Macrophotonics for Space Environments V, vol. 8164E. W. Taylor and D. A. Cardimona, eds., International Society for Optics and Photonics (SPIE, 2011), pp. 79–88.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (IntechOpen, 2010), Chap. 22.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a, b) Schematic and design of the 2 $\mu$m ECDL. (c) Experimental setup for characterization: LDD - laser diode current driver, TC - temperature controller, fMZI - fiber Mach-Zehnder interferometer with 10 m delay line, SA - spectrum analyzer, PD - photodetector. $C_{1}$ and $C_{2}$ are injection points for current modulation, $P_{1}$ is the injection point for PZT modulation. Intensity noise and modulation are measured at $Y_{1}$, while frequency noise and modulation are measured at the fMZI output $Y_{2}$.
Fig. 2.
Fig. 2. (a) Measured optical output power (after the isolator) as a function of injection current into the ECDL at 1920 nm. (b) Coarse wavelength tuning range with an injection current of 400 mA. The FWHM (-3 dB) tuning range is 120 nm.
Fig. 3.
Fig. 3. Relative intensity noise (RIN) of the ECDL (lavender) and commercial Tm fiber laser (red). The ECDL measurement is limited by photodiode dark noise across the entire range, and thus provides only an upper bound on the RIN of the ECDL.
Fig. 4.
Fig. 4. Frequency noise of ECDL (lavender) compared to the Tm fiber laser (red) and a 1.55 $\mu$m reference (green). The dashed line is the $\beta$ separation line (description in text). The roll-off of the ECDL noise below 10 Hz is due to the suppression of the feedback loop used to counteract thermal drift. The reference laser did not require this feedback, which is why the green trace continues to rise below 10 Hz.
Fig. 5.
Fig. 5. Modulation response of the ECDL. (a) Frequency and intensity response to current modulation. The 0 dB level corresponds to 35 MHz/mA in frequency and 25 $\mu$W/mA in intensity. Inset shows the response of the electronic subtractor board which rolls off at 1 MHz. (b) Frequency response to PZT modulation. Mechanical resonances are visible at 1 kHz and 2 kHz.

Metrics