Abstract

We show that the ultrafast nonlinear dynamics in supercontinuum generation can be tailored via mixture-based liquid core fibers. Samples containing mixtures of inorganic solvents allow changing dispersion from anomalous to normal, i.e., shifting zero dispersion across pump laser wavelength. A significant control over modulation instability and four-wave mixing has been demonstrated experimentally in record-long (up to 60 cm) samples in agreement with simulations when using sub-psec pulses at 1.555 µm. The smallest concentration ratio yields indications of soliton-fission based supercontinuum generation at soliton numbers that are beyond the coherence limit. The presented dispersion tuning scheme allows creating unprecedented dispersion landscapes for accessing unexplored nonlinear phenomena and selected laser sources.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Carbon chloride-core fibers for soliton mediated supercontinuum generation

Mario Chemnitz, Christian Gaida, Martin Gebhardt, Fabian Stutzki, Jens Kobelke, Andreas Tünnermann, Jens Limpert, and Markus A. Schmidt
Opt. Express 26(3) 3221-3235 (2018)

Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride

Van Thuy Hoang, Rafal Kasztelanic, Adam Filipkowski, Grzegorz Stępniewski, Dariusz Pysz, Mariusz Klimczak, Sławomir Ertman, Van Cao Long, Tomasz R. Woliński, Marek Trippenbach, Khoa Dinh Xuan, Mateusz Śmietana, and Ryszard Buczyński
Opt. Mater. Express 9(5) 2264-2278 (2019)

Thermodynamic control of soliton dynamics in liquid-core fibers

Mario Chemnitz, Ramona Scheibinger, Christian Gaida, Martin Gebhardt, Fabian Stutzki, Sebastian Pumpe, Jens Kobelke, Andreas Tünnermann, Jens Limpert, and Markus A. Schmidt
Optica 5(6) 695-703 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. Amrania, G. Antonacci, C. Chan, L. Drummond, W. Otto, N. Wright, and C. Phillips, “Digistain: a digital staining instrument for histopathology,” Opt. Express 20(7), 7290–7299 (2012).
    [Crossref]
  2. J. Hult, R. Watt, and C. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15(18), 11385–11395 (2007).
    [Crossref]
  3. M. Mecozzi, F. Moscato, M. Pietroletti, F. Quarto, F. Oteri, and A. M. Cicero, “Applications of FTIR Spectroscopy in Environmental Studies Supported by Two-Dimensional Correlation analysis,” J. Global NEST 11, 593–600 (2009).
  4. C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28(4), 216–218 (1976).
    [Crossref]
  5. C. Lin, V. T. Nguyen, and W.G. French, “Wideband near-I.R. continuum (0.7-2.1μm) generated in low-loss optical fibres,” Electron. Lett. 14(25), 822–823 (1978).
    [Crossref]
  6. J. Ranka, R. Windeler, and A. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
    [Crossref]
  7. J. Ranka, R. Windeler, and A. Stentz, “Optical properties of high-delta air-silica microstructure optical fibers,” Opt. Lett. 25(11), 796–798 (2000).
    [Crossref]
  8. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature (London) 424(6948), 511–515 (2003).
    [Crossref]
  9. R. Salem, Z. Jiang, D. Liu, R. Pafchek, D. Gardner, P. Foy, M. Saad, D. Jenkins, A. Cable, and P. Fendel, “Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 µm,” Opt. Express 23(24), 30592–30602 (2015).
    [Crossref]
  10. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. Amraoui, Y. Messaddeq, M. Rochette, S. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4(10), 1163–1166 (2017).
    [Crossref]
  11. T. Cheng, K. Nagasaka, T. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 µm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
    [Crossref]
  12. L. Yang, B. Zhang, D. Jin, T. Wu, X. He, Y. Zhao, and J. Hou, “All-fiberized, multi-watt 2-5 µm supercontinuum laser source based on fluoroindate fiber with record conversion efficiency,” Opt. Lett. 43(21), 5206–5209 (2018).
    [Crossref]
  13. C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  14. N. Granzow, M. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. Lee, M. Fermann, L. Wondraczek, and P. Russell, “Mid-infrared supercontinuum generation in -silica “nano-spike” step-index waveguide,” Opt. Express 21(9), 10969–10977 (2013).
    [Crossref]
  15. K. Mak, J. Travers, P. Hölzer, N. Joly, and P. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21(9), 10942–10953 (2013).
    [Crossref]
  16. R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in anti-resonant hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
    [Crossref]
  17. P. Russell, P. Hoelzer, W. Change, A. Abdolvand, and C. J. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8(4), 278 (2014).
    [Crossref]
  18. M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
    [Crossref]
  19. S. Vergara Palacio and R. Acuna Herrera, “Dispersive wave and four-wave mixing generation in noninstantaneous nonlinear fiber solitons,” Appl. Opt. 58(10), 2736–2744 (2019).
    [Crossref]
  20. V. Hoang, R. Kasztelanic, A. Filipkowski, G. Stępniewski, D. Pysz, M. Klimczak, S. Ertman, V. Long, T. Woliński, M. Trippenbach, K. Xuan, M. Śmietana, and R. Buczyński, “Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride,” Opt. Mater. Express 9(5), 2264–2278 (2019).
    [Crossref]
  21. Z. Kang, F. Xu, J. Yuan, F. Li, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, K. Long, and C. Yu, “Slow-Nonlinearity Assisted Supercontinuum Generation in a -Core Photonic Crystal Fiber,” IEEE J. Quantum Electron. 55(2), 1–9 (2019).
    [Crossref]
  22. C. Conti, M. A. Schmidt, P. S. J. Russell, and F. Biancalana, “Highly Non instantaneous Solitons in Liquid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 105(26), 263902 (2010).
    [Crossref]
  23. M. Chemnitz, R. Scheibinger, C. Gaida, M. Gebhardt, F. Stutzki, S. Pumpe, J. Kobelke, A. Tünnermann, J. Limpert, and M. Schmidt, “Thermodynamic control of soliton dynamics in liquid-core fibers,” Optica 5(6), 695–703 (2018).
    [Crossref]
  24. K. Schaarschmidt, H. Xuan, J. Kobelke, M. Chemnitz, I. Hartl, and M. Schmidt, “Long-term stable supercontinuum generation and watt-level transmission in liquid-core optical fibers,” Opt. Lett. 44(9), 2236–2239 (2019).
    [Crossref]
  25. M. Chemnitz, N. Walther, R. Scheibinger, K. Scharschmidt, S. Junaid, J. Kobelke, and M. Schmidt, “Tayloring soliton fission at telecom wavelength using composite-liquid-core fibers,” Opt. Lett. (Submitted).
  26. N. An, B. Zhuang, M. Li, Y. Lu, and Z. G. Wang, “Combined Theoretical and Experimental Study of Refractive Indices of Water-Acetonitrile-Salt Systems,” J. Phys. Chem. B 119(33), 10701–10709 (2015).
    [Crossref]
  27. S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express 2(11), 1588–1611 (2012).
    [Crossref]
  28. A. Pfund, “The Dispersion of and in the Infrared,” J. Opt. Soc. Am. 25(11), 351–354 (1935).
    [Crossref]
  29. S. Ghosal, J. L. Ebert, and S. A. Self, “The infrared refractive indices of CHBr3, CCl4 and CS2,” Infrared Phys. 34(6), 621–628 (1993).
    [Crossref]
  30. R. E. Kagarise, “Infrared Dispersion of Some Organic Liquids,” J. Opt. Soc. Am. 50(1), 36–39 (1960).
    [Crossref]
  31. J. Vincent-Geisse, “Dispersion de quelques liquides organiques dans l’infrarouge. détermination des intensités de bandes et des polarisations,” J. Phys. (Paris) 26(6), 289–296 (1965).
    [Crossref]
  32. J. Yarwood and W. J. Orville-Thomas, “Infra-red dispersion studies. Part 7 Band intensities and atomic polarizations of CX2 =  CCl2 (X = H, F, Cl) molecules,” Trans. Faraday Soc. 62(0), 3294–3309 (1966).
    [Crossref]
  33. M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tünnermann, J. Limpert, and M. Schmidt, “Carbon chloride-core fibers for soliton mediated supercontinuum generation,” Opt. Express 26(3), 3221–3235 (2018).
    [Crossref]
  34. M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1(6), 436–445 (2014).
    [Crossref]
  35. E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921).
    [Crossref]
  36. J. M. Dudley, G. Genty, and S. Ceon, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  37. G. P. Agarwal, Nonlinear Fiber Optics, 3rd edition, Academic press, (2001)
  38. M. Chemnitz and M. Schmidt, “Single mode criterion - a benchmark figure to optimize the performance of nonlinear fibers,” Opt. Express 24(14), 16191–16205 (2016).
    [Crossref]
  39. P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE9731, 97310F (2016).
    [Crossref]
  40. N. Thantu and R. S. Schley, “Ultrafast third-order nonlinear optical spectroscopy of chlorinated hydrocarbons,” Vib. Spectrosc. 32(2), 215–223 (2003).
    [Crossref]
  41. F. Xu, J. Yuan, C. Mei, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, C. Yu, and G. Farrell, “Highly coherent supercontinuum generation in a polarization-maintaining -core photonic crystal fiber,” Appl. Opt. 58(6), 1386–1392 (2019).
    [Crossref]
  42. C. V. Lanh, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński, and J. Pniewski, “Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation,” Laser Phys. 29(7), 075107 (2019).
    [Crossref]

2019 (6)

S. Vergara Palacio and R. Acuna Herrera, “Dispersive wave and four-wave mixing generation in noninstantaneous nonlinear fiber solitons,” Appl. Opt. 58(10), 2736–2744 (2019).
[Crossref]

V. Hoang, R. Kasztelanic, A. Filipkowski, G. Stępniewski, D. Pysz, M. Klimczak, S. Ertman, V. Long, T. Woliński, M. Trippenbach, K. Xuan, M. Śmietana, and R. Buczyński, “Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride,” Opt. Mater. Express 9(5), 2264–2278 (2019).
[Crossref]

Z. Kang, F. Xu, J. Yuan, F. Li, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, K. Long, and C. Yu, “Slow-Nonlinearity Assisted Supercontinuum Generation in a -Core Photonic Crystal Fiber,” IEEE J. Quantum Electron. 55(2), 1–9 (2019).
[Crossref]

K. Schaarschmidt, H. Xuan, J. Kobelke, M. Chemnitz, I. Hartl, and M. Schmidt, “Long-term stable supercontinuum generation and watt-level transmission in liquid-core optical fibers,” Opt. Lett. 44(9), 2236–2239 (2019).
[Crossref]

F. Xu, J. Yuan, C. Mei, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, C. Yu, and G. Farrell, “Highly coherent supercontinuum generation in a polarization-maintaining -core photonic crystal fiber,” Appl. Opt. 58(6), 1386–1392 (2019).
[Crossref]

C. V. Lanh, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński, and J. Pniewski, “Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation,” Laser Phys. 29(7), 075107 (2019).
[Crossref]

2018 (3)

2017 (3)

D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. Amraoui, Y. Messaddeq, M. Rochette, S. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4(10), 1163–1166 (2017).
[Crossref]

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in anti-resonant hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
[Crossref]

2016 (2)

2015 (2)

2014 (3)

M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1(6), 436–445 (2014).
[Crossref]

P. Russell, P. Hoelzer, W. Change, A. Abdolvand, and C. J. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8(4), 278 (2014).
[Crossref]

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

2013 (2)

2012 (2)

2010 (1)

C. Conti, M. A. Schmidt, P. S. J. Russell, and F. Biancalana, “Highly Non instantaneous Solitons in Liquid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 105(26), 263902 (2010).
[Crossref]

2009 (1)

M. Mecozzi, F. Moscato, M. Pietroletti, F. Quarto, F. Oteri, and A. M. Cicero, “Applications of FTIR Spectroscopy in Environmental Studies Supported by Two-Dimensional Correlation analysis,” J. Global NEST 11, 593–600 (2009).

2007 (1)

2006 (1)

J. M. Dudley, G. Genty, and S. Ceon, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2003 (2)

N. Thantu and R. S. Schley, “Ultrafast third-order nonlinear optical spectroscopy of chlorinated hydrocarbons,” Vib. Spectrosc. 32(2), 215–223 (2003).
[Crossref]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature (London) 424(6948), 511–515 (2003).
[Crossref]

2000 (2)

1993 (1)

S. Ghosal, J. L. Ebert, and S. A. Self, “The infrared refractive indices of CHBr3, CCl4 and CS2,” Infrared Phys. 34(6), 621–628 (1993).
[Crossref]

1978 (1)

C. Lin, V. T. Nguyen, and W.G. French, “Wideband near-I.R. continuum (0.7-2.1μm) generated in low-loss optical fibres,” Electron. Lett. 14(25), 822–823 (1978).
[Crossref]

1976 (1)

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28(4), 216–218 (1976).
[Crossref]

1966 (1)

J. Yarwood and W. J. Orville-Thomas, “Infra-red dispersion studies. Part 7 Band intensities and atomic polarizations of CX2 =  CCl2 (X = H, F, Cl) molecules,” Trans. Faraday Soc. 62(0), 3294–3309 (1966).
[Crossref]

1965 (1)

J. Vincent-Geisse, “Dispersion de quelques liquides organiques dans l’infrarouge. détermination des intensités de bandes et des polarisations,” J. Phys. (Paris) 26(6), 289–296 (1965).
[Crossref]

1960 (1)

1935 (1)

1921 (1)

E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Abdolvand, A.

P. Russell, P. Hoelzer, W. Change, A. Abdolvand, and C. J. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8(4), 278 (2014).
[Crossref]

Acuna Herrera, R.

Agarwal, G. P.

G. P. Agarwal, Nonlinear Fiber Optics, 3rd edition, Academic press, (2001)

Alamgir, I.

Amrania, H.

Amraoui, M.

An, N.

N. An, B. Zhuang, M. Li, Y. Lu, and Z. G. Wang, “Combined Theoretical and Experimental Study of Refractive Indices of Water-Acetonitrile-Salt Systems,” J. Phys. Chem. B 119(33), 10701–10709 (2015).
[Crossref]

Antipov, S.

Antonacci, G.

Bang, O.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Benson, T.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Biancalana, F.

C. Conti, M. A. Schmidt, P. S. J. Russell, and F. Biancalana, “Highly Non instantaneous Solitons in Liquid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 105(26), 263902 (2010).
[Crossref]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature (London) 424(6948), 511–515 (2003).
[Crossref]

Bierlich, J.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in anti-resonant hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

Borzycki, K.

C. V. Lanh, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński, and J. Pniewski, “Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation,” Laser Phys. 29(7), 075107 (2019).
[Crossref]

Buczynski, R.

C. V. Lanh, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński, and J. Pniewski, “Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation,” Laser Phys. 29(7), 075107 (2019).
[Crossref]

V. Hoang, R. Kasztelanic, A. Filipkowski, G. Stępniewski, D. Pysz, M. Klimczak, S. Ertman, V. Long, T. Woliński, M. Trippenbach, K. Xuan, M. Śmietana, and R. Buczyński, “Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride,” Opt. Mater. Express 9(5), 2264–2278 (2019).
[Crossref]

Cable, A.

Ceon, S.

J. M. Dudley, G. Genty, and S. Ceon, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Chan, C.

Chang, W.

Change, W.

P. Russell, P. Hoelzer, W. Change, A. Abdolvand, and C. J. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8(4), 278 (2014).
[Crossref]

Chemnitz, M.

K. Schaarschmidt, H. Xuan, J. Kobelke, M. Chemnitz, I. Hartl, and M. Schmidt, “Long-term stable supercontinuum generation and watt-level transmission in liquid-core optical fibers,” Opt. Lett. 44(9), 2236–2239 (2019).
[Crossref]

M. Chemnitz, R. Scheibinger, C. Gaida, M. Gebhardt, F. Stutzki, S. Pumpe, J. Kobelke, A. Tünnermann, J. Limpert, and M. Schmidt, “Thermodynamic control of soliton dynamics in liquid-core fibers,” Optica 5(6), 695–703 (2018).
[Crossref]

M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tünnermann, J. Limpert, and M. Schmidt, “Carbon chloride-core fibers for soliton mediated supercontinuum generation,” Opt. Express 26(3), 3221–3235 (2018).
[Crossref]

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in anti-resonant hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
[Crossref]

M. Chemnitz and M. Schmidt, “Single mode criterion - a benchmark figure to optimize the performance of nonlinear fibers,” Opt. Express 24(14), 16191–16205 (2016).
[Crossref]

M. Chemnitz, N. Walther, R. Scheibinger, K. Scharschmidt, S. Junaid, J. Kobelke, and M. Schmidt, “Tayloring soliton fission at telecom wavelength using composite-liquid-core fibers,” Opt. Lett. (Submitted).

Cheng, T.

Cicero, A. M.

M. Mecozzi, F. Moscato, M. Pietroletti, F. Quarto, F. Oteri, and A. M. Cicero, “Applications of FTIR Spectroscopy in Environmental Studies Supported by Two-Dimensional Correlation analysis,” J. Global NEST 11, 593–600 (2009).

Conti, C.

C. Conti, M. A. Schmidt, P. S. J. Russell, and F. Biancalana, “Highly Non instantaneous Solitons in Liquid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 105(26), 263902 (2010).
[Crossref]

Coulombier, Q.

Drummond, L.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Ceon, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dupont, S.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Ebert, J. L.

S. Ghosal, J. L. Ebert, and S. A. Self, “The infrared refractive indices of CHBr3, CCl4 and CS2,” Infrared Phys. 34(6), 621–628 (1993).
[Crossref]

Efimov, A.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature (London) 424(6948), 511–515 (2003).
[Crossref]

Ensley, T. R.

Ertman, S.

Farrell, G.

Fendel, P.

Ferdinandus, M. R.

Fermann, M.

Filipkowski, A.

Fishman, D. A.

Foy, P.

French, W.G.

C. Lin, V. T. Nguyen, and W.G. French, “Wideband near-I.R. continuum (0.7-2.1μm) generated in low-loss optical fibres,” Electron. Lett. 14(25), 822–823 (1978).
[Crossref]

Fuerbach, A.

Furniss, D.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Gaida, C.

Gardner, D.

Gebhardt, M.

Genty, G.

J. M. Dudley, G. Genty, and S. Ceon, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Ghosal, S.

S. Ghosal, J. L. Ebert, and S. A. Self, “The infrared refractive indices of CHBr3, CCl4 and CS2,” Infrared Phys. 34(6), 621–628 (1993).
[Crossref]

Giessen, H.

Gissibl, T.

Granzow, N.

Grigorova, T.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in anti-resonant hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

Hagan, D. J.

Hartl, I.

Hartung, A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in anti-resonant hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

He, X.

Hoang, V.

Hoang, V. T.

C. V. Lanh, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński, and J. Pniewski, “Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation,” Laser Phys. 29(7), 075107 (2019).
[Crossref]

Hoelzer, P.

P. Russell, P. Hoelzer, W. Change, A. Abdolvand, and C. J. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8(4), 278 (2014).
[Crossref]

Hoffmann, A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in anti-resonant hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

Hölzer, P.

Hou, J.

Hu, H.

Hu, T.

Hudson, D.

Hult, J.

Jackson, S.

Jenkins, D.

Jiang, Z.

Jin, D.

Joly, N.

Junaid, S.

M. Chemnitz, N. Walther, R. Scheibinger, K. Scharschmidt, S. Junaid, J. Kobelke, and M. Schmidt, “Tayloring soliton fission at telecom wavelength using composite-liquid-core fibers,” Opt. Lett. (Submitted).

Kagarise, R. E.

Kaminski, C.

Kang, Z.

Z. Kang, F. Xu, J. Yuan, F. Li, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, K. Long, and C. Yu, “Slow-Nonlinearity Assisted Supercontinuum Generation in a -Core Photonic Crystal Fiber,” IEEE J. Quantum Electron. 55(2), 1–9 (2019).
[Crossref]

Kartashov, D.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in anti-resonant hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

Kasztelanic, R.

Kedenburg, S.

Klimczak, M.

Knight, J. C.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature (London) 424(6948), 511–515 (2003).
[Crossref]

Kobelke, J.

K. Schaarschmidt, H. Xuan, J. Kobelke, M. Chemnitz, I. Hartl, and M. Schmidt, “Long-term stable supercontinuum generation and watt-level transmission in liquid-core optical fibers,” Opt. Lett. 44(9), 2236–2239 (2019).
[Crossref]

M. Chemnitz, R. Scheibinger, C. Gaida, M. Gebhardt, F. Stutzki, S. Pumpe, J. Kobelke, A. Tünnermann, J. Limpert, and M. Schmidt, “Thermodynamic control of soliton dynamics in liquid-core fibers,” Optica 5(6), 695–703 (2018).
[Crossref]

M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tünnermann, J. Limpert, and M. Schmidt, “Carbon chloride-core fibers for soliton mediated supercontinuum generation,” Opt. Express 26(3), 3221–3235 (2018).
[Crossref]

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in anti-resonant hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
[Crossref]

M. Chemnitz, N. Walther, R. Scheibinger, K. Scharschmidt, S. Junaid, J. Kobelke, and M. Schmidt, “Tayloring soliton fission at telecom wavelength using composite-liquid-core fibers,” Opt. Lett. (Submitted).

Kubat, I.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Lanh, C. V.

C. V. Lanh, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński, and J. Pniewski, “Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation,” Laser Phys. 29(7), 075107 (2019).
[Crossref]

Lee, K.

Li, F.

Z. Kang, F. Xu, J. Yuan, F. Li, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, K. Long, and C. Yu, “Slow-Nonlinearity Assisted Supercontinuum Generation in a -Core Photonic Crystal Fiber,” IEEE J. Quantum Electron. 55(2), 1–9 (2019).
[Crossref]

Li, L.

Li, M.

N. An, B. Zhuang, M. Li, Y. Lu, and Z. G. Wang, “Combined Theoretical and Experimental Study of Refractive Indices of Water-Acetonitrile-Salt Systems,” J. Phys. Chem. B 119(33), 10701–10709 (2015).
[Crossref]

Limpert, J.

Lin, C.

C. Lin, V. T. Nguyen, and W.G. French, “Wideband near-I.R. continuum (0.7-2.1μm) generated in low-loss optical fibres,” Electron. Lett. 14(25), 822–823 (1978).
[Crossref]

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28(4), 216–218 (1976).
[Crossref]

Liu, D.

Long, K.

Z. Kang, F. Xu, J. Yuan, F. Li, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, K. Long, and C. Yu, “Slow-Nonlinearity Assisted Supercontinuum Generation in a -Core Photonic Crystal Fiber,” IEEE J. Quantum Electron. 55(2), 1–9 (2019).
[Crossref]

Long, V.

Long, V. C.

C. V. Lanh, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński, and J. Pniewski, “Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation,” Laser Phys. 29(7), 075107 (2019).
[Crossref]

Lu, Y.

N. An, B. Zhuang, M. Li, Y. Lu, and Z. G. Wang, “Combined Theoretical and Experimental Study of Refractive Indices of Water-Acetonitrile-Salt Systems,” J. Phys. Chem. B 119(33), 10701–10709 (2015).
[Crossref]

Mak, K.

Matsumoto, M.

Mecozzi, M.

M. Mecozzi, F. Moscato, M. Pietroletti, F. Quarto, F. Oteri, and A. M. Cicero, “Applications of FTIR Spectroscopy in Environmental Studies Supported by Two-Dimensional Correlation analysis,” J. Global NEST 11, 593–600 (2009).

Mei, C.

Messaddeq, Y.

Moller, U.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Moscato, F.

M. Mecozzi, F. Moscato, M. Pietroletti, F. Quarto, F. Oteri, and A. M. Cicero, “Applications of FTIR Spectroscopy in Environmental Studies Supported by Two-Dimensional Correlation analysis,” J. Global NEST 11, 593–600 (2009).

Mott, A. G.

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE9731, 97310F (2016).
[Crossref]

Nagasaka, K.

Nguyen, V. T.

C. Lin, V. T. Nguyen, and W.G. French, “Wideband near-I.R. continuum (0.7-2.1μm) generated in low-loss optical fibres,” Electron. Lett. 14(25), 822–823 (1978).
[Crossref]

Ohishi, Y.

Omenetto, F. G.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature (London) 424(6948), 511–515 (2003).
[Crossref]

Orville-Thomas, W. J.

J. Yarwood and W. J. Orville-Thomas, “Infra-red dispersion studies. Part 7 Band intensities and atomic polarizations of CX2 =  CCl2 (X = H, F, Cl) molecules,” Trans. Faraday Soc. 62(0), 3294–3309 (1966).
[Crossref]

Oteri, F.

M. Mecozzi, F. Moscato, M. Pietroletti, F. Quarto, F. Oteri, and A. M. Cicero, “Applications of FTIR Spectroscopy in Environmental Studies Supported by Two-Dimensional Correlation analysis,” J. Global NEST 11, 593–600 (2009).

Otto, W.

Pafchek, R.

Peceli, D.

Petersen, C. R.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Pfund, A.

Phillips, C.

Pietroletti, M.

M. Mecozzi, F. Moscato, M. Pietroletti, F. Quarto, F. Oteri, and A. M. Cicero, “Applications of FTIR Spectroscopy in Environmental Studies Supported by Two-Dimensional Correlation analysis,” J. Global NEST 11, 593–600 (2009).

Pniewski, J.

C. V. Lanh, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński, and J. Pniewski, “Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation,” Laser Phys. 29(7), 075107 (2019).
[Crossref]

Pumpe, S.

Pysz, D.

Quarto, F.

M. Mecozzi, F. Moscato, M. Pietroletti, F. Quarto, F. Oteri, and A. M. Cicero, “Applications of FTIR Spectroscopy in Environmental Studies Supported by Two-Dimensional Correlation analysis,” J. Global NEST 11, 593–600 (2009).

Quoc, V. T.

C. V. Lanh, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński, and J. Pniewski, “Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation,” Laser Phys. 29(7), 075107 (2019).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Ranka, J.

Reed, J. M.

Reeves, W. H.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature (London) 424(6948), 511–515 (2003).
[Crossref]

Reichert, M.

Rochette, M.

Russell, P.

Russell, P. S. J.

C. Conti, M. A. Schmidt, P. S. J. Russell, and F. Biancalana, “Highly Non instantaneous Solitons in Liquid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 105(26), 263902 (2010).
[Crossref]

Russell, P. St. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature (London) 424(6948), 511–515 (2003).
[Crossref]

Saad, M.

Salem, R.

Sang, X.

Z. Kang, F. Xu, J. Yuan, F. Li, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, K. Long, and C. Yu, “Slow-Nonlinearity Assisted Supercontinuum Generation in a -Core Photonic Crystal Fiber,” IEEE J. Quantum Electron. 55(2), 1–9 (2019).
[Crossref]

F. Xu, J. Yuan, C. Mei, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, C. Yu, and G. Farrell, “Highly coherent supercontinuum generation in a polarization-maintaining -core photonic crystal fiber,” Appl. Opt. 58(6), 1386–1392 (2019).
[Crossref]

Sauer, G.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in anti-resonant hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

Schaarschmidt, K.

Scharschmidt, K.

M. Chemnitz, N. Walther, R. Scheibinger, K. Scharschmidt, S. Junaid, J. Kobelke, and M. Schmidt, “Tayloring soliton fission at telecom wavelength using composite-liquid-core fibers,” Opt. Lett. (Submitted).

Scheibinger, R.

M. Chemnitz, R. Scheibinger, C. Gaida, M. Gebhardt, F. Stutzki, S. Pumpe, J. Kobelke, A. Tünnermann, J. Limpert, and M. Schmidt, “Thermodynamic control of soliton dynamics in liquid-core fibers,” Optica 5(6), 695–703 (2018).
[Crossref]

M. Chemnitz, N. Walther, R. Scheibinger, K. Scharschmidt, S. Junaid, J. Kobelke, and M. Schmidt, “Tayloring soliton fission at telecom wavelength using composite-liquid-core fibers,” Opt. Lett. (Submitted).

Schley, R. S.

N. Thantu and R. S. Schley, “Ultrafast third-order nonlinear optical spectroscopy of chlorinated hydrocarbons,” Vib. Spectrosc. 32(2), 215–223 (2003).
[Crossref]

Schmidt, M.

Schmidt, M. A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in anti-resonant hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
[Crossref]

C. Conti, M. A. Schmidt, P. S. J. Russell, and F. Biancalana, “Highly Non instantaneous Solitons in Liquid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 105(26), 263902 (2010).
[Crossref]

Schwuchow, A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in anti-resonant hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

Seddon, A.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Seidel, M.

Self, S. A.

S. Ghosal, J. L. Ebert, and S. A. Self, “The infrared refractive indices of CHBr3, CCl4 and CS2,” Infrared Phys. 34(6), 621–628 (1993).
[Crossref]

Shensky, W. M.

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE9731, 97310F (2016).
[Crossref]

Skryabin, D. V.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature (London) 424(6948), 511–515 (2003).
[Crossref]

Smietana, M.

Sollapur, R.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in anti-resonant hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

Spielmann, C.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in anti-resonant hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

Stentz, A.

Stepniewski, G.

Stolen, R. H.

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28(4), 216–218 (1976).
[Crossref]

Stutzki, F.

Sujecki, S.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Suzuki, T.

Tang, Z.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Taylor, A. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature (London) 424(6948), 511–515 (2003).
[Crossref]

Tezuka, H.

Thantu, N.

N. Thantu and R. S. Schley, “Ultrafast third-order nonlinear optical spectroscopy of chlorinated hydrocarbons,” Vib. Spectrosc. 32(2), 215–223 (2003).
[Crossref]

Toupin, P.

Travers, C. J.

P. Russell, P. Hoelzer, W. Change, A. Abdolvand, and C. J. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8(4), 278 (2014).
[Crossref]

Travers, J.

Trippenbach, M.

V. Hoang, R. Kasztelanic, A. Filipkowski, G. Stępniewski, D. Pysz, M. Klimczak, S. Ertman, V. Long, T. Woliński, M. Trippenbach, K. Xuan, M. Śmietana, and R. Buczyński, “Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride,” Opt. Mater. Express 9(5), 2264–2278 (2019).
[Crossref]

C. V. Lanh, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński, and J. Pniewski, “Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation,” Laser Phys. 29(7), 075107 (2019).
[Crossref]

Troles, J.

Tuan, T.

Tünnermann, A.

Van Stryland, E. W.

Vergara Palacio, S.

Vieweg, M.

Vincent-Geisse, J.

J. Vincent-Geisse, “Dispersion de quelques liquides organiques dans l’infrarouge. détermination des intensités de bandes et des polarisations,” J. Phys. (Paris) 26(6), 289–296 (1965).
[Crossref]

Walther, N.

M. Chemnitz, N. Walther, R. Scheibinger, K. Scharschmidt, S. Junaid, J. Kobelke, and M. Schmidt, “Tayloring soliton fission at telecom wavelength using composite-liquid-core fibers,” Opt. Lett. (Submitted).

Wang, K.

Z. Kang, F. Xu, J. Yuan, F. Li, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, K. Long, and C. Yu, “Slow-Nonlinearity Assisted Supercontinuum Generation in a -Core Photonic Crystal Fiber,” IEEE J. Quantum Electron. 55(2), 1–9 (2019).
[Crossref]

F. Xu, J. Yuan, C. Mei, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, C. Yu, and G. Farrell, “Highly coherent supercontinuum generation in a polarization-maintaining -core photonic crystal fiber,” Appl. Opt. 58(6), 1386–1392 (2019).
[Crossref]

Wang, L.

Wang, Z. G.

N. An, B. Zhuang, M. Li, Y. Lu, and Z. G. Wang, “Combined Theoretical and Experimental Study of Refractive Indices of Water-Acetonitrile-Salt Systems,” J. Phys. Chem. B 119(33), 10701–10709 (2015).
[Crossref]

Washburn, E. W.

E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921).
[Crossref]

Watt, R.

Webster, S.

Windeler, R.

Wolinski, T.

Wondraczek, L.

Wright, N.

Wu, Q.

Z. Kang, F. Xu, J. Yuan, F. Li, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, K. Long, and C. Yu, “Slow-Nonlinearity Assisted Supercontinuum Generation in a -Core Photonic Crystal Fiber,” IEEE J. Quantum Electron. 55(2), 1–9 (2019).
[Crossref]

F. Xu, J. Yuan, C. Mei, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, C. Yu, and G. Farrell, “Highly coherent supercontinuum generation in a polarization-maintaining -core photonic crystal fiber,” Appl. Opt. 58(6), 1386–1392 (2019).
[Crossref]

Wu, T.

Xu, F.

Z. Kang, F. Xu, J. Yuan, F. Li, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, K. Long, and C. Yu, “Slow-Nonlinearity Assisted Supercontinuum Generation in a -Core Photonic Crystal Fiber,” IEEE J. Quantum Electron. 55(2), 1–9 (2019).
[Crossref]

F. Xu, J. Yuan, C. Mei, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, C. Yu, and G. Farrell, “Highly coherent supercontinuum generation in a polarization-maintaining -core photonic crystal fiber,” Appl. Opt. 58(6), 1386–1392 (2019).
[Crossref]

Xuan, H.

Xuan, K.

Xuan, K. D.

C. V. Lanh, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński, and J. Pniewski, “Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation,” Laser Phys. 29(7), 075107 (2019).
[Crossref]

Xue, X.

Yan, B.

F. Xu, J. Yuan, C. Mei, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, C. Yu, and G. Farrell, “Highly coherent supercontinuum generation in a polarization-maintaining -core photonic crystal fiber,” Appl. Opt. 58(6), 1386–1392 (2019).
[Crossref]

Z. Kang, F. Xu, J. Yuan, F. Li, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, K. Long, and C. Yu, “Slow-Nonlinearity Assisted Supercontinuum Generation in a -Core Photonic Crystal Fiber,” IEEE J. Quantum Electron. 55(2), 1–9 (2019).
[Crossref]

Yang, L.

Yarwood, J.

J. Yarwood and W. J. Orville-Thomas, “Infra-red dispersion studies. Part 7 Band intensities and atomic polarizations of CX2 =  CCl2 (X = H, F, Cl) molecules,” Trans. Faraday Soc. 62(0), 3294–3309 (1966).
[Crossref]

Yu, C.

Z. Kang, F. Xu, J. Yuan, F. Li, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, K. Long, and C. Yu, “Slow-Nonlinearity Assisted Supercontinuum Generation in a -Core Photonic Crystal Fiber,” IEEE J. Quantum Electron. 55(2), 1–9 (2019).
[Crossref]

F. Xu, J. Yuan, C. Mei, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, C. Yu, and G. Farrell, “Highly coherent supercontinuum generation in a polarization-maintaining -core photonic crystal fiber,” Appl. Opt. 58(6), 1386–1392 (2019).
[Crossref]

Yuan, J.

F. Xu, J. Yuan, C. Mei, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, C. Yu, and G. Farrell, “Highly coherent supercontinuum generation in a polarization-maintaining -core photonic crystal fiber,” Appl. Opt. 58(6), 1386–1392 (2019).
[Crossref]

Z. Kang, F. Xu, J. Yuan, F. Li, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, K. Long, and C. Yu, “Slow-Nonlinearity Assisted Supercontinuum Generation in a -Core Photonic Crystal Fiber,” IEEE J. Quantum Electron. 55(2), 1–9 (2019).
[Crossref]

Zhang, B.

Zhao, P.

Zhao, Y.

Zhou, B.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Zhou, X.

F. Xu, J. Yuan, C. Mei, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, C. Yu, and G. Farrell, “Highly coherent supercontinuum generation in a polarization-maintaining -core photonic crystal fiber,” Appl. Opt. 58(6), 1386–1392 (2019).
[Crossref]

Z. Kang, F. Xu, J. Yuan, F. Li, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, K. Long, and C. Yu, “Slow-Nonlinearity Assisted Supercontinuum Generation in a -Core Photonic Crystal Fiber,” IEEE J. Quantum Electron. 55(2), 1–9 (2019).
[Crossref]

Zhuang, B.

N. An, B. Zhuang, M. Li, Y. Lu, and Z. G. Wang, “Combined Theoretical and Experimental Study of Refractive Indices of Water-Acetonitrile-Salt Systems,” J. Phys. Chem. B 119(33), 10701–10709 (2015).
[Crossref]

Zürch, M.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in anti-resonant hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28(4), 216–218 (1976).
[Crossref]

Electron. Lett. (1)

C. Lin, V. T. Nguyen, and W.G. French, “Wideband near-I.R. continuum (0.7-2.1μm) generated in low-loss optical fibres,” Electron. Lett. 14(25), 822–823 (1978).
[Crossref]

IEEE J. Quantum Electron. (1)

Z. Kang, F. Xu, J. Yuan, F. Li, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, K. Long, and C. Yu, “Slow-Nonlinearity Assisted Supercontinuum Generation in a -Core Photonic Crystal Fiber,” IEEE J. Quantum Electron. 55(2), 1–9 (2019).
[Crossref]

Infrared Phys. (1)

S. Ghosal, J. L. Ebert, and S. A. Self, “The infrared refractive indices of CHBr3, CCl4 and CS2,” Infrared Phys. 34(6), 621–628 (1993).
[Crossref]

J. Global NEST (1)

M. Mecozzi, F. Moscato, M. Pietroletti, F. Quarto, F. Oteri, and A. M. Cicero, “Applications of FTIR Spectroscopy in Environmental Studies Supported by Two-Dimensional Correlation analysis,” J. Global NEST 11, 593–600 (2009).

J. Opt. Soc. Am. (2)

J. Phys. (Paris) (1)

J. Vincent-Geisse, “Dispersion de quelques liquides organiques dans l’infrarouge. détermination des intensités de bandes et des polarisations,” J. Phys. (Paris) 26(6), 289–296 (1965).
[Crossref]

J. Phys. Chem. B (1)

N. An, B. Zhuang, M. Li, Y. Lu, and Z. G. Wang, “Combined Theoretical and Experimental Study of Refractive Indices of Water-Acetonitrile-Salt Systems,” J. Phys. Chem. B 119(33), 10701–10709 (2015).
[Crossref]

Laser Phys. (1)

C. V. Lanh, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński, and J. Pniewski, “Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation,” Laser Phys. 29(7), 075107 (2019).
[Crossref]

Light: Sci. Appl. (1)

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in anti-resonant hollow-core fibers,” Light: Sci. Appl. 6(12), e17124 (2017).
[Crossref]

Nat. Commun. (1)

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
[Crossref]

Nat. Photonics (2)

P. Russell, P. Hoelzer, W. Change, A. Abdolvand, and C. J. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8(4), 278 (2014).
[Crossref]

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Nature (London) (1)

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature (London) 424(6948), 511–515 (2003).
[Crossref]

Opt. Express (7)

K. Mak, J. Travers, P. Hölzer, N. Joly, and P. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21(9), 10942–10953 (2013).
[Crossref]

N. Granzow, M. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. Lee, M. Fermann, L. Wondraczek, and P. Russell, “Mid-infrared supercontinuum generation in -silica “nano-spike” step-index waveguide,” Opt. Express 21(9), 10969–10977 (2013).
[Crossref]

J. Hult, R. Watt, and C. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15(18), 11385–11395 (2007).
[Crossref]

H. Amrania, G. Antonacci, C. Chan, L. Drummond, W. Otto, N. Wright, and C. Phillips, “Digistain: a digital staining instrument for histopathology,” Opt. Express 20(7), 7290–7299 (2012).
[Crossref]

R. Salem, Z. Jiang, D. Liu, R. Pafchek, D. Gardner, P. Foy, M. Saad, D. Jenkins, A. Cable, and P. Fendel, “Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 µm,” Opt. Express 23(24), 30592–30602 (2015).
[Crossref]

M. Chemnitz and M. Schmidt, “Single mode criterion - a benchmark figure to optimize the performance of nonlinear fibers,” Opt. Express 24(14), 16191–16205 (2016).
[Crossref]

M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tünnermann, J. Limpert, and M. Schmidt, “Carbon chloride-core fibers for soliton mediated supercontinuum generation,” Opt. Express 26(3), 3221–3235 (2018).
[Crossref]

Opt. Lett. (5)

Opt. Mater. Express (2)

Optica (3)

Phys. Rev. (1)

E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921).
[Crossref]

Phys. Rev. Lett. (1)

C. Conti, M. A. Schmidt, P. S. J. Russell, and F. Biancalana, “Highly Non instantaneous Solitons in Liquid-Core Photonic Crystal Fibers,” Phys. Rev. Lett. 105(26), 263902 (2010).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Ceon, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Trans. Faraday Soc. (1)

J. Yarwood and W. J. Orville-Thomas, “Infra-red dispersion studies. Part 7 Band intensities and atomic polarizations of CX2 =  CCl2 (X = H, F, Cl) molecules,” Trans. Faraday Soc. 62(0), 3294–3309 (1966).
[Crossref]

Vib. Spectrosc. (1)

N. Thantu and R. S. Schley, “Ultrafast third-order nonlinear optical spectroscopy of chlorinated hydrocarbons,” Vib. Spectrosc. 32(2), 215–223 (2003).
[Crossref]

Other (3)

G. P. Agarwal, Nonlinear Fiber Optics, 3rd edition, Academic press, (2001)

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE9731, 97310F (2016).
[Crossref]

M. Chemnitz, N. Walther, R. Scheibinger, K. Scharschmidt, S. Junaid, J. Kobelke, and M. Schmidt, “Tayloring soliton fission at telecom wavelength using composite-liquid-core fibers,” Opt. Lett. (Submitted).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Cross-section of the silica capillary filled with the mixture of TCE and CTC. Simulated (b) group velocity dispersion and (c) total nonlinear coefficient (incl. both electronic and non-instantaneous contribution) as functions of concentration ratio q and core radius R, assuming silica as cladding material (wavelength: 1.555 µm). In (b) the domains of anomalous and normal dispersion are marked as AD and ND, respectively, and the solid line represents the zero-dispersion regime (linear color scales). The green dots indicate the configurations used in the experiments (Fig. 3) and dashed lines represent the single mode criteria (SMC).
Fig. 2.
Fig. 2. (a) Schematic of the experimental setup used for the supercontinuum experiments (LCF: liquid core fiber, OFM: opto-fluidic mount, OSA: optical spectrum analyzer, SEM: scanning electron microscope). Further details related to the setup can be found in the main text.
Fig. 3.
Fig. 3. Power-spectral evolution of the SCG-process of the implemented liquid core fiber samples with increasing input pulse energy (concentration ratios q are given in each plot in the top left corner (a) 15%, (b) 20%, (c) 25%, (d) 30% and (e) 35%). For each sample the spectral distributions of GVD (blue curves) and spectral positions of four-wave mixing/modulation instability (dashed black line), and dispersive wave (dotted black lines) are additionally shown. (a) and (b) represent the situation of pumping in the anomalous dispersion regime, while (c)-(e) refer to the corresponding normal dispersion case.
Fig. 4.
Fig. 4. Simulated power-spectral evolution in liquid-core fiber that corresponds to the experiments presented in Fig. 2 (respective concentration ratios q are given in the upper left corner of each plot, (a) 15%, (b) 20%, (c) 25%, (d) 30% and (e) 35%). The simulations are conducted by solving the nonlinear Schrodinger equation using the model presented in [18, 33] including non-instantaneous and electronic contributions of the nonlinear refractive indices of the liquids used.

Tables (1)

Tables Icon

Table 1. Summary of the linear and nonlinear optical parameters of the five samples used in the experiments [32,39,40].

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ β D W G = β ( ω ) β ( ω s o l ) ( ω ω s o l ) β 1 , s o l 1 2 γ s o l P s o l
Δ β F W M = 2 β p β i β s 2 γ 0 P 0
n 2 , total = n 2 , el + n 2 , m
n 2 , m = I ( t ) R ( t t ) I ( t ) d t d t I 2 ( t ) dt
R ( t ) = n 2 , k r k ( t )

Metrics