Abstract

Silicon photonics is a platform that enables densely integrated photonic components and systems and integration with electronic circuits. Depletion mode modulators designed on this platform suffer from a fundamental frequency response limit due to the mobility of carriers in silicon. Lithium niobate-based modulators have demonstrated high performance, but the material is difficult to process and cannot be easily integrated with other photonic components and electronics. In this manuscript, we simultaneously take advantage of the benefits of silicon photonics and the Pockels effect in lithium niobate by heterogeneously integrating silicon photonic-integrated circuits with thin-film lithium niobate samples. We demonstrate the most CMOS-compatible thin-film lithium niobate modulator to date, which has electro-optic 3 dB bandwidths of 30.6 GHz and half-wave voltages of 6.7 V×cm. These modulators are fabricated entirely in CMOS facilities, with the exception of the bonding of a thin-film lithium niobate sample post fabrication, and require no etching of lithium niobate.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth

Peter O. Weigel, Jie Zhao, Kelvin Fang, Hasan Al-Rubaye, Douglas Trotter, Dana Hood, John Mudrick, Christina Dallo, Andrew T. Pomerene, Andrew L. Starbuck, Christopher T. DeRose, Anthony L. Lentine, Gabriel Rebeiz, and Shayan Mookherjea
Opt. Express 26(18) 23728-23739 (2018)

Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics

Jeff Chiles and Sasan Fathpour
Optica 1(5) 350-355 (2014)

Heterogeneous lithium niobate photonics on silicon substrates

Payam Rabiei, Jichi Ma, Saeed Khan, Jeff Chiles, and Sasan Fathpour
Opt. Express 21(21) 25573-25581 (2013)

References

  • View by:
  • |
  • |
  • |

  1. E. L. Wooten K, M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
    [Crossref]
  2. Thorlabs Specification Sheet, “40 GHz Lithium Niobate Intensity Modulator”, https://www.thorlabs.com/drawings/d4d21260dd06d23b-499950EF-B5E8-56A6-EF67BF48763C40CE/LN05S-FC-SpecSheet.pdf.
  3. A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26(11), 14810–14816 (2018).
    [Crossref]
  4. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
    [Crossref]
  5. A. J. Mercante, P. Yao, S. Shi, G. Schneider, J. Murakowski, and D. W. Prather, “110 GHz CMOS compatible thin film LiNbO3 modulator on silicon,” Opt. Express 24(14), 15590–15595 (2016).
    [Crossref]
  6. S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photonics Technol. Lett. 28(7), 736–739 (2016).
    [Crossref]
  7. A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41(24), 5700–5703 (2016).
    [Crossref]
  8. P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth,” Opt. Express 26(18), 23728–23739 (2018).
    [Crossref]
  9. L. Chen, J. Nagy, and R. M. Reano, “Patterned ion-sliced lithium niobate for hybrid photonic integration on silicon,” Opt. Mater. Express 6(7), 2460–2467 (2016).
    [Crossref]
  10. L. Chen and R. M. Reano, “Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings,” Opt. Express 20(4), 4032–4038 (2012)..
    [Crossref]
  11. L. Chen, J. Chen, J. Nagy, and R. M. Reano, “Highly linear ring modulator from hybrid silicon and lithium niobate,” Opt. Express 23(10), 13255–13264 (2015).
    [Crossref]
  12. M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. Chee, A. E. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350–30357 (2013).
    [Crossref]
  13. S. S. Azadeh, F. Merget, S. Romero-García, A. Moscoso-Mártir, N. Driesch, J. Müller, S. Mantl, D. Buca, and J. Witzens, “Low Vπ Silicon photonics modulators with highly linear epitaxially grown phase shifters,” Opt. Express 23(18), 23526–23550 (2015).
    [Crossref]
  14. A. L. Lentine, C. T. Derose, P. S. Davids, J. D. Nicolas, W. A. Zortman, J. A. Cox, A. Jones, D. C. Trotter, A. T. Pomerene, A. L. Starbuck, D. J. Savignon, M. Wiwi, and P. B. Chu, “Silicon Photonics Platform for National Security Applications,” IEEE Aerospace Conference, 1–9 (2015).
  15. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [Crossref]
  16. F. Gardes, G. Reed, N. Emerson, and C. Png, “A sub-micron depletion-type photonic modulator in Silicon On Insulator,” Opt. Express 13(22), 8845–8854 (2005).
    [Crossref]
  17. L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32(14), 2031–2033 (2007).
    [Crossref]
  18. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
    [Crossref]
  19. D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(1), 1–21 (2013).
    [Crossref]
  20. D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
    [Crossref]
  21. E. A. Douglas, P. Mahony, A. Starbuck, A. Pomerene, D. C. Trotter, and C. T. DeRose, Opt. Mater. Express6(9), 2892 (2016).
    [Crossref]
  22. R. C. Alferness, S. K. Korotky, and E. A. J. Marcatili, “Velocity-matching techniques for integrated optic traveling wave switch/modulators,” IEEE J. Quantum Electron. 20(3), 301–309 (1984).
    [Crossref]
  23. G. Ghione, Semiconductor Devices for High-Speed Optoelectronics (Cambridge University, 2009), Chap. 6.
  24. C. Schollhorn, W. Zhao, M. Morschbach, and E. Kasper, “Attenuation mechanisms of aluminum millimeter-wave coplanar waveguides on silicon,” IEEE Trans. Electron Devices 50(3), 740–746 (2003).
    [Crossref]
  25. A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G. R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20(4), 4454–4469 (2012).
    [Crossref]
  26. N. J. Martinez, C. T. DeRose, R. Jarecki, A. L. Starbuck, A. T. Pomerene, D. C. Trotter, and A. L. Lentine, “Substrate removal for ultra efficient silicon heater-modulators,” in IEEE Optical Interconnects Conference, (IEEE, 2017), 15–16.
  27. S. Wolf and R. N. Tauber, Silicon Processing for VLSI Era Volume 1 – Processing Technology2nd ed., (Lattice Press, 2000), Chap. 15.

2018 (4)

2016 (4)

2015 (2)

2013 (2)

2012 (2)

2009 (1)

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

2007 (1)

2005 (1)

2003 (1)

C. Schollhorn, W. Zhao, M. Morschbach, and E. Kasper, “Attenuation mechanisms of aluminum millimeter-wave coplanar waveguides on silicon,” IEEE Trans. Electron Devices 50(3), 740–746 (2003).
[Crossref]

2000 (1)

E. L. Wooten K, M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

1984 (1)

R. C. Alferness, S. K. Korotky, and E. A. J. Marcatili, “Velocity-matching techniques for integrated optic traveling wave switch/modulators,” IEEE J. Quantum Electron. 20(3), 301–309 (1984).
[Crossref]

Agrawal, G. P.

Alferness, R. C.

R. C. Alferness, S. K. Korotky, and E. A. J. Marcatili, “Velocity-matching techniques for integrated optic traveling wave switch/modulators,” IEEE J. Quantum Electron. 20(3), 301–309 (1984).
[Crossref]

Al-Rubaye, H.

Attanasio, D. V.

E. L. Wooten K, M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Azadeh, S. S.

Baehr-Jones, T.

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Bertrand, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Blumenthal, D. J.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

Bossi, D. E.

E. L. Wooten K, M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Buca, D.

Byun, H.

Capmany, J.

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(1), 1–21 (2013).
[Crossref]

Chandrasekhar, S.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Chee, E. K. S.

Chen, J.

Chen, L.

Chen, X.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Chu, P. B.

A. L. Lentine, C. T. Derose, P. S. Davids, J. D. Nicolas, W. A. Zortman, J. A. Cox, A. Jones, D. C. Trotter, A. T. Pomerene, A. L. Starbuck, D. J. Savignon, M. Wiwi, and P. B. Chu, “Silicon Photonics Platform for National Security Applications,” IEEE Aerospace Conference, 1–9 (2015).

Cox, J. A.

A. L. Lentine, C. T. Derose, P. S. Davids, J. D. Nicolas, W. A. Zortman, J. A. Cox, A. Jones, D. C. Trotter, A. T. Pomerene, A. L. Starbuck, D. J. Savignon, M. Wiwi, and P. B. Chu, “Silicon Photonics Platform for National Security Applications,” IEEE Aerospace Conference, 1–9 (2015).

Cunningham, J. E.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Dahlem, M. S.

Dallo, C.

Davids, P. S.

A. L. Lentine, C. T. Derose, P. S. Davids, J. D. Nicolas, W. A. Zortman, J. A. Cox, A. Jones, D. C. Trotter, A. T. Pomerene, A. L. Starbuck, D. J. Savignon, M. Wiwi, and P. B. Chu, “Silicon Photonics Platform for National Security Applications,” IEEE Aerospace Conference, 1–9 (2015).

DeRose, C. T.

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth,” Opt. Express 26(18), 23728–23739 (2018).
[Crossref]

A. L. Lentine, C. T. Derose, P. S. Davids, J. D. Nicolas, W. A. Zortman, J. A. Cox, A. Jones, D. C. Trotter, A. T. Pomerene, A. L. Starbuck, D. J. Savignon, M. Wiwi, and P. B. Chu, “Silicon Photonics Platform for National Security Applications,” IEEE Aerospace Conference, 1–9 (2015).

E. A. Douglas, P. Mahony, A. Starbuck, A. Pomerene, D. C. Trotter, and C. T. DeRose, Opt. Mater. Express6(9), 2892 (2016).
[Crossref]

N. J. Martinez, C. T. DeRose, R. Jarecki, A. L. Starbuck, A. T. Pomerene, D. C. Trotter, and A. L. Lentine, “Substrate removal for ultra efficient silicon heater-modulators,” in IEEE Optical Interconnects Conference, (IEEE, 2017), 15–16.

DeSalvo, R.

DiLello, N. A.

Ding, R.

Douglas, E. A.

E. A. Douglas, P. Mahony, A. Starbuck, A. Pomerene, D. C. Trotter, and C. T. DeRose, Opt. Mater. Express6(9), 2892 (2016).
[Crossref]

Driesch, N.

Emerson, N.

Fang, K.

Fathpour, S.

Fritz, D. J.

E. L. Wooten K, M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Gardes, F.

Geis, M. W.

Geuzebroek, D.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

Ghione, G.

G. Ghione, Semiconductor Devices for High-Speed Optoelectronics (Cambridge University, 2009), Chap. 6.

Grein, M. E.

Hallemeier, P. F.

E. L. Wooten K, M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Heideman, R.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

Heideman, R. G.

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(1), 1–21 (2013).
[Crossref]

Ho, R.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Hochberg, M.

Holzwarth, C. W.

Honardoost, A.

Hood, D.

Hoyt, J. L.

Ippen, E. P.

Jarecki, R.

N. J. Martinez, C. T. DeRose, R. Jarecki, A. L. Starbuck, A. T. Pomerene, D. C. Trotter, and A. L. Lentine, “Substrate removal for ultra efficient silicon heater-modulators,” in IEEE Optical Interconnects Conference, (IEEE, 2017), 15–16.

Jin, S.

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photonics Technol. Lett. 28(7), 736–739 (2016).
[Crossref]

Jones, A.

A. L. Lentine, C. T. Derose, P. S. Davids, J. D. Nicolas, W. A. Zortman, J. A. Cox, A. Jones, D. C. Trotter, A. T. Pomerene, A. L. Starbuck, D. J. Savignon, M. Wiwi, and P. B. Chu, “Silicon Photonics Platform for National Security Applications,” IEEE Aerospace Conference, 1–9 (2015).

Kärtner, F. X.

Kasper, E.

C. Schollhorn, W. Zhao, M. Morschbach, and E. Kasper, “Attenuation mechanisms of aluminum millimeter-wave coplanar waveguides on silicon,” IEEE Trans. Electron Devices 50(3), 740–746 (2003).
[Crossref]

Khilo, A.

Kissa, M.

E. L. Wooten K, M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Koka, P.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Korotky, S. K.

R. C. Alferness, S. K. Korotky, and E. A. J. Marcatili, “Velocity-matching techniques for integrated optic traveling wave switch/modulators,” IEEE J. Quantum Electron. 20(3), 301–309 (1984).
[Crossref]

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Lafaw, D. A.

E. L. Wooten K, M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Leinse, A.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(1), 1–21 (2013).
[Crossref]

Lentine, A. L.

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth,” Opt. Express 26(18), 23728–23739 (2018).
[Crossref]

A. L. Lentine, C. T. Derose, P. S. Davids, J. D. Nicolas, W. A. Zortman, J. A. Cox, A. Jones, D. C. Trotter, A. T. Pomerene, A. L. Starbuck, D. J. Savignon, M. Wiwi, and P. B. Chu, “Silicon Photonics Platform for National Security Applications,” IEEE Aerospace Conference, 1–9 (2015).

N. J. Martinez, C. T. DeRose, R. Jarecki, A. L. Starbuck, A. T. Pomerene, D. C. Trotter, and A. L. Lentine, “Substrate removal for ultra efficient silicon heater-modulators,” in IEEE Optical Interconnects Conference, (IEEE, 2017), 15–16.

Lexau, J.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Li, G.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Li, Y.

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photonics Technol. Lett. 28(7), 736–739 (2016).
[Crossref]

Lim, A. E.

Liu, Y.

Lo, P. G.

Loncar, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Lyszczarz, T. M.

Ma, Y.

Maack, D.

E. L. Wooten K, M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Mahony, P.

E. A. Douglas, P. Mahony, A. Starbuck, A. Pomerene, D. C. Trotter, and C. T. DeRose, Opt. Mater. Express6(9), 2892 (2016).
[Crossref]

Mantl, S.

Marcatili, E. A. J.

R. C. Alferness, S. K. Korotky, and E. A. J. Marcatili, “Velocity-matching techniques for integrated optic traveling wave switch/modulators,” IEEE J. Quantum Electron. 20(3), 301–309 (1984).
[Crossref]

Marpaung, D. A. I.

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(1), 1–21 (2013).
[Crossref]

Martinez, N. J.

N. J. Martinez, C. T. DeRose, R. Jarecki, A. L. Starbuck, A. T. Pomerene, D. C. Trotter, and A. L. Lentine, “Substrate removal for ultra efficient silicon heater-modulators,” in IEEE Optical Interconnects Conference, (IEEE, 2017), 15–16.

McBrien, G. J.

E. L. Wooten K, M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Mercante, A. J.

Merget, F.

Mookherjea, S.

Morschbach, M.

C. Schollhorn, W. Zhao, M. Morschbach, and E. Kasper, “Attenuation mechanisms of aluminum millimeter-wave coplanar waveguides on silicon,” IEEE Trans. Electron Devices 50(3), 740–746 (2003).
[Crossref]

Moscoso-Mártir, A.

Motamedi, A.

Mudrick, J.

Müller, J.

Murakowski, J.

Murphy, E. J.

E. L. Wooten K, M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Nagy, J.

Nejadmalayeri, A. H.

Nicolas, J. D.

A. L. Lentine, C. T. Derose, P. S. Davids, J. D. Nicolas, W. A. Zortman, J. A. Cox, A. Jones, D. C. Trotter, A. T. Pomerene, A. L. Starbuck, D. J. Savignon, M. Wiwi, and P. B. Chu, “Silicon Photonics Platform for National Security Applications,” IEEE Aerospace Conference, 1–9 (2015).

Novack, A.

Orcutt, J. S.

Paolella, A.

Patil, A.

Peng, M. Y.

Perrott, M.

Png, C.

Pomerene, A.

E. A. Douglas, P. Mahony, A. Starbuck, A. Pomerene, D. C. Trotter, and C. T. DeRose, Opt. Mater. Express6(9), 2892 (2016).
[Crossref]

Pomerene, A. T.

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth,” Opt. Express 26(18), 23728–23739 (2018).
[Crossref]

A. L. Lentine, C. T. Derose, P. S. Davids, J. D. Nicolas, W. A. Zortman, J. A. Cox, A. Jones, D. C. Trotter, A. T. Pomerene, A. L. Starbuck, D. J. Savignon, M. Wiwi, and P. B. Chu, “Silicon Photonics Platform for National Security Applications,” IEEE Aerospace Conference, 1–9 (2015).

N. J. Martinez, C. T. DeRose, R. Jarecki, A. L. Starbuck, A. T. Pomerene, D. C. Trotter, and A. L. Lentine, “Substrate removal for ultra efficient silicon heater-modulators,” in IEEE Optical Interconnects Conference, (IEEE, 2017), 15–16.

Popovic, M. A.

Prather, D. W.

Rabiei, P.

Ram, R. J.

Rao, A.

Reano, R. M.

Rebeiz, G.

Reed, G.

Roeloffzen, C.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

Roeloffzen, C. G. H.

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(1), 1–21 (2013).
[Crossref]

Romero-García, S.

Sales, S.

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(1), 1–21 (2013).
[Crossref]

Sander, M. Y.

Savignon, D. J.

A. L. Lentine, C. T. Derose, P. S. Davids, J. D. Nicolas, W. A. Zortman, J. A. Cox, A. Jones, D. C. Trotter, A. T. Pomerene, A. L. Starbuck, D. J. Savignon, M. Wiwi, and P. B. Chu, “Silicon Photonics Platform for National Security Applications,” IEEE Aerospace Conference, 1–9 (2015).

Schneider, G.

Schollhorn, C.

C. Schollhorn, W. Zhao, M. Morschbach, and E. Kasper, “Attenuation mechanisms of aluminum millimeter-wave coplanar waveguides on silicon,” IEEE Trans. Electron Devices 50(3), 740–746 (2003).
[Crossref]

Schwetman, H.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Shams-Ansari, A.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Shi, S.

Shubin, I.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Smith, H. I.

Sorace-Agaskar, C. M.

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Spector, S. J.

Starbuck, A.

E. A. Douglas, P. Mahony, A. Starbuck, A. Pomerene, D. C. Trotter, and C. T. DeRose, Opt. Mater. Express6(9), 2892 (2016).
[Crossref]

Starbuck, A. L.

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth,” Opt. Express 26(18), 23728–23739 (2018).
[Crossref]

A. L. Lentine, C. T. Derose, P. S. Davids, J. D. Nicolas, W. A. Zortman, J. A. Cox, A. Jones, D. C. Trotter, A. T. Pomerene, A. L. Starbuck, D. J. Savignon, M. Wiwi, and P. B. Chu, “Silicon Photonics Platform for National Security Applications,” IEEE Aerospace Conference, 1–9 (2015).

N. J. Martinez, C. T. DeRose, R. Jarecki, A. L. Starbuck, A. T. Pomerene, D. C. Trotter, and A. L. Lentine, “Substrate removal for ultra efficient silicon heater-modulators,” in IEEE Optical Interconnects Conference, (IEEE, 2017), 15–16.

Streshinsky, M.

Sun, J.

Tauber, R. N.

S. Wolf and R. N. Tauber, Silicon Processing for VLSI Era Volume 1 – Processing Technology2nd ed., (Lattice Press, 2000), Chap. 15.

Trotter, D.

Trotter, D. C.

A. L. Lentine, C. T. Derose, P. S. Davids, J. D. Nicolas, W. A. Zortman, J. A. Cox, A. Jones, D. C. Trotter, A. T. Pomerene, A. L. Starbuck, D. J. Savignon, M. Wiwi, and P. B. Chu, “Silicon Photonics Platform for National Security Applications,” IEEE Aerospace Conference, 1–9 (2015).

E. A. Douglas, P. Mahony, A. Starbuck, A. Pomerene, D. C. Trotter, and C. T. DeRose, Opt. Mater. Express6(9), 2892 (2016).
[Crossref]

N. J. Martinez, C. T. DeRose, R. Jarecki, A. L. Starbuck, A. T. Pomerene, D. C. Trotter, and A. L. Lentine, “Substrate removal for ultra efficient silicon heater-modulators,” in IEEE Optical Interconnects Conference, (IEEE, 2017), 15–16.

Tu, X.

Wang, C.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Wang, J. P.

Weigel, P. O.

Weikle, R. M.

Winzer, P.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Witzens, J.

Wiwi, M.

A. L. Lentine, C. T. Derose, P. S. Davids, J. D. Nicolas, W. A. Zortman, J. A. Cox, A. Jones, D. C. Trotter, A. T. Pomerene, A. L. Starbuck, D. J. Savignon, M. Wiwi, and P. B. Chu, “Silicon Photonics Platform for National Security Applications,” IEEE Aerospace Conference, 1–9 (2015).

Wolf, S.

S. Wolf and R. N. Tauber, Silicon Processing for VLSI Era Volume 1 – Processing Technology2nd ed., (Lattice Press, 2000), Chap. 15.

Wooten K, E. L.

E. L. Wooten K, M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Xie, L.

Xu, L.

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photonics Technol. Lett. 28(7), 736–739 (2016).
[Crossref]

Yang, Y.

Yao, P.

Yin, L.

Yi-Yan, A.

E. L. Wooten K, M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Yoon, J. U.

Zhang, H.

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photonics Technol. Lett. 28(7), 736–739 (2016).
[Crossref]

Zhang, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Zhao, J.

Zhao, W.

C. Schollhorn, W. Zhao, M. Morschbach, and E. Kasper, “Attenuation mechanisms of aluminum millimeter-wave coplanar waveguides on silicon,” IEEE Trans. Electron Devices 50(3), 740–746 (2003).
[Crossref]

Zheng, X.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Zhou, G. R.

Zortman, W. A.

A. L. Lentine, C. T. Derose, P. S. Davids, J. D. Nicolas, W. A. Zortman, J. A. Cox, A. Jones, D. C. Trotter, A. T. Pomerene, A. L. Starbuck, D. J. Savignon, M. Wiwi, and P. B. Chu, “Silicon Photonics Platform for National Security Applications,” IEEE Aerospace Conference, 1–9 (2015).

IEEE J. Quantum Electron. (2)

R. C. Alferness, S. K. Korotky, and E. A. J. Marcatili, “Velocity-matching techniques for integrated optic traveling wave switch/modulators,” IEEE J. Quantum Electron. 20(3), 301–309 (1984).
[Crossref]

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. L. Wooten K, M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photonics Technol. Lett. 28(7), 736–739 (2016).
[Crossref]

IEEE Trans. Electron Devices (1)

C. Schollhorn, W. Zhao, M. Morschbach, and E. Kasper, “Attenuation mechanisms of aluminum millimeter-wave coplanar waveguides on silicon,” IEEE Trans. Electron Devices 50(3), 740–746 (2003).
[Crossref]

Laser Photon. Rev. (1)

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(1), 1–21 (2013).
[Crossref]

Nature (1)

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Opt. Express (9)

F. Gardes, G. Reed, N. Emerson, and C. Png, “A sub-micron depletion-type photonic modulator in Silicon On Insulator,” Opt. Express 13(22), 8845–8854 (2005).
[Crossref]

A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26(11), 14810–14816 (2018).
[Crossref]

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth,” Opt. Express 26(18), 23728–23739 (2018).
[Crossref]

L. Chen and R. M. Reano, “Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings,” Opt. Express 20(4), 4032–4038 (2012)..
[Crossref]

A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G. R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20(4), 4454–4469 (2012).
[Crossref]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. Chee, A. E. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350–30357 (2013).
[Crossref]

L. Chen, J. Chen, J. Nagy, and R. M. Reano, “Highly linear ring modulator from hybrid silicon and lithium niobate,” Opt. Express 23(10), 13255–13264 (2015).
[Crossref]

S. S. Azadeh, F. Merget, S. Romero-García, A. Moscoso-Mártir, N. Driesch, J. Müller, S. Mantl, D. Buca, and J. Witzens, “Low Vπ Silicon photonics modulators with highly linear epitaxially grown phase shifters,” Opt. Express 23(18), 23526–23550 (2015).
[Crossref]

A. J. Mercante, P. Yao, S. Shi, G. Schneider, J. Murakowski, and D. W. Prather, “110 GHz CMOS compatible thin film LiNbO3 modulator on silicon,” Opt. Express 24(14), 15590–15595 (2016).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (1)

Proc. IEEE (2)

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Other (6)

Thorlabs Specification Sheet, “40 GHz Lithium Niobate Intensity Modulator”, https://www.thorlabs.com/drawings/d4d21260dd06d23b-499950EF-B5E8-56A6-EF67BF48763C40CE/LN05S-FC-SpecSheet.pdf.

E. A. Douglas, P. Mahony, A. Starbuck, A. Pomerene, D. C. Trotter, and C. T. DeRose, Opt. Mater. Express6(9), 2892 (2016).
[Crossref]

G. Ghione, Semiconductor Devices for High-Speed Optoelectronics (Cambridge University, 2009), Chap. 6.

A. L. Lentine, C. T. Derose, P. S. Davids, J. D. Nicolas, W. A. Zortman, J. A. Cox, A. Jones, D. C. Trotter, A. T. Pomerene, A. L. Starbuck, D. J. Savignon, M. Wiwi, and P. B. Chu, “Silicon Photonics Platform for National Security Applications,” IEEE Aerospace Conference, 1–9 (2015).

N. J. Martinez, C. T. DeRose, R. Jarecki, A. L. Starbuck, A. T. Pomerene, D. C. Trotter, and A. L. Lentine, “Substrate removal for ultra efficient silicon heater-modulators,” in IEEE Optical Interconnects Conference, (IEEE, 2017), 15–16.

S. Wolf and R. N. Tauber, Silicon Processing for VLSI Era Volume 1 – Processing Technology2nd ed., (Lattice Press, 2000), Chap. 15.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Optical waveguide configurations utilizing (a) Ti diffused waveguide cores, utilized in [2], (b) etched TFLN waveguide cores, utilized in [35], and (c) a waveguide core consisting multiple dielectric materials, which is implemented in [68] and in this work.
Fig. 2.
Fig. 2. A cross section of the proposed heterogeneously integrated SiP/TFLN platform utilizing standard SiP CMOS compatible materials bonded to TFLN chips.
Fig. 3.
Fig. 3. (a) Perspective schematic (not to scale) of the heterogeneously integrated SiP/TFLN phase modulators and corresponding evolution of optical power distribution through the structure, where light enters through the i) bottom Si-rich SiNx waveguide, ii) propagates underneath the TFLN/air interface, and iii) couples up to the hybrid SiNx/TFLN waveguide using 250 µm long tapers in each waveguide layer. Light couples out of the phase modulator region in the reverse fashion. (b) Simulated optical loss at the air/TFLN interface for the implemented bi-layer waveguide structure and a single waveguide structure as a function of waveguide width.
Fig. 4.
Fig. 4. (a) Cross section of the final, pre-bond cross-section of the MZM with dimensions labelled (not to scale), (b) Schematic of the bonded modulator detailing the signal and ground traces of the CPW, and the hybrid SiNx/TFLN phase modulators in red, and (c) a photograph of the TFLN chip bonded to the SiP sample. The concentric fringes are due variations in SiO2 arising from variations in the CMP process, while the diagonal fringes on the bottom left of the transparent TFLN sample are due to the sample not being completely bonded.
Fig. 5.
Fig. 5. The simulated (a) RF attenuation, (b) phase index, and (c) characteristic impedance for the CPW used in the heterogeneously integrated MZM as a function of frequency for the designed gap of 4 ± 0.5 µm.
Fig. 6.
Fig. 6. The simulated sensitivity to SiO2 thickness between TFLN and SiNx for the (a) electro-optic bandwidth and (b) half-wave voltage of the heterogeneously integrated MZM with an electrode gap of 4 ± 0.5 µm, where a clear tradeoff between bandwidth and half-wave voltage can be seen as the electrode gap is increased.
Fig. 7.
Fig. 7. (a) Spectra of both outputs of the un-bias MZM with near constant splitting ratio and extinction ratios above 20 dB from 1500 nm to 1600 nm and (b) low frequency half-wave voltage (Vπ) results measured by applying a 50 kHz sawtooth signal to the 0.5 cm long MZM and measuring the electro-optic response using an amplified photodiode.
Fig. 8.
Fig. 8. The electrical 3 dB bandwidth of the CPW used in the travelling wave modulator is 20 GHz and shows a 6 dB bandwidth above 40 GHz (a), the 3 dB electro-optic bandwidth of the travelling wave modulator is 30 GHz, and experimental results are plotted against modelled frequency response using Eq. (3b).
Fig. 9.
Fig. 9. Measured and modelled fundamental and third order intermodulation distortion (IMD3) response of the hybrid TFLN modulator at 1 GHz. The noise floor (in units of dBm) can be clearly seen around −110 dBm, while the normalized noise floor (in units of dBm/Hz) is plotted as blue dashed line and is dominated by RIN.
Fig. 10.
Fig. 10. (a) Predicted improvement in electro-optic frequency response of the reported modulator with TFLN on a silicon carrier wafer and removal of carrier wafer through reduction of velocity mismatch, and (b) the predicted improvement in overlap factor Γ as a function of distance between TFLN and the top of the CMOS compatible metal which is made possible through the use of damascene metallization.

Tables (4)

Tables Icon

Table 1. Comparison of reported monolithic and hybrid electro-optic modulators.

Tables Icon

Table 2. Measured and simulated loss for each MZM element.

Tables Icon

Table 3. Reported SFDR for various electro-optic modulators.

Tables Icon

Table 4. Predicted dynamic range and noise figure under various conditions

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

V π = 1 L n e f f λ o G C P W 2 n e 4 r 33 Γ
Γ = G C P W V | E o | 2 × E R F T E d s | E o | 2 d s
v R F ( ω , z , t ) = e j ω t ( V + e γ R F ( ω ) z + V e γ R F ( ω ) z )
γ R F ( ω ) = α R F ( ω ) + j ω ϵ R F ( ω ) / c
V + = 1 1 Γ L Γ G exp ( 2 γ R F L ) Z 0 Z 0 + Z G V A
V = Γ L exp ( 2 γ R F L ) 1 Γ L Γ G exp ( 2 γ R F L ) Z 0 Z 0 + Z G V A
v R F ( ω , z , t 0 + z n g / c ) = e j ω t 0 [ V + e ( n g / c γ R F ( ω ) ) z + V e ( n g / c + γ R F ( ω ) ) z ]
Δ ϕ ( ω , t 0 ) = 2 π λ o 0 L Δ n ( ω , z , t 0 + z n g / c ) d z = Δ Φ ( ω ) e j ω t 0
Δ n ( ω , z , t 0 + z n g c ) = n e 4 r 33 2 n e f f Γ L G C P W v R F ( ω , z , t 0 + z n g c )
m E l e c ( ω ) = | Δ Φ ( ω ) Δ Φ ( 0 ) | 2
S F D R = ( P O u t N O u t ) 2 / 3
I d ( t ) = P L a s g a m p T M Z M cos 2 [ ϕ Q u a d π V 0 ( sin 2 π f 1 t + sin 2 π f 2 t ) V π ] R
N O u t = ( 1 + g l i n k ) k B T 0 + 2 q I d R L + [ R I N L a s + 2 h ν P L a s n f a m p T M Z M ] I d 2 R L

Metrics